1
|
Blumer S, Khan P, Artysh N, Plappert L, Savic S, Knudsen L, Jonigk D, Kuehnel MP, Prasse A, Hostettler KE. The use of cultured human alveolar basal cells to mimic honeycomb formation in idiopathic pulmonary fibrosis. Respir Res 2024; 25:26. [PMID: 38200596 PMCID: PMC10777517 DOI: 10.1186/s12931-024-02666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Honeycomb cysts (HC) within the alveolar region are distinct histopathological features in the lungs of idiopathic pulmonary fibrosis (IPF) patients. HC are lined with a single-or stratified layer of basal cells (BC), or with a bronchiolar-like epithelium composed of basal-, ciliated- and secretory epithelial cells. By using cultured IPF patient-derived alveolar BC, we aimed to establish an in vitro- and in vivo model to mimic HC formation in IPF. We (1) optimized conditions to culture and propagate IPF patient-derived alveolar BC, (2) cultured the cells on an air liquid interface (ALI) or in a three dimensional (3D) organoid model, and (3) investigated the cells` behavior after instillation into bleomycin-challenged mice. METHODS Alveolar BC were cultured from peripheral IPF lung tissue and grown on tissue-culture treated plastic, an ALI, or in a 3D organoid model. Furthermore, cells were instilled into bleomycin-challenged NRG mice. Samples were analyzed by TaqMan RT-PCR, immunoblotting, immunocytochemistry/immunofluorescence (ICC/IF), or immunohistochemistry (IHC)/IF. Mann-Whitney tests were performed using GraphPad Prism software. RESULTS Cultured alveolar BC showed high expression of canonical basal cell markers (TP63, keratin (KRT)5, KRT14, KRT17), robust proliferation, and wound closure capacity. The cells could be cryopreserved and propagated for up to four passages without a significant loss of basal cell markers. When cultured on an ALI or in a 3D organoid model, alveolar BC differentiated to ciliated- and secretory epithelial cells. When instilled into bleomycin-challenged mice, human alveolar BC cells formed HC-like structures composed of human basal-, and secretory epithelial cells within the mouse parenchyma. CONCLUSION IPF patient-derived alveolar BC on an ALI, in 3D organoids or after instillation into bleomycin-challenged mice form HC-like structures that closely resemble HC within the IPF lung. These models therefore represent powerful tools to study honeycomb formation, and its potential therapeutic inhibition in IPF.
Collapse
Affiliation(s)
- Sabrina Blumer
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Petra Khan
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Nataliia Artysh
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625, Hannover, Germany
- Department of Pulmonology and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Linda Plappert
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625, Hannover, Germany
| | - Spasenija Savic
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625, Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Medical Faculty, RWTH University Aachen, 52074, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625, Hannover, Germany
| | - Mark P Kuehnel
- Institute of Pathology, Medical Faculty, RWTH University Aachen, 52074, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625, Hannover, Germany
| | - Antje Prasse
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625, Hannover, Germany
- Department of Pulmonology and Infectious Diseases, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625, Hannover, Germany
| | - Katrin E Hostettler
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| |
Collapse
|
2
|
Xiao Y, Huang Z, Wang Y, Yang J, Wan W, Zou H, Yang X. Progress in research on mesenchymal stem cells and their extracellular vesicles for treating fibrosis in systemic sclerosis. Clin Exp Med 2023; 23:2997-3009. [PMID: 37458857 DOI: 10.1007/s10238-023-01136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/02/2023] [Indexed: 11/02/2023]
Abstract
Systemic sclerosis (SSc) refers to an autoimmune disease characterized by immune dysfunction, vascular endothelial damage, and multi-organ fibrosis. Thus far, this disease is incurable, and its high mortality rate is significantly correlated with fibrotic events. Fibrosis has been confirmed as a difficult clinical treatment area that should be urgently treated in clinical medicine. Mesenchymal stem cells (MSCs) exhibit immunomodulatory, pro-angiogenic, and anti-fibrotic functions. MSCs-derived extracellular vesicles (EVs) have aroused rising interest as a cellular component that retains the functions of MSCs while circumventing the possible adverse effects of MSCs. Moreover, EVs have great potential in treating SSc. In this study, the current research progress on MSCs and their EVs for treating fibrosis in SSc was reviewed, with an aim to provide some reference for future MSCs and their EVs in treating SSc.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Zhongzhou Huang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Yingyu Wang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiguo Wan
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| | - Xue Yang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Siu WS, Ma H, Ko CH, Shiu HT, Cheng W, Lee YW, Kot CH, Leung PC, Lui PPY. Rat Plantar Fascia Stem/Progenitor Cells Showed Lower Expression of Ligament Markers and Higher Pro-Inflammatory Cytokines after Intensive Mechanical Loading or Interleukin-1β Treatment In Vitro. Cells 2023; 12:2222. [PMID: 37759446 PMCID: PMC10526819 DOI: 10.3390/cells12182222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The pathogenesis of plantar fasciitis is unclear, which hampers the development of an effective treatment. The altered fate of plantar fascia stem/progenitor cells (PFSCs) under overuse-induced inflammation might contribute to the pathogenesis. This study aimed to isolate rat PFSCs and compared their stem cell-related properties with bone marrow stromal cells (BMSCs). The effects of inflammation and intensive mechanical loading on PFSCs' functions were also examined. We showed that plantar fascia-derived cells (PFCs) expressed common MSC surface markers and embryonic stemness markers. They expressed lower Nanog but higher Oct4 and Sox2, proliferated faster and formed more colonies compared to BMSCs. Although PFCs showed higher chondrogenic differentiation potential, they showed low osteogenic and adipogenic differentiation potential upon induction compared to BMSCs. The expression of ligament markers was higher in PFCs than in BMSCs. The isolated PFCs were hence PFSCs. Both IL-1β and intensive mechanical loading suppressed the mRNA expression of ligament markers but increased the expression of inflammatory cytokines and matrix-degrading enzymes in PFSCs. In summary, rat PFSCs were successfully isolated. They had poor multi-lineage differentiation potential compared to BMSCs. Inflammation after overuse altered the fate and inflammatory status of PFSCs, which might lead to poor ligament differentiation of PFSCs and extracellular matrix degeneration. Rat PFSCs can be used as an in vitro model for studying the effects of intensive mechanical loading-induced inflammation on matrix degeneration and erroneous stem/progenitor cell differentiation in plantar fasciitis.
