1
|
Deluque AL, de Almeida LF, Oliveira BM, Souza CS, Maciel ALD, Francescato HDC, Giovanini C, Costa RS, Coimbra TM. Paricalcitol prevents MAPK pathway activation and inflammation in adriamycin-induced kidney injury in rats. J Pathol Transl Med 2024; 58:219-228. [PMID: 39183499 PMCID: PMC11424196 DOI: 10.4132/jptm.2024.07.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Activation of the mitogen-activated protein kinase (MAPK) pathway induces uncontrolled cell proliferation in response to inflammatory stimuli. Adriamycin (ADR)-induced nephropathy (ADRN) in rats triggers MAPK activation and pro-inflammatory mechanisms by increasing cytokine secretion, similar to chronic kidney disease (CKD). Activation of the vitamin D receptor (VDR) plays a crucial role in suppressing the expression of inflammatory markers in the kidney and may contribute to reducing cellular proliferation. This study evaluated the effect of pre-treatment with paricalcitol on ADRN in renal inflammation mechanisms. METHODS Male Sprague-Dawley rats were implanted with an osmotic minipump containing activated vitamin D (paricalcitol, Zemplar, 6 ng/day) or vehicle (NaCl 0.9%). Two days after implantation, ADR (Fauldoxo, 3.5 mg/kg) or vehicle (NaCl 0.9%) was injected. The rats were divided into four experimental groups: control, n = 6; paricalcitol, n = 6; ADR, n = 7 and, ADR + paricalcitol, n = 7. RESULTS VDR activation was demonstrated by increased CYP24A1 in renal tissue. Paricalcitol prevented macrophage infiltration in the glomeruli, cortex, and outer medulla, prevented secretion of tumor necrosis factor-α, and interleukin-1β, increased arginase I and decreased arginase II tissue expressions, effects associated with attenuation of MAPK pathways, increased zonula occludens-1, and reduced cell proliferation associated with proliferating cell nuclear antigen expression. Paricalcitol treatment decreased the stromal cell-derived factor 1α/chemokine C-X-C receptor type 4/β-catenin pathway. CONCLUSIONS Paricalcitol plays a renoprotective role by modulating renal inflammation and cell proliferation. These results highlight potential targets for treating CKD.
Collapse
Affiliation(s)
- Amanda Lima Deluque
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lucas Ferreira de Almeida
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Beatriz Magalhães Oliveira
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Cláudia Silva Souza
- Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Lívia Dias Maciel
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Heloísa Della Coletta Francescato
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Cleonice Giovanini
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Roberto Silva Costa
- Laboratory of Renal Pathology, Division of Nephrology, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Terezila Machado Coimbra
- Laboratory of Renal Physiology, Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
2
|
Lahane GP, Dhar A, Bhat A. Therapeutic approaches and novel antifibrotic agents in renal fibrosis: A comprehensive review. J Biochem Mol Toxicol 2024; 38:e23795. [PMID: 39132761 DOI: 10.1002/jbt.23795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis (RF) is one of the underlying pathological conditions leading to progressive loss of renal function and end-stage renal disease (ESRD). Over the years, various therapeutic approaches have been explored to combat RF and prevent ESRD. Despite significant advances in understanding the underlying molecular mechanism(s), effective therapeutic interventions for RF are limited. Current therapeutic strategies primarily target these underlying mechanisms to halt or reverse fibrotic progression. Inhibition of transforming growth factor-β (TGF-β) signaling, a pivotal mediator of RF has emerged as a central strategy to manage RF. Small molecules, peptides, and monoclonal antibodies that target TGF-β receptors or downstream effectors have demonstrated potential in preclinical models. Modulating the renin-angiotensin system and targeting the endothelin system also provide established approaches for controlling fibrosis-related hemodynamic changes. Complementary to pharmacological strategies, lifestyle modifications, and dietary interventions contribute to holistic management. This comprehensive review aims to summarize the underlying mechanisms of RF and provide an overview of the therapeutic strategies and novel antifibrotic agents that hold promise in its treatment.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir, India
| |
Collapse
|
3
|
Shnayder NA, Ashkhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Petrova MM, Narodova EA, Al-Zamil M, Chumakova GA, Garganeeva NP, Nasyrova RF. Molecular Basic of Pharmacotherapy of Cytokine Imbalance as a Component of Intervertebral Disc Degeneration Treatment. Int J Mol Sci 2023; 24:ijms24097692. [PMID: 37175399 PMCID: PMC10178334 DOI: 10.3390/ijms24097692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Intervertebral disc degeneration (IDD) and associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. With age, IDD progresses, leading to spondylosis, spondylarthrosis, herniated disc, spinal canal stenosis. One of the leading mechanisms in the development of IDD and chronic back pain is an imbalance between pro-inflammatory and anti-inflammatory cytokines. However, classical therapeutic strategies for correcting cytokine imbalance in IDD do not give the expected response in more than half of the cases. The purpose of this review is to update knowledge about new and promising therapeutic strategies based on the correction of the molecular mechanisms of cytokine imbalance in patients with IDD. This review demonstrates that knowledge of the molecular mechanisms of the imbalance between pro-inflammatory and anti-inflammatory cytokines may be a new key to finding more effective drugs for the treatment of IDD in the setting of acute and chronic inflammation.