Collapse
Affiliation(s)
- Wing Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chun Hay Ko
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hoi Ting Shiu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wen Cheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yuk Wa Lee
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Cheuk Hin Kot
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
4
|
Muhammad Firdaus FI, Nashihah AK, Mohd Fauzi MB, Manira M, Aminuddin S, Lokanathan Y. Application of Conditioned Medium for In Vitro Modeling and Repair of Respiratory Tissue. APPLIED SCIENCES 2023; 13:5862. [DOI: 10.3390/app13105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Background: The idea of exploring respiratory therapy in vitro predominantly guided by cell-secreted substances has gained ground in recent years. A conditioned medium (CM) consists of protein milieu that contains a diverse spectrum of cytokines, chemokines, angiogenic agents, and growth factors. This review evaluated the efficacy of using CM collected in an in vitro respiratory epithelial model. Methods: Twenty-six papers were included in this review: twenty-one cellular response studies on respiratory secretome application and five studies involving animal research. Results: The CM produced by differentiated cells from respiratory and non-respiratory systems, such as mesenchymal stem cells (MSC), exhibited the similar overall effect of improving proliferation and regeneration. Not only could differentiated cells from respiratory tissues increase proliferation, migration, and attachment, but the CM was also able to protect the respiratory epithelium against cytotoxicity. Most non-respiratory tissue CM was used as a treatment model to determine the effects of the therapy, while only one study used particle-based CM and reported decreased epithelial cell tight junctions, which harmed the epithelial barrier. Conclusion: As it resolves the challenges related to cell development and wound healing while simultaneously generally reducing the danger of immunological compatibility and tumorigenicity, CM might be a potential regenerative therapy in numerous respiratory illnesses. However, additional research is required to justify using CM in respiratory epithelium clinical practice.
Collapse
Affiliation(s)
- Fairuz Izan Muhammad Firdaus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ab. Karim Nashihah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh. Busra Mohd Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Maarof Manira
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Saim Aminuddin
- Graduate School of Medicine, KPJ Healthcare University College, Kota Seriemas, Nilai 71800, Malaysia
- KPJ Ampang Puteri Specialist Hospital, Ampang 68000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Infusion of Some but Not All Types of Human Perinatal Stromal Cells Prevent Organ Fibrosis in a Humanized Graft versus Host Disease Murine Model. Biomedicines 2023; 11:biomedicines11020415. [PMID: 36830951 PMCID: PMC9953740 DOI: 10.3390/biomedicines11020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Allogeneic transplant rejection represents a medical complication that leads to high morbidity and mortality rates. There are no treatments to effectively prevent fibrosis; however, there is great interest in evaluating the use of perinatal mesenchymal stromal cells (MSCs) and other MSCs to prevent fibrosis associated with chronic rejection. In this study, we isolated human perinatal stromal cells (PSCs) from amnion (AM-PSC), placental villi (PV-PSC), and umbilical cord (UC-PSC) tissues, demonstrating the phenotypic characteristics of MSCs as well as a >70% expression of the immunomodulatory markers CD273 and CD210. The administration of a single dose (250,000 cells) of each type of PSC in a humanized graft versus host disease (hGvHD) NSG® murine model delayed the progression of the disease as displayed by weight loss and GvHD scores ranging at various levels without affecting the hCD3+ population. However, only PV-PSCs demonstrated an increased survival rate of 50% at the end of the study. Furthermore, a histopathological evaluation showed that only PV-PSC cells could reduce human CD45+ cell infiltration and the fibrosis of the lungs and liver. These findings indicate that not all PSCs have similar therapeutic potential, and that PV-PSC as a cell therapeutic may have an advantage for targeting fibrosis related to allograft rejection.
Collapse
|
6
|
Matrix protein Tenascin-C promotes kidney fibrosis via STAT3 activation in response to tubular injury. Cell Death Dis 2022; 13:1044. [PMID: 36522320 PMCID: PMC9755308 DOI: 10.1038/s41419-022-05496-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Accumulating evidence indicates that the extracellular matrix (ECM) is not only a consequence of fibrosis, but also contributes to the progression of fibrosis, by creating a profibrotic microenvironment. Tenascin-C (TNC) is an ECM glycoprotein that contains multiple functional domains. We showed that following kidney injury, TNC was markedly induced in fibrotic areas in the kidney from both mouse models and humans with kidney diseases. Genetically deletion of TNC in mice significantly attenuated unilateral ureteral obstruction-induced kidney fibrosis. Further studies showed that TNC promoted the proliferation of kidney interstitial cells via STAT3 activation. TNC-expressing cells in fibrotic kidney were activated fibroblast 2 (Act.Fib2) subpopulation, according to a previously generated single nucleus RNA-seq dataset profiling kidney of mouse UUO model at day 14. To identify and characterize TNC-expressing cells, we generated a TNC-promoter-driven CreER2-IRES-eGFP knock-in mouse line and found that the TNC reporter eGFP was markedly induced in cells around injured tubules that had lost epithelial markers, suggesting TNC was induced in response to epithelium injury. Most of the eGFP-positive cells were both NG2 and PDGFRβ positive. These cells did not carry markers of progenitor cells or macrophages. In conclusion, this study provides strong evidence that matrix protein TNC contributes to kidney fibrosis. TNC pathway may serve as a potential therapeutic target for interstitial fibrosis and the progression of chronic kidney disease.