Collapse
Affiliation(s)
- Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azamat V Ashkhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Vera V Trefilova
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Zaitun A Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Maxim A Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Galina A Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia
| | - Natalia P Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
4
|
El-Boshy M, Alsaegh A, Qasem AH, Sindi RA, Abdelghany AH, Gadalla H, Reda D, Azzeh F, Idris S, Ahmad J, Refaat B. Enhanced renoprotective actions of Paricalcitol and omega-3 fatty acids co-therapy against diabetic nephropathy in rat. J Adv Res 2022; 38:119-129. [PMID: 35572411 PMCID: PMC9091913 DOI: 10.1016/j.jare.2021.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/20/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
Pcal and ω-3 monotherapies moderately attenuated hyperglycaemia and dyslipidaemia. Pcal and ω-3 monotherapies equally reduced renal oxidative stress and inflammation. Pcal/ω-3 co-therapy showed enhanced anti-diabetic and renoprotection effects. Co-therapy may induce boosted metabolic, anti-oxidative & anti-inflammatory actions.
Introduction Although the synthetic vitamin D analogue, Paricalcitol, and omega-3 Fatty acids (ω-3) alleviated diabetic nephropathy (DN), their combination was not previously explored. Objectives This study measured the potential ameliorative effects of single and dual therapies of Paricalcitol and/or ω-3 against DN. Methods Forty rats were assigned as follow: negative (NC) and positive (PC) controls, Paricalcitol, ω-3 and Paricalcitol + ω-3 groups. Diabetes was generated by high-fat/high-fructose diet and a single streptozotocin injection (40 mg/kg). DN was confirmed by raised fasting blood glucose (FBG), polyuria, proteinuria, and decreased urine creatinine levels. Paricalcitol intraperitoneal injections (0.25 µg/Kg/day; 5 times/week) and oral ω-3 (415 mg/kg/day; 5 times/week) started at week-9 and for eight weeks. Results The PC group showed hyperglycaemia, dyslipidaemia, abnormal renal biochemical parameters, elevated caspase-3 expression, and increased apoptosis by TUNEL technique. The mRNAs and proteins of the pathogenic molecules (TGF-β1/iNOS) and markers of tissue damage (NGAL/KIM-1) augmented substantially in the PC renal tissues relative to the NC group. The oxidative stress (MDA/H2O2/protein carbonyl groups) and pro-inflammatory (IL1β/IL6/TNF-α) markers increased, whereas the anti-inflammatory (IL10) and anti-oxidative (GSH/GPx1/GR/SOD1/CAT) declined, in the PC renal tissues. The monotherapy groups were associated with ameliorated FBG, lipid profile and renal functions, and diminished TGF-β1/iNOS/NGAL/KIM-1/Caspase-3 alongside the apoptotic index than the PC group. The oxidative stress and pro-inflammatory markers decreased, whilst the anti-oxidative and anti-inflammatory molecules escalated, in the monotherapy groups than the PC group. Although the Paricalcitol renoprotective actions were better than ω-3, all the biomarkers were abnormal than the NC group. Alternatively, the Paricalcitol + ω-3 protocol exhibited the best improvements in metabolic control, renal functions, oxidative stress, inflammation, and apoptosis. However, FBG and tissue damage were persistently higher in the co-therapy group than controls. Conclusions Both monotherapies showed modest efficacy against DN, whereas their combination displayed boosted renoprotection, possibly by enhancing renal anti-oxidant and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Mohamed El-Boshy
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Aiman Alsaegh
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Ahmed H. Qasem
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Ramya A. Sindi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Abdelghany H. Abdelghany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hossam Gadalla
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Doha Reda
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Firas Azzeh
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
- Corresponding author at: Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Holy Makkah, PO Box 7607, Saudi Arabia.
| |
Collapse
|
5
|
Tang SCW, Chan KW, Ip DKM, Yap DYH, Ma MKM, Mok MMY, Chan GCW, Tam S, Lai KN. Direct Renin Inhibition in Non-diabetic chronic Kidney disease (DRINK): a prospective randomized trial. Nephrol Dial Transplant 2021; 36:1648-1656. [PMID: 32617578 DOI: 10.1093/ndt/gfaa085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/26/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The potential long-term safety and efficacy of aliskiren in nondiabetic chronic kidney disease (CKD) are unknown. We sought to investigate the renoprotective effect of aliskiren on nondiabetic CKD patients. METHODS In this open-label, parallel, randomized controlled trial, nondiabetic CKD Stages 3-4 patients were randomized to receive aliskiren added to an angiotensin II receptor blocker (ARB) at the maximal tolerated dose, or ARB alone. Primary outcome was the rate of change in estimated glomerular filtration rate (eGFR). Secondary endpoints included rate of change in urine protein-to-creatinine ratio (UPCR), cardiovascular events and hyperkalemia. Composite renal outcomes of doubling of baseline serum creatinine or a 40% reduction in eGFR or incident end-stage renal disease or death were analyzed as post hoc analysis. RESULTS Seventy-six patients were randomized: 37 to aliskiren (mean age 55.1 ± 11.1 years) and 39 to control (mean age 55.0 ± 9.4 years). Their baseline demographics were comparable to eGFR (31.9 ± 9.0 versus 27.7 ± 9.0 mL/min/1.73 m2, P = 0.05) and UPCR (30.7 ± 12.6 versus 47.8 ± 2.8 mg/mmol, P = 0.33) for treatment versus control subjects. After 144 weeks of follow-up, there was no difference in the rate of eGFR change between groups. Six patients in the aliskiren group and seven in the control group reached the renal composite endpoint (16.2% versus 17.9%, P = 0.84). The cardiovascular event rate was 10.8% versus 2.6% (P = 0.217). The hyperkalemia rate was 18.9% versus 5.1% with an adjusted hazard ratio of 7.71 (95% confidence interval 1.14 to 52.3, P = 0.04) for the aliskiren arm. CONCLUSION Aliskiren neither conferred additional renoprotective benefit nor increased adverse events, except for more hyperkalemia in nondiabetic CKD patients.
Collapse
Affiliation(s)
- Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| | - Kam Wa Chan
- Division of Nephrology, Department of Medicine, The University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| | - Dennis K M Ip
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Desmond Y H Yap
- Division of Nephrology, Department of Medicine, The University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| | - Maggie K M Ma
- Division of Nephrology, Department of Medicine, The University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| | - Maggie M Y Mok
- Division of Nephrology, Department of Medicine, The University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| | - Gary C W Chan
- Division of Nephrology, Department of Medicine, The University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| | - Sidney Tam
- Department of Clinical Biochemistry, Queen Mary Hospital, Hong Kong, China
| | - Kar Neng Lai
- Division of Nephrology, Department of Medicine, The University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| |
Collapse
|
6
|
Martínez-Arias L, Panizo S, Alonso-Montes C, Martín-Vírgala J, Martín-Carro B, Fernández-Villabrille S, García Gil-Albert C, Palomo-Antequera C, Fernández-Martín JL, Ruiz-Torres MP, Dusso AS, Carrillo-López N, Cannata-Andía JB, Naves-Díaz M. Effects of calcitriol and paricalcitol on renal fibrosis in CKD. Nephrol Dial Transplant 2021; 36:793-803. [PMID: 33416889 DOI: 10.1093/ndt/gfaa373] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In chronic kidney disease, the activation of the renin-angiotensin-aldosterone system (RAAS) and renal inflammation stimulates renal fibrosis and the progression to end-stage renal disease. The low levels of vitamin D receptor (VDR) and its activators (VDRAs) contribute to worsen secondary hyperparathyroidism and renal fibrosis. METHODS The 7/8 nephrectomy model of experimental chronic renal failure (CRF) was used to examine the anti-fibrotic effects of treatment with two VDRAs, paricalcitol and calcitriol, at equivalent doses (3/1 dose ratio) during 4 weeks. RESULTS CRF increased the activation of the RAAS, renal inflammation and interstitial fibrosis. Paricalcitol treatment reduced renal collagen I and renal interstitial fibrosis by decreasing the activation of the RAAS through renal changes in renin, angiotensin receptor 1 (ATR1) and ATR2 mRNAs levels and renal inflammation by decreasing renal inflammatory leucocytes (CD45), a desintegrin and metaloproteinase mRNA, transforming growth factor beta mRNA and protein, and maintaining E-cadherin mRNA levels. Calcitriol showed similar trends without significant changes in most of these biomarkers. CONCLUSIONS Paricalcitol effectively attenuated the renal interstitial fibrosis induced by CRF through a combination of inhibitory actions on the RAAS, inflammation and epithelial/mesenchymal transition.