Collapse
|
7
|
Fytianos K, Schliep R, Mykoniati S, Khan P, Hostettler KE, Tamm M, Gazdhar A, Knudsen L, Geiser T. Anti-Fibrotic Effect of SDF-1β Overexpression in Bleomycin-Injured Rat Lung. Pharmaceutics 2022; 14:pharmaceutics14091803. [PMID: 36145551 PMCID: PMC9502331 DOI: 10.3390/pharmaceutics14091803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022] Open
Abstract
Rational: Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease and is associated with high mortality due to a lack of effective treatment. Excessive deposition of the extracellular matrix by activated myofibroblasts in the alveolar space leads to scar formation that hinders gas exchange. Therefore, selectively removing activated myofibroblasts with the aim to repair and remodel fibrotic lungs is a promising approach. Stromal-derived growth factor (SDF-1) is known to stimulate cellular signals which attract stem cells to the site of injury for tissue repair and remodeling. Here, we investigate the effect of overexpression of SDF-1β on lung structure using the bleomycin-injured rat lung model. Methods: Intratracheal administration of bleomycin was performed in adult male rats (F344). Seven days later, in vivo electroporation-mediated gene transfer of either SDF-1β or the empty vector was performed. Animals were sacrificed seven days after gene transfer and histology, design-based stereology, flow cytometry, and collagen measurement were performed on the tissue collected. For in vitro experiments, lung fibroblasts obtained from IPF patients were used. Results: Seven days after SDF-1β gene transfer to bleomycin-injured rat lungs, reduced total collagen, reduced collagen fibrils, improved histology and induced apoptosis of myofibroblasts were observed. Furthermore, it was revealed that TNF-α mediates SDF-1β-induced apoptosis of myofibroblasts; moreover, SDF-1β overexpression increased alveolar epithelial cell numbers and proliferation in vivo and also induced their migration in vitro. Conclusions: Our study demonstrates a new antifibrotic mechanism of SDF-1β overexpression and suggests SDF-1β as a potential new approach for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Kleanthis Fytianos
- Department of Pulmonary Medicine, University Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical research, University of Bern, 3010 Bern, Switzerland
| | - Ronja Schliep
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hanover, Germany
| | - Sofia Mykoniati
- Department of Internal Medicine, Cantonal Hospital of Jura, 2800 Delemont, Switzerland
| | - Petra Khan
- Department of Biomedical Research and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Katrin E. Hostettler
- Department of Biomedical Research and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Michael Tamm
- Department of Biomedical Research and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, University Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical research, University of Bern, 3010 Bern, Switzerland
- Correspondence: (A.G.); (T.G.)
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hanover, Germany
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical research, University of Bern, 3010 Bern, Switzerland
- Correspondence: (A.G.); (T.G.)
| |
Collapse
|
8
|
Shen M, Luo Z, Zhou Y. Regeneration-Associated Transitional State Cells in Pulmonary Fibrosis. Int J Mol Sci 2022; 23:6757. [PMID: 35743199 PMCID: PMC9223485 DOI: 10.3390/ijms23126757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/07/2023] Open
Abstract
Pulmonary fibrosis is a chronic, progressive fibrosing interstitial disease. It is characterized by fibroblast proliferation, myofibroblast activation, and massive extracellular matrix deposition. These processes result in loss of lung parenchyma function. The transdifferentiation of alveolar epithelial type II (AEC2) to alveolar epithelial type I cells (AEC1) plays an important role in the epithelial repair after lung injury. Pulmonary fibrosis begins when this transdifferentiation process is blocked. Several recent studies have found that novel transitional state cells (intermediate states in the transdifferentiation of AEC2 to AEC1) can potentially regenerate the alveolar epithelium surface and promote a repair process. During the AEC2 to AEC1 trans-differentiation process after injury, AEC2 lose their specific markers and become transitional state cells. Furthermore, transdifferentiation of transitional state cells into AEC1 is the critical step for lung repair. However, transitional cells stagnate in the intermediate states in which failure of transdifferentiation to AEC1 may induce an inadequate repair process and pulmonary fibrosis. In this review, we focus on the traits, origins, functions, and activation of signaling pathways of the transitional state cell and its communication with other cells. We also provide a new opinion on pulmonary fibrosis pathogenesis mechanisms and novel therapeutic targets.
Collapse
Affiliation(s)
- Mengxia Shen
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410003, China; (M.S.); (Z.L.)
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410003, China; (M.S.); (Z.L.)
- Hunan Key Laboratory of Organ Fibrosis, Changsha 410003, China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410003, China; (M.S.); (Z.L.)
| |
Collapse
|
9
|
Khan P, Roux J, Blumer S, Knudsen L, Jonigk D, Kuehnel MP, Tamm M, Hostettler KE. Alveolar Basal Cells Differentiate towards Secretory Epithelial- and Aberrant Basaloid-like Cells In Vitro. Cells 2022; 11:1820. [PMID: 35681516 PMCID: PMC9180703 DOI: 10.3390/cells11111820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
In idiopathic pulmonary fibrosis (IPF), keratin (KRT)17+/KRT5+ basal and KRT17+/KRT5- aberrant basaloid cells are atypically present within the alveolar space. We previously described the fibrosis-enriched outgrowth of alveolar basal cells from peripheral fibrotic lung tissue. Using single cell RNA sequencing (scRNA-seq), we here characterize the transcriptome of these cultured alveolar basal cells under different culture conditions. METHODS Fibrotic peripheral lung tissue pieces were placed in DMEM growth medium. Outgrown cells were analysed by scRNA-seq, TaqMan-PCR or immunofluorescence (IF) either directly or after medium change to an epithelial cell specific medium (Cnt-PR-A). RESULTS A fraction of alveolar basal cells cultured in DMEM growth medium showed close transcriptomic similarities to IPF basal cells. However, although they expressed KRT5, the transcriptome of the majority of cells matched best to the transcriptome of recently described KRT17+/KRT5- aberrant basaloid cells, co-expressing the canonical basal cell marker KRT17 and mesenchymal cell marker (VIM, FN1). A smaller fraction of cells matched best to secretory epithelial cells. Two differentiation gradients from basal to aberrant basaloid-like cells and basal to secretory epithelial-like cells were apparent. Interestingly, these differentiation paths seemed reversed when the cell culture medium was changed to Cnt-PR-A. CONCLUSIONS Our results suggest that cultured alveolar basal cells have the capacity to differentiate towards secretory epithelial-like cells and to aberrant basaloid-like cells. However, due to the persistent expression of KRT5, a complete differentiation towards aberrant basaloid cells did not seem to be achieved in our culture conditions. Importantly, differentiation seemed reversible by changing the cells microenvironment. Determining specific factors influencing these differentiation paths may help to define novel drug targets for IPF therapy.