Collapse
Affiliation(s)
- Laura Martínez-Arias
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Oviedo, Spain
| | - Sara Panizo
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Oviedo, Spain
| | - Cristina Alonso-Montes
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Oviedo, Spain
| | - Julia Martín-Vírgala
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Oviedo, Spain
| | - Beatriz Martín-Carro
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Oviedo, Spain
| | - Sara Fernández-Villabrille
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Oviedo, Spain
| | | | | | - José Luis Fernández-Martín
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Oviedo, Spain
| | - María Piedad Ruiz-Torres
- Department of System Biology, Universidad de Alcalá, Retic REDinREN-ISCIII, Alcalá de Henares, Spain
| | - Adriana S Dusso
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Oviedo, Spain
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Oviedo, Spain
| | - Jorge B Cannata-Andía
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Oviedo, Spain.,Departament of Medicine, Universidad de Oviedo, Oviedo, Spain
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Oviedo, Spain
| |
Collapse
|
7
|
Zhang Y, Jin D, Kang X, Zhou R, Sun Y, Lian F, Tong X. Signaling Pathways Involved in Diabetic Renal Fibrosis. Front Cell Dev Biol 2021; 9:696542. [PMID: 34327204 PMCID: PMC8314387 DOI: 10.3389/fcell.2021.696542] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic kidney disease (DKD), as the most common complication of diabetes mellitus (DM), is the major cause of end-stage renal disease (ESRD). Renal interstitial fibrosis is a crucial metabolic change in the late stage of DKD, which is always considered to be complex and irreversible. In this review, we discuss the pathological mechanisms of diabetic renal fibrosis and discussed some signaling pathways that are closely related to it, such as the TGF-β, MAPK, Wnt/β-catenin, PI3K/Akt, JAK/STAT, and Notch pathways. The cross-talks among these pathways were then discussed to elucidate the complicated cascade behind the tubulointerstitial fibrosis. Finally, we summarized the new drugs with potential therapeutic effects on renal fibrosis and listed related clinical trials. The purpose of this review is to elucidate the mechanisms and related pathways of renal fibrosis in DKD and to provide novel therapeutic intervention insights for clinical research to delay the progression of renal fibrosis.
Collapse
Affiliation(s)
- Yuqing Zhang
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Endocrinology Department, Guang'anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rongrong Zhou
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Endocrinology Department, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
8
|
Alaraj M. Royal Jelly and Aliskiren mutually annul their protective effects against gentamicin-induced nephrotoxicity in rats. Vet World 2021; 13:2658-2662. [PMID: 33487984 PMCID: PMC7811531 DOI: 10.14202/vetworld.2020.2658-2662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Gentamicin (GM) is one of the most effective antibiotics for severe, life-threatening Gram-negative infections. Nevertheless, its clinical use has been restrained because of its nephrotoxic potential. Royal jelly (RJ) and aliskiren (ALK) can individually prevent such toxic effects. The aim of this study was to explore the protective effects of a combination treatment of RJ and ALK on GM-mediated nephrotoxicity. Materials and Methods Thirty-two adult female. Wistar rats were divided equally into four groups: (I) Receiving normal saline; (II) GM (100 mg/kg, intraperitoneal [i.p.] injection); GM (100 mg/kg, i.p. injection) plus ALK (50 mg/kg, i.p. injection); and (IV) GM (100 mg/kg, i.p. injection) plus ALK (50 mg/kg, i.p. injection) in combination with RJ (150 mg/kg, orally). All treatments were administered daily for 10 days. The blood levels of creatinine, urea, uric acid, albumin, and total protein were measured. Then, the animals were sacrificed, and the kidneys were taken for histopathology. Results Compared to normal control rats, GM-injected rats showed significantly (p<0.001) higher serum concentrations of uric acid, urea, and creatinine as well as evidently (p<0.001) lower blood levels of albumin and total protein. Moreover, GM administration was associated with significant renal histopathological changes. All these alterations were considerably (p<0.05) improved in GM-injected rats receiving ALK compared to rats receiving GM alone. However, when RJ was given in combination with ALK to GM-injected rats, it lessened the beneficial nephroprotective effects of both agents. Conclusion The combination treatment of RJ and ALK is not desirable for GM-induced nephrotoxicity. Further studies are crucial to accurately explore the precise mechanism of RJ antagonistic interaction with ALK.