Collapse
Affiliation(s)
- Petra Khan
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (P.K.); (J.R.); (S.B.); (M.T.)
| | - Julien Roux
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (P.K.); (J.R.); (S.B.); (M.T.)
- Swiss Institute of Bioinformatics, 4031 Basel, Switzerland
| | - Sabrina Blumer
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (P.K.); (J.R.); (S.B.); (M.T.)
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), The German Center for Lung Research (DZL), 30625 Hannover, Germany; (D.J.); (M.P.K.)
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), The German Center for Lung Research (DZL), 30625 Hannover, Germany; (D.J.); (M.P.K.)
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Mark P. Kuehnel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), The German Center for Lung Research (DZL), 30625 Hannover, Germany; (D.J.); (M.P.K.)
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Tamm
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (P.K.); (J.R.); (S.B.); (M.T.)
| | - Katrin E. Hostettler
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (P.K.); (J.R.); (S.B.); (M.T.)
| |
Collapse
|
10
|
Li C, Wang B. Mesenchymal Stem/Stromal Cells in Progressive Fibrogenic Involvement and Anti-Fibrosis Therapeutic Properties. Front Cell Dev Biol 2022; 10:902677. [PMID: 35721482 PMCID: PMC9198494 DOI: 10.3389/fcell.2022.902677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Fibrosis refers to the connective tissue deposition and stiffness usually as a result of injury. Fibrosis tissue-resident mesenchymal cells, including fibroblasts, myofibroblast, smooth muscle cells, and mesenchymal stem/stromal cells (MSCs), are major players in fibrogenic processes under certain contexts. Acknowledging differentiation potential of MSCs to the aforementioned other types of mesenchymal cell lineages is essential for better understanding of MSCs’ substantial contributions to progressive fibrogenesis. MSCs may represent a potential therapeutic option for fibrosis resolution owing to their unique pleiotropic functions and therapeutic properties. Currently, clinical trial efforts using MSCs and MSC-based products are underway but clinical data collected by the early phase trials are insufficient to offer better support for the MSC-based anti-fibrotic therapies. Given that MSCs are involved in the coagulation through releasing tissue factor, MSCs can retain procoagulant activity to be associated with fibrogenic disease development. Therefore, MSCs’ functional benefits in translational applications need to be carefully balanced with their potential risks.
Collapse
Affiliation(s)
- Chenghai Li
- Stem Cell Program of Clinical Research Center, People’s Hospital of Zhengzhou University and Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan University, Zhengzhou, China
- *Correspondence: Chenghai Li, ; Bin Wang,
| | - Bin Wang
- Department of Neurosurgery, People’s Hospital of Zhengzhou University and Henan Provincial People’s Hospital, Zhengzhou, China
- *Correspondence: Chenghai Li, ; Bin Wang,
| |
Collapse
|
11
|
Khan P, Fytianos K, Blumer S, Roux J, Gazdhar A, Savic S, Knudsen L, Jonigk D, Kuehnel MP, Mykoniati S, Tamm M, Geiser T, Hostettler KE. Basal-Like Cell-Conditioned Medium Exerts Anti-Fibrotic Effects In Vitro and In Vivo. Front Bioeng Biotechnol 2022; 10:844119. [PMID: 35350187 PMCID: PMC8957873 DOI: 10.3389/fbioe.2022.844119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
In idiopathic pulmonary fibrosis (IPF), basal-like cells are atypically present in the alveolar region, where they may affect adjacent stromal cells by paracrine mechanisms. We here aimed to confirm the presence of basal-like cells in peripheral IPF lung tissue in vivo, to culture and characterize the cells in vitro, and to investigate their paracrine effects on IPF fibroblasts in vitro and in bleomycin-injured rats in vivo. Basal-like cells are mainly localized in areas of pathological bronchiolization or honeycomb cysts in peripheral IPF lung tissue. Single-cell RNA sequencing (scRNA-seq) demonstrated an overall homogeneity, the expression of the basal cell markers cytokeratin KRT5 and KRT17, and close transcriptomic similarities to basal cells in the majority of cells cultured in vitro. Basal-like cells secreted significant levels of prostaglandin E2 (PGE2), and their conditioned medium (CM) inhibited alpha-smooth muscle actin (α-SMA) and collagen 1A1 (Col1A1) and upregulated matrix metalloproteinase-1 (MMP-1) and hepatocyte growth factor (HGF) by IPF fibroblasts in vitro. The instillation of CM in bleomycin-injured rat lungs resulted in reduced collagen content, improved lung architecture, and reduced α-SMA-positive cells. Our data suggested that basal-like cells may limit aberrant fibroblast activation and differentiation in IPF through paracrine mechanisms.
Collapse
Affiliation(s)
- Petra Khan
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Kleanthis Fytianos
- Department of Pulmonary Medicine, University Hospital Bern, and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Sabrina Blumer
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Julien Roux
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, University Hospital Bern, and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Spasenija Savic
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Mark P. Kuehnel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sofia Mykoniati
- Department of Internal Medicine, Jura Cantonal Hospital, Delemont, Switzerland
| | - Michael Tamm
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital Bern, and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Katrin E. Hostettler
- Department of Biomedicine and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Ramírez-Hernández AA, Velázquez-Enríquez JM, Santos-Álvarez JC, López-Martínez A, Reyes-Jiménez E, Carrasco-Torres G, González-García K, Vásquez-Garzón VR, Baltierrez-Hoyos R. The Role of Extracellular Vesicles in Idiopathic Pulmonary Fibrosis Progression: An Approach on Their Therapeutics Potential. Cells 2022; 11:cells11040630. [PMID: 35203281 PMCID: PMC8870588 DOI: 10.3390/cells11040630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial lung disease of unknown etiology. Different types of cells are involved in fibrogenesis, which is persistently physical and molecular stimulation, either directly or by interacting with bioactive molecules and extracellular vesicles (EVs). Current evidence suggests that EVs play an essential role in IPF development. EVs are released by a variety of cells, including fibroblasts, epithelial cells, and alveolar macrophages. In addition, EVs can transport bioactive molecules, such as lipids, proteins, and nucleic acids, which play a pivotal role in cellular communication. Several proposed mechanisms show that an acceptor cell can capture, absorb, or interact with EVs through direct fusion with the plasma membrane, ligand–receptor interaction, and endocytotic process, modifying the target cell. During fibrogenesis, the release of EVs is deregulated, increases the EVs amount, and the cargo content is modified. This alteration is closely associated with the maintenance of the fibrotic microenvironment. This review summarizes the current data on the participation of EVs secreted by the cells playing a critical role in IPF pathogenesis.
Collapse
Affiliation(s)
- Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (A.A.R.-H.); (J.M.V.-E.); (J.C.S.-Á.); (A.L.-M.); (E.R.-J.); (K.G.-G.)
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (A.A.R.-H.); (J.M.V.-E.); (J.C.S.-Á.); (A.L.-M.); (E.R.-J.); (K.G.-G.)
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (A.A.R.-H.); (J.M.V.-E.); (J.C.S.-Á.); (A.L.-M.); (E.R.-J.); (K.G.-G.)
| | - Armando López-Martínez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (A.A.R.-H.); (J.M.V.-E.); (J.C.S.-Á.); (A.L.-M.); (E.R.-J.); (K.G.-G.)
| | - Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (A.A.R.-H.); (J.M.V.-E.); (J.C.S.-Á.); (A.L.-M.); (E.R.-J.); (K.G.-G.)
| | - Gabriela Carrasco-Torres
- Departamento de Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, la laguna Ticomán, Ciudad de Mexico 07360, Mexico;
| | - Karina González-García
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (A.A.R.-H.); (J.M.V.-E.); (J.C.S.-Á.); (A.L.-M.); (E.R.-J.); (K.G.-G.)
| | - Verónica Rocío Vásquez-Garzón
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico;
| | - Rafael Baltierrez-Hoyos
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico;
- Correspondence:
| |
Collapse
|
13
|
Li C, Zhao H, Cheng L, Wang B. Allogeneic vs. autologous mesenchymal stem/stromal cells in their medication practice. Cell Biosci 2021; 11:187. [PMID: 34727974 PMCID: PMC8561357 DOI: 10.1186/s13578-021-00698-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapeutics is already available for treatment of a range of diseases or medical conditions. Autologous or allogeneic MSCs obtained from self or donors have their own advantages and disadvantages in their medical practice. Therapeutic benefits of using autologous vs. allogeneic MSCs are inconclusive. Transplanted MSCs within the body interact with their physical microenvironment or niche, physiologically or pathologically, and such cells in a newly established tissue microenvironment may be impacted by the pathological harmful environmental factors to alter their unique biological behaviors. Meanwhile, a temporary microenvironment/niche may be also altered by the resident or niche-surrounding MSCs. Therefore, the functional plasticity and heterogeneity of MSCs caused by different donors and subpopulations of MSCs may result in potential uncertainty in their safe and efficacious medical practice. Acknowledging a connection between MSCs' biology and their existing microenvironment, donor-controlled clinical practice for the long-term therapeutic benefit is suggested to further consider minimizing MSCs potential harm for MSC-based individual therapies. In this review, we summarize the advantages and disadvantages of autologous vs. allogeneic MSCs in their therapeutic applications. Among other issues, we highlight the importance of better understanding of the various microenvironments that may affect the properties of niche-surrounding MSCs and discuss the clinical applications of MSCs within different contexts for treatment of different diseases including cardiomyopathy, lupus and lupus nephritis, diabetes and diabetic complications, bone and cartilage repair, cancer and tissue fibrosis.
Collapse
Affiliation(s)
- Chenghai Li
- Stem Cell Program of Clinical Research Center, People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, China.
| | - Hua Zhao
- Institute of Reproductive Medicine, People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, China
| | - Linna Cheng
- Institute of Hematology, People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, China
| | - Bin Wang
- Department of Neurosurgery, People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, China.
| |
Collapse
|
14
|
Castillo Aleman YM, Villegas Valverde CA, Ventura Carmenate Y, Abdel Hadi L, Rivero Jimenez RA, Rezgui R, Alagha SH, Shamat S, Bencomo Hernandez AA. Viability assessment of human peripheral blood-derived stem cells after three methods of nebulization. AMERICAN JOURNAL OF STEM CELLS 2021; 10:68-78. [PMID: 34849303 PMCID: PMC8610807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Drug delivery by nebulization has become a crucial strategy for treating different respiratory and lung diseases. Emerging evidence implicates stem cell therapy as a promising tool in treating such conditions, not only by alleviating the related symptoms but by improving the prognosis. However, delivery of human peripheral blood-derived stem cells (hPBSCs) to the respiratory airways remains an innovative approach yet to be realized. This study is an analytic, translational, and in vitro research to assess the viability and morphological changes of identified cell populations in hPBSCs cocktail derived from COVID-19 patients. METHODS AND RESULTS Peripheral blood (PB) samples were obtained from patients enrolled in the SENTAD-COVID Study (ClinicalTrials.gov Reference: NCT04473170). hPBSCs cocktails (n=15) were provided by the Cells Processing Laboratory of Abu Dhabi Stem Cells Center, and were nebulized by three different methods of nebulization: compressor (jet), ultrasonic, and mesh. Our results reported that nucleated CD45dim cell count was significantly lower after the three nebulization methods, but nucleated CD45- cells show a significant decrease only after mesh nebulization. Mesh-nebulized samples had a significant reduction in viability of both CD45dim and CD45- cells. CONCLUSIONS This study provides evidence that stem cells derived from PB of COVID-19 patients can be nebulized without substantial loss of cell viability, cell count, and morphological changes using the compressor nebulization. Therefore, we recommend compressor nebulizers as the preferable procedure for hPBSCs delivery to the respiratory airways in further clinical settings.