Collapse
Affiliation(s)
- Mohd Alaraj
- Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
| |
Collapse
|
9
|
Panizo S, Martínez-Arias L, Alonso-Montes C, Cannata P, Martín-Carro B, Fernández-Martín JL, Naves-Díaz M, Carrillo-López N, Cannata-Andía JB. Fibrosis in Chronic Kidney Disease: Pathogenesis and Consequences. Int J Mol Sci 2021; 22:E408. [PMID: 33401711 PMCID: PMC7795409 DOI: 10.3390/ijms22010408] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a process characterized by an excessive accumulation of the extracellular matrix as a response to different types of tissue injuries, which leads to organ dysfunction. The process can be initiated by multiple and different stimuli and pathogenic factors which trigger the cascade of reparation converging in molecular signals responsible of initiating and driving fibrosis. Though fibrosis can play a defensive role, in several circumstances at a certain stage, it can progressively become an uncontrolled irreversible and self-maintained process, named pathological fibrosis. Several systems, molecules and responses involved in the pathogenesis of the pathological fibrosis of chronic kidney disease (CKD) will be discussed in this review, putting special attention on inflammation, renin-angiotensin system (RAS), parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), Klotho, microRNAs (miRs), and the vitamin D hormonal system. All of them are key factors of the core and regulatory pathways which drive fibrosis, having a great negative kidney and cardiac impact in CKD.
Collapse
Affiliation(s)
- Sara Panizo
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Cristina Alonso-Montes
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Pablo Cannata
- Pathology Department, Fundación Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Retic REDinREN-ISCIII, 28040 Madrid, Spain;
| | - Beatriz Martín-Carro
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - José L. Fernández-Martín
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| | - Jorge B. Cannata-Andía
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Universidad de Oviedo, 33011 Oviedo, Spain; (S.P.); (L.M.-A.); (C.A.-M.); (B.M.-C.); (J.L.F.-M.); (N.C.-L.)
| |
Collapse
|
10
|
Azouz AA, Saleh E, Abo-Saif AA. Aliskiren, tadalafil, and cinnamaldehyde alleviate joint destruction biomarkers; MMP-3 and RANKL; in complete Freund's adjuvant arthritis model: Downregulation of IL-6/JAK2/STAT3 signaling pathway. Saudi Pharm J 2020; 28:1101-1111. [PMID: 32922141 PMCID: PMC7474170 DOI: 10.1016/j.jsps.2020.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease, which is accompanied by progressive joint damage and disability. The intolerability of conventional antirheumatic drugs by some patients necessitates the search for effective antirheumatic agents having better tolerability. In the current work, we aimed to investigate the efficacy of cinnamaldehyde, tadalafil, and aliskiren as potential antirheumatic candidates and to explore their modulatory effects on joint destruction, inflammatory response, and intracellular signaling. Arthritis was induced in female Wistar rats by complete Freund's adjuvant (CFA) 0.4 ml s.c. on days 1, 4, and 7. Treated groups received their respective drugs, starting from day 13, daily for 3 weeks. Methotrexate and prednisolone were the standard antirheumatic drugs, while cinnamaldehyde, tadalafil, and aliskiren were the test agents. Treatment with cinnamaldehyde, tadalafil, or aliskiren reduced serum levels of rheumatoid factor, and pro-inflammatory cytokines; tumor necrosis factor-alpha and interleukin-6 (IL-6), along with elevated level of IL-10 which is an anti-inflammatory cytokine. Besides, cartilage and bone destruction biomarkers; matrix metalloproteinase-3 (MMP-3) and receptor activator of nuclear factor-kappa B ligand (RANKL); were significantly reduced after treatment with the test agents, which was further confirmed by histopathological investigation. The elevated protein expressions of phosphorylated-Janus kinase 2 (p-JAK2), phosphorylated-signal transducer and activator of transcription 3 (p-STAT3), and inducible nitric oxide synthase (iNOS) in articular tissue were markedly attenuated after treatment with cinnamaldehyde, tadalafil, or aliskiren, while that of endothelial nitric oxide synthase (eNOS) was greatly enhanced. In addition, oxidative stress and inflammatory markers such as malondialdehyde, nitric oxide, and myeloperoxidase were reduced in joint tissue after treatment with the test agents, while glutathione content was elevated. Furthermore, the renin inhibitor aliskiren produced effects close to those of the normal and methotrexate, the gold standard antirheumatic drug, in most of the measured parameters. Collectively, these findings led to the assumption that the downregulation of IL-6/JAK2/STAT3 signaling by cinnamaldehyde, tadalafil, and aliskiren could alleviate joint destruction by MMP-3 and RANKL, reduce iNOS, and enhance eNOS expressions. Moreover, aliskiren could be a promising therapeutic agent for RA, because of its ability to normalize most of the measured parameters after CFA-induced arthritis.