Collapse
Affiliation(s)
| | | | | | - Loubna Abdel Hadi
- Abu Dhabi Stem Cells Center (ADSCC)Abu Dhabi, United Arab Emirates (UAE)
| | | | - Rachid Rezgui
- New York UniversityAbu Dhabi, United Arab Emirates (UAE)
| | - Shahd Hani Alagha
- Abu Dhabi Stem Cells Center (ADSCC)Abu Dhabi, United Arab Emirates (UAE)
| | - Shadi Shamat
- Abu Dhabi Stem Cells Center (ADSCC)Abu Dhabi, United Arab Emirates (UAE)
| | | |
Collapse
|
15
|
Hezam K, Mo R, Wang C, Liu Y, Li Z. Anti-inflammatory Effects of Mesenchymal Stem Cells and Their Secretomes in Pneumonia. Curr Pharm Biotechnol 2021; 23:1153-1167. [PMID: 34493193 DOI: 10.2174/1389201022666210907115126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that play crucial roles in the microenvironment of injured tissues. The potential therapeutics of MSCs have attracted extensive attention for several diseases such as acute respiratory distress syndrome (ARDS) and novel coronavirus disease 2019 (COVID-19) pneumonia. MSC-extracellular vesicles have been isolated from MSC-conditioned media (MSC-CM) with similar functional effects as parent MSCs. The therapeutic role of MSCs can be achieved through the balance between the inflammatory and regenerative microenvironments. Clinical settings of MSCs and their extracellular vesicles remain promising for many diseases, such as ARDS and pneumonia. However, their clinical applications remain limited due to the cost of growing and storage facilities of MSCs with a lack of standardized MSC-CM. This review highlights the proposed role of MSCs in pulmonary diseases and discusses the recent advances of MSC application for pneumonia and other lung disorders.
Collapse
Affiliation(s)
- Kamal Hezam
- Nankai University School of Medicine, Tianjin. China
| | - Rigen Mo
- Nankai University School of Medicine, Tianjin. China
| | - Chen Wang
- Nankai University School of Medicine, Tianjin. China
| | - Yue Liu
- Nankai University School of Medicine, Tianjin. China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin. China
| |
Collapse
|
16
|
Spagnolo P, Kropski JA, Jones MG, Lee JS, Rossi G, Karampitsakos T, Maher TM, Tzouvelekis A, Ryerson CJ. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacol Ther 2021; 222:107798. [PMID: 33359599 PMCID: PMC8142468 DOI: 10.1016/j.pharmthera.2020.107798] [Citation(s) in RCA: 319] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease of unknown cause characterized by relentless scarring of the lung parenchyma leading to reduced quality of life and earlier mortality. IPF is an age-related disorder, and with the population aging worldwide, the economic burden of IPF is expected to steadily increase in the future. The mechanisms of fibrosis in IPF remain elusive, with favored concepts of disease pathogenesis involving recurrent microinjuries to a genetically predisposed alveolar epithelium, followed by an aberrant reparative response characterized by excessive collagen deposition. Pirfenidone and nintedanib are approved for treatment of IPF based on their ability to slow functional decline and disease progression; however, they do not offer a cure and are associated with tolerability issues. In this review, we critically discuss how cutting-edge research in disease pathogenesis may translate into identification of new therapeutic targets, thus facilitate drug discovery. There is a growing portfolio of treatment options for IPF. However, targeting the multitude of profibrotic cytokines and growth factors involved in disease pathogenesis may require a combination of therapeutic strategies with different mechanisms of action.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| | | | - Mark G Jones
- NIHR Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Joyce S Lee
- University of Colorado, School of Medicine, Department of Medicine, Aurora, CO, United States
| | - Giulio Rossi
- Pathology Unit, AUSL della Romagna, St. Maria delle Croci Hospital, Ravenna, Italy
| | | | - Toby M Maher
- National Heart and Lung Institute, Imperial College London and National Institute for Health Research Clinical Research Facility, Royal Brompton Hospital, London, UK; Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada
| |
Collapse
|
17
|
Merino A, Hoogduijn MJ, Molina-Molina M, Arias-Salgado EG, Korevaar SS, Baan CC, Montes-Worboys A. Membrane particles from mesenchymal stromal cells reduce the expression of fibrotic markers on pulmonary cells. PLoS One 2021; 16:e0248415. [PMID: 33730089 PMCID: PMC7968667 DOI: 10.1371/journal.pone.0248415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/26/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with limited treatment options in which the telomere shortening is a strong predictive factor of poor prognosis. Mesenchymal stromal cells (MSC) administration is probed in several experimental induced lung pathologies; however, MSC might stimulate fibrotic processes. A therapy that avoids MSC side effects of transformation would be an alternative to the use of living cells. Membranes particles (MP) are nanovesicles artificially generated from the membranes of MSC containing active enzymes involved in ECM regeneration. We aimed to investigate the anti-fibrotic role of MP derived from MSC in an in vitro model of pulmonary fibrosis. METHODS Epithelial cells (A549) and lung fibroblasts, from IPF patients with different telomere length, were co-cultured with MP and TGF-β for 48h and gene expression of major pro-fibrotic markers were analyzed. RESULTS About 90% of both types of cells effectively took up MP without cytotoxic effects. MP decreased the expression of profibrotic proteins such as Col1A1, Fibronectin and PAI-1, in A549 cells. In fibroblasts culture, there was a different response in the inhibitory effect of MP on some pro-fibrotic markers when comparing fibroblast from normal telomere length patients (FN) versus short telomere length (FS), but both types showed an inhibition of Col1A1, Tenascin-c, PAI-1 and MMP-1 gene expression after MP treatment. CONCLUSIONS MP conserve some of the properties attributed to the living MSC. This study shows that MP target lung cells, via which they may have a broad anti-fibrotic effect.
Collapse
Affiliation(s)
- Ana Merino
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin J. Hoogduijn
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maria Molina-Molina
- Unit of Interstitial Lung Diseases, Pulmonary Department, University Hospital of Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- CIBER of Respiratory Diseases (CIBERES) Health Institute Carlos III, Madrid, Spain
| | | | - Sander S. Korevaar
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carla C. Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ana Montes-Worboys
- Unit of Interstitial Lung Diseases, Pulmonary Department, University Hospital of Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
18
|
Mesenchymal stromal cells for systemic sclerosis treatment. Autoimmun Rev 2021; 20:102755. [PMID: 33476823 DOI: 10.1016/j.autrev.2021.102755] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis (SSc) is a rare chronic autoimmune disease characterized by vasculopathy, dysregulation of innate and adaptive immune responses, and progressive fibrosis. SSc remains an orphan disease, with high morbity and mortality in SSc patients. The mesenchymal stromal cells (MSC) demonstrate in vitro and in vivo pro-angiogenic, immuno-suppressive, and anti-fibrotic properties and appear as a promising stem cell therapy type, that may target the key pathological features of SSc disease. This review aims to summarize acquired knowledge in the field of :1) MSC definition and in vitro and in vivo functional properties, which vary according to the donor type (allogeneic or autologous), the tissue sources (bone marrow, adipose tissue or umbilical cord) or inflammatory micro-environment in the recipient; 2) preclinical studies in various SSc animal models , which showed reduction in skin and lung fibrosis after MSC infusion; 3) first clinical trials in human, with safety and early efficacy results reported in SSc patients or currently tested in several ongoing clinical trials.
Collapse
|
19
|
Markasz L, Savani RC, Jonzon A, Sindelar R. CD44 and RHAMM expression patterns in the human developing lung. Pediatr Res 2021; 89:134-142. [PMID: 32311697 DOI: 10.1038/s41390-020-0873-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/11/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND The hyaluronan (HA) receptors CD44 and RHAMM (CD168) are involved in cellular proliferation, differentiation, and motility. As previously investigated, HA and RHAMM expression in human neonatal lungs correlates to gestational age (GA) and air content. METHODS CD44 immunofluorescence was analyzed in postmortem lung samples from infants (n = 93; 22-41 GA) by digital image analysis together with clinical data, including RHAMM expression, lung air, and HA content by hierarchical clustering. RESULTS Five groups were defined according to RHAMM/CD44 expression, GA, and postnatal age (PNA): extremely to very preterm (EVP; 22-31 GA; Groups 1-2), moderately preterm to term (MPT; 31-41 GA; Groups 3-4), and mixed preterm to term (27-40 GA; Group 5). CD44 correlated linearly with RHAMM in MPT (r = 0.600; p < 0.004). In EVP, high CD44 and low RHAMM corresponded with high PNA and lung air content independently of HA and GA (Group 1 vs 2; p < 0.05). In MPT, high and low CD44 corresponded with low and high RHAMM independently of GA, HA, and lung air content (Group 3 vs 4; p < 0.001). No correlation between CD44 and GA/PNA at death was observed. CONCLUSIONS A linear correlation between CD44 and RHAMM expression occurs during the late saccular phase of lung development at birth, whereas postnatal influences on CD44 and RHAMM expression in extremely to very preterm infants cannot be excluded. IMPACT The interplay between CD44 and RHAMM, two receptors of hyaluronic acid, can be dependent on the lung developmental stage at birth. This is the second study that analyzes the distribution pattern of CD44 in the human lung during development and the first study performed with quantitative analysis of CD44 expression together with RHAMM expression in the human lung. Our results suggest a relationship in a subset of infants between CD44 and RHAMM expression, which appears at birth during the late saccular stage but not during the earlier stages of lung development.
Collapse
Affiliation(s)
- Laszlo Markasz
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| | - Rashmin C Savani
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anders Jonzon
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Richard Sindelar
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Xie L, Zeng Y. Therapeutic Potential of Exosomes in Pulmonary Fibrosis. Front Pharmacol 2020; 11:590972. [PMID: 33343360 PMCID: PMC7746877 DOI: 10.3389/fphar.2020.590972] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary fibrosis is closely associated with the recruitment of fibroblasts from capillary vessels with damaged endothelial cells, the epithelial mesenchymal transition (EMT) of type II alveolar epithelial cells, and the transformation of fibroblasts to myofibroblasts. Recent studies suggest that EMT is a key factor in the pathogenesis of pulmonary fibrosis, as the disruption of EMT-related effector molecules can inhibit the occurrence and development of PF. With the numerous advancements made in molecular biology in recent years, researchers have discovered that exosomes and their cargos, such as miRNAs, lncRNAs, and proteins, can promote or inhibit the EMT, modulate the transformation of fibroblasts into myofibroblasts, contribute to the proliferation of fibroblasts and promote immunoregulatory and mitochondrial damage during pulmonary fibrosis. Exosomes are key factors regulating the differentiation of bone marrow mesenchymal stem cells (BMSCs) into myofibroblasts. Interestingly, exosomes derived from BMSCs under pathological and physiological conditions may promote or inhibit the EMT of type II alveolar epithelial cells and the transformation of fibroblasts into myofibroblasts to regulate pulmonary fibrosis. Thus, exosomes may become a new direction in the study of drugs for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Gad ES, Salama AAA, El-Shafie MF, Arafa HMM, Abdelsalam RM, Khattab M. The Anti-fibrotic and Anti-inflammatory Potential of Bone Marrow-Derived Mesenchymal Stem Cells and Nintedanib in Bleomycin-Induced Lung Fibrosis in Rats. Inflammation 2020; 43:123-134. [PMID: 31646446 DOI: 10.1007/s10753-019-01101-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by progressive lung damage. Tyrosine kinase inhibitors are approved to treat people with IPF while bone marrow-derived mesenchymal stem cell therapy was previously suggested to inhibit pulmonary fibrosis through the alveolar epithelial cell repair. The present study aimed to evaluate the anti-inflammatory and anti-fibrotic effect of the bone marrow-derived mesenchymal stem cell (BM-MSC) therapy in comparison with nintedanib, a tyrosine kinase inhibitor, on improving survival in bleomycin-induced lung fibrosis in rats. Moreover, the combined therapy of BM-MSCs and nintedanib will be evaluated. In the present study, IPF was induced through intra-tracheal instillation of bleomycin (5 mg/kg) in rats then treatments were administered 14 days thereafter. Nintedanib (100 mg/kg, I.P.) was administered daily for 28 days, while BM-MSCs were injected once intravenously in tail vein in the dose 1 × 106 cells/ml/rat. In the present study, both treatment regimens effectively inhibited lung fibrosis through several pathways, suppressing tumor growth factor-β (TGF-β)/SMAD3 expression which is considered the master signaling pathway. Nintedanib and BLM-MSCs exerted their anti-inflammatory effect through minimizing the expression of TNF-α and IL-6. In addition, the histopathological examination of the lung tissue showed a significant decrease in the alveolar wall thickening, in the inflammatory infiltrate, and in the collagen fiber deposition in response to either nintedanib or BM-MSC and their combination. In conclusion, the therapeutic pulmonary anti-fibrotic activity of nintedanib or BM-MSC is mediated through their anti-inflammatory properties and inhibition of SMAD-3/TGF-β expression.