Collapse
Key Words
- Aliskiren
- CFA, complete Freund's adjuvant
- CFA-induced arthritis
- DMARD, disease-modifying antirheumatic drug
- GSH, reduced glutathione
- H&E, hematoxylin and eosin
- IL-10, interleukin-10
- IL-6, interleukin-6
- IL-6/JAK2/STAT3 signaling
- JAK2, Janus kinase 2
- MDA, malondialdehyde
- MMP-3
- MMP-3, matrix metalloproteinase-3
- MPO, myeloperoxidase
- NO, nitric oxide
- PDE, phosphodiesterase
- RA, rheumatoid arthritis
- RANKL
- RANKL, receptor activator of nuclear factor-kappa B ligand
- RAS, renin angiotensin system
- STAT3, signal transducer and activator of transcription 3
- TNF-α, tumor necrosis factor-alpha
- eNOS, endothelial nitric oxide synthase
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Amany A Azouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Esraa Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.,Operations Pharmacy, General Fayoum Hospital, Fayoum, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
11
|
Abstract
Significance: Fibrosis is a stereotypic, multicellular tissue response to diverse types of injuries that fundamentally result from a failure of cell/tissue regeneration. This complex tissue remodeling response disrupts cellular/matrix composition and homeostatic cell-cell interactions, leading to loss of normal tissue architecture and progressive loss of organ structure/function. Fibrosis is a common feature of chronic diseases that may affect the lung, kidney, liver, and heart. Recent Advances: There is emerging evidence to support a combination of genetic, environmental, and age-related risk factors contributing to susceptibility and/or progression of fibrosis in different organ systems. A core pathway in fibrogenesis involving these organs is the induction and activation of nicotinamide adenine dinucleotide phosphate oxidase (NOX) family enzymes. Critical Issues: We explore current pharmaceutical approaches to targeting NOX enzymes, including repurposing of currently U.S. Food and Drug Administration (FDA)-approved drugs. Specific inhibitors of various NOX homologs will aid establishing roles of NOXs in the various organ fibroses and potential efficacy to impede/halt disease progression. Future Directions: The discovery of novel and highly specific NOX inhibitors will provide opportunities to develop NOX inhibitors for treatment of fibrotic pathologies.
Collapse
Affiliation(s)
- Karen Bernard
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
12
|
Alshahrani S. Aliskiren – A promising antioxidant agent beyond hypertension reduction. Chem Biol Interact 2020; 326:109145. [DOI: 10.1016/j.cbi.2020.109145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
|
13
|
Figueroa SM, Lozano M, Lobos C, Hennrikus MT, Gonzalez AA, Amador CA. Upregulation of Cortical Renin and Downregulation of Medullary (Pro)Renin Receptor in Unilateral Ureteral Obstruction. Front Pharmacol 2019; 10:1314. [PMID: 31803050 PMCID: PMC6868519 DOI: 10.3389/fphar.2019.01314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by renal dysfunction, which is a common feature of other major diseases, such as hypertension and diabetes. Unilateral ureteral obstruction (UUO) has been used as a model of CKD in experimental animals and consists of total obstruction of one kidney ureter. The UUO decreases renal blood flow, which promotes the synthesis of renin in the juxtaglomerular apparatus, the first step in renin–angiotensin system (RAS) cascade. RAS induces inflammation and remodeling, along with reduced renal function. However, it remains unknown whether intrarenal RAS (iRAS) is activated in early stages of CKD. Our objective was to characterize different iRAS components in the renal cortex and in the medulla in an early phase of UUO. Male C57BL/6 mice (8–12 weeks old) were subjected to UUO in the left kidney, or to sham surgery, and were euthanized after 7 days (n = 5/group). Renal function, renal inflammatory/remodeling processes, and iRAS expression were evaluated. UUO increased plasma creatinine, right renal hypertrophy (9.08 ± 0.31, P < 0.05 vs. Sham), and tubular dilatation in the left kidney cortex (42.42 ± 8.19µm, P < 0.05 vs. Sham). This correlated with the increased mRNA of IL-1β (1.73 ± 0.14, P < 0.01 vs. Sham, a pro-inflammatory cytokine) and TGF-β1 (1.76 ± 0.10, P < 0.001 vs. Sham, a pro-fibrotic marker). In the renal cortex of the left kidney, UUO increased the mRNA and protein levels of renin (in 35% and 28%, respectively, P < 0.05 vs. Sham). UUO decreased mRNA and protein levels for the (pro)renin receptor in the renal medulla (0.67 ± 0.036 and 0.88 ± 0.028, respectively, P < 0.05 vs. Sham). Our results suggest that modulation of iRAS components depends on renal localization and occurs in parallel with remodeling and pro-inflammatory/pro-fibrotic mechanisms.
Collapse
Affiliation(s)
- Stefanny M Figueroa
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.,Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Mauricio Lozano
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Carolina Lobos
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Matthew T Hennrikus
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Cristián A Amador
- Laboratorio de Fisiopatología Renal, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
14
|
Altarejo Marin T, Machado Bertassoli B, Alves de Siqueira de Carvalho A, Feder D. The use of aliskiren as an antifibrotic drug in experimental models: A systematic review. Drug Dev Res 2019; 81:114-126. [PMID: 31605544 DOI: 10.1002/ddr.21610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/21/2019] [Accepted: 09/13/2019] [Indexed: 11/12/2022]
Abstract
Aliskiren is an oral antihypertensive medication that acts by directly inhibiting renin. High levels of circulating renin and prorenin activate the pathological signaling pathway of fibrosis. This drug also reduces oxidative stress. Thus, the aim of this systematic review is to analyze experimental studies that show the actions of aliskiren on fibrosis. PubMed and LILACS databases were consulted using the keywords aliskiren and fibrosis within the period between 2005 and 2017. Fifty-three articles were analyzed. In the heart, aliskiren attenuated remodeling, hypertrophy, inflammatory cytokines, collagen deposition, and oxidative stress. In the kidneys, there was a reduction in interstitial fibrosis, the infiltration of inflammatory cells, apoptosis, proteinuria, and in the recruitment of macrophages. In diabetic models, an improvement in the albumin/creatinine relationship and in the insulin pathway in skeletal muscles was observed; aliskiren was beneficial to pancreatic function and glucose tolerance. In the liver, aliskiren reduced fibrosis, steatosis, inflammatory cytokines, and collagen deposition. In the lung and peritoneal tissues, there was a reduction in fibrosis. Many studies have reported on the beneficial effects of aliskiren on endothelial function and arterial rigidity. A reduction in fibrosis in different organs is cited by many authors, which complies with the results found in this review. However, studies diverge on the use of the drug in diabetic patients. Aliskiren has antifibrotic potential in several experimental models, interfering with the levels of fibrogenic cytokines and oxidative stress. Therefore, its use in diseases in which fibrosis plays an important pathophysiological role is suggested.
Collapse
Affiliation(s)
| | | | | | - David Feder
- Department of Phamacology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| |
Collapse
|
15
|
Cavdar Z, Ural C, Kocak A, Arslan S, Ersan S, Ozbal S, Tatli M, Dubova A, Cavdar C. Paricalcitol pretreatment attenuates renal ischemia/reperfusion injury by inhibiting p38 MAPK and activating PI3K/Akt signaling pathways. TURKISH JOURNAL OF BIOCHEMISTRY 2019; 44:452-461. [DOI: 10.1515/tjb-2018-0155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Abstract
Objective
This study aimed to investigate the renoprotective effects of paricalcitol, a synhetic vitamin D analog, through its possible roles on p38 MAPK and PI3K/Akt signaling pathways to prevent oxidative stress, inflammation and apoptosis during renal I/R.
Materials and methods
Total 20 kidney tissues of sham (n = 6), subjected to renal I/R bilaterally for 45 min ischemia followed by 24 h reperfusion (n = 7) and paricalcitol (0.3 μg/kg, ip) pretreated Wistar albino rats (n =7) were used in this study. Interstitial inflammation and active caspase-3 expression were evaluated histologically. TNF-α, IL-1β, kidney injury molecule-1 (KIM-1), MDA and SOD activity in kidneys were analysed biochemically. Furthermore, activation of p38 MAPK, PI3K/Akt signaling pathways and NFκB p65 were evaluated by western blot.
Results
Paricalcitol pretreatment significantly reduced interstitial inflammation during renal I/R, which was consistent with decreased tumor TNF-α, IL-1β, active caspase-3 and KIM-1 expression. Paricalcitol also reduced MDA level and attenuated the reduction of SOD activity in the kidney during I/R. Moreover, paricalcitol could suppress the p38 MAPK and NFκB p65, and also activate PI3K/Akt signaling pathway during renal I/R.
Conclusion
All these findings indicate that paricalcitol may be an effective practical strategy to prevent renal I/R injury.
Collapse
Affiliation(s)
- Zahide Cavdar
- Department of Molecular Medicine , Health Sciences Institute, Dokuz Eylul University , Izmir , Turkey
| | - Cemre Ural
- Department of Molecular Medicine , Health Sciences Institute, Dokuz Eylul University , Izmir , Turkey
| | - Ayse Kocak
- Department of Molecular Medicine , Health Sciences Institute, Dokuz Eylul University , Izmir , Turkey
| | - Sevki Arslan
- Department of Biology , Faculty of Science, Pamukkale University , Denizli , Turkey
| | - Sibel Ersan
- Izmir Tepecik Research and Training Hospital , Department of Nephrology , Izmir , Turkey
| | - Seda Ozbal
- Department of Histology and Embryology , Faculty of Medicine, Dokuz Eylul University , Izmir , Turkey
| | - Merve Tatli
- Department of Histology and Embryology , Faculty of Medicine, Dokuz Eylul University , Izmir , Turkey
| | - Asli Dubova
- Department of Laboratory Animal Science , Health Sciences Institute, Dokuz Eylul University , Izmir , Turkey
| | - Caner Cavdar
- Department of Nephrology , Faculty of Medicine, Dokuz Eylul University , Izmir , Turkey
| |
Collapse
|
16
|
Liu N, Zhang Y, Su H, Wang J, Liu Z, Kong J. Effects of cholecalciferol cholesterol emulsion on renal fibrosis and aquaporin 2 and 4 in mice with unilateral ureteral obstruction. Biomed Pharmacother 2018; 102:633-638. [DOI: 10.1016/j.biopha.2018.03.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 01/25/2023] Open
|
17
|
Chung S, Kim S, Kim M, Koh ES, Shin SJ, Park CW, Chang YS, Kim HS. Correction: Treatment combining aliskiren with paricalcitol is effective against progressive renal tubulointerstitial fibrosis via dual blockade of intrarenal renin. PLoS One 2018; 13:e0196885. [PMID: 29715294 PMCID: PMC5929502 DOI: 10.1371/journal.pone.0196885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0181757.].
Collapse
|
18
|
Yang S, Li A, Wang J, Liu J, Han Y, Zhang W, Li YC, Zhang H. Vitamin D Receptor: A Novel Therapeutic Target for Kidney Diseases. Curr Med Chem 2018; 25:3256-3271. [PMID: 29446731 PMCID: PMC6142412 DOI: 10.2174/0929867325666180214122352] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Kidney disease is a serious problem that adversely affects human health, but critical knowledge is lacking on how to effectively treat established chronic kidney disease. Mounting evidence from animal and clinical studies has suggested that Vitamin D Receptor (VDR) activation has beneficial effects on various renal diseases. METHODS A structured search of published research literature regarding VDR structure and function, VDR in various renal diseases (e.g., IgA nephropathy, idiopathic nephrotic syndrome, renal cell carcinoma, diabetic nephropathy, lupus nephritis) and therapies targeting VDR was performed for several databases. RESULT Included in this study are the results from 177 published research articles. Evidence from these papers indicates that VDR activation is involved in the protection against renal injury in kidney diseases by a variety of mechanisms, including suppression of RAS activation, anti-inflammation, inhibiting renal fibrogenesis, restoring mitochondrial function, suppression of autoimmunity and renal cell apoptosis. CONCLUSION VDR offers an attractive druggable target for renal diseases. Increasing our understanding of VDR in the kidney is a fertile area of research and may provide effective weapons in the fight against kidney diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hao Zhang
- Address correspondence to this author is at the Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Tel: 86-731-88638238; E-mail:
| |
Collapse
|