Collapse
Affiliation(s)
- E S Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - A A A Salama
- Department of Pharmacology, National Research Centre, Cairo, Egypt
| | - M F El-Shafie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - H M M Arafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Ahram Canadian University, Cairo, Egypt
| | - R M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
22
|
How the Pathological Microenvironment Affects the Behavior of Mesenchymal Stem Cells in the Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21218140. [PMID: 33143370 PMCID: PMC7662966 DOI: 10.3390/ijms21218140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by fibroblasts activation, ECM accumulation, and diffused alveolar inflammation. The role of inflammation in IPF is still controversial and its involvement may follow nontraditional mechanisms. It is seen that a pathological microenvironment may affect cells, in particular mesenchymal stem cells (MSCs) that may be able to sustain the inflamed microenvironment and influence the surrounding cells. Here MSCs have been isolated from fibrotic (IPF-MSCs) and control (C-MSCs) lung tissue; first cells were characterized and compared by the expression of molecules related to ECM, inflammation, and other interdependent pathways such as hypoxia and oxidative stress. Subsequently, MSCs were co-cultured between them and with NHLF to test the effects of the cellular crosstalk. Results showed that pathological microenvironment modified the features of MSCs: IPF-MSCs, compared to C-MSCs, express higher level of molecules related to ECM, inflammation, oxidative stress, and hypoxia; notably, when co-cultured with C-MSCs and NHLF, IPF-MSCs are able to induce a pathological phenotype on the surrounding cell types. In conclusion, in IPF the pathological microenvironment affects MSCs that in turn can modulate the behavior of other cell types favoring the progression of IPF.
Collapse
|
23
|
Mazzeo A, Santos EJC. Mesenchymal stem cells in the treatment of coronavirus-induced pneumonia (COVID-19). EINSTEIN-SAO PAULO 2020; 18:eCE5802. [PMID: 32876089 PMCID: PMC9586424 DOI: 10.31744/einstein_journal/2020ce5802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/29/2020] [Indexed: 01/05/2023] Open
Affiliation(s)
- Angela Mazzeo
- Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, SP, Brazil
| | | |
Collapse
|
24
|
Burja B, Barlič A, Erman A, Mrak-Poljšak K, Tomšič M, Sodin-Semrl S, Lakota K. Human mesenchymal stromal cells from different tissues exhibit unique responses to different inflammatory stimuli. Curr Res Transl Med 2020; 68:217-224. [PMID: 32843323 DOI: 10.1016/j.retram.2020.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Mesenchymal stromal cell (MSC) - based therapies are emerging as promising treatment of various autoimmune diseases, however the utility of different MSC tissue sources remains elusive. We aimed to characterize MSC from different origins, namely bone marrow (BM), adipose tissue (AT) and umbilical cord (UC) and determine their functional effects on normal human lung fibroblasts (NHLF). METHODS BM-, AT- or UC-MSC were isolated each from 3 different healthy donors. The gene expression and protein secretion were analyzed at basal level, along with TNFα-, IL-1β- and SAA- stimulated cells using real-time PCR and Luminex technology. Effect of conditioned medium (CM) from different MSC sources on migration was determined with wound scratch assay, while mitotic and apoptotic rates were studied using immunofluorescence microscopy. RESULTS BM-MSC expressed highest basal mRNA levels of SDF1 and VCAM-1, while other genes were similarly expressed between MSC origins. TNFα priming of AT-MSC gained a prominent increase in IDO1 and CCL5 gene expression, with 928-fold and 4396-fold changes, respectively. Among all tissue sources, basal UC-MSC released highest protein levels of most measured analytes, including IL-6, IL-8, MCP-1, ICAM1, HGF, MMP1 and CH3L1. BM- and AT-MSC derived CM enhanced wound closure in NHLF, while an opposite effect was observed with UC-MSC derived CM. Our data also suggests that MSC-CM could contribute to decreased mitotic potential and increased apoptotic rate in lung fibroblasts. CONCLUSIONS Our study highlights origin-specific MSC profile differences and emphasizes a heterogenic response of different MSC to inflammatory stimuli.
Collapse
Affiliation(s)
- Blaž Burja
- University Medical Centre Ljubljana, Department of Rheumatology, Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia.
| | | | - Andreja Erman
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia.
| | - Katjuša Mrak-Poljšak
- University Medical Centre Ljubljana, Department of Rheumatology, Ljubljana, Slovenia.
| | - Matija Tomšič
- University Medical Centre Ljubljana, Department of Rheumatology, Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia.
| | - Snezna Sodin-Semrl
- University Medical Centre Ljubljana, Department of Rheumatology, Ljubljana, Slovenia; University of Primorska, FAMNIT, Koper, Slovenia.
| | - Katja Lakota
- University Medical Centre Ljubljana, Department of Rheumatology, Ljubljana, Slovenia; University of Primorska, FAMNIT, Koper, Slovenia.
| |
Collapse
|
25
|
Boesch M, Baty F, Brutsche MH, Tamm M, Roux J, Knudsen L, Gazdhar A, Geiser T, Khan P, Hostettler KE. Transcriptomic profiling reveals disease-specific characteristics of epithelial cells in idiopathic pulmonary fibrosis. Respir Res 2020; 21:165. [PMID: 32605572 PMCID: PMC7329456 DOI: 10.1186/s12931-020-01414-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is an incurable disease characterized by progressive lung fibrosis ultimately resulting in respiratory failure and death. Recurrent micro-injuries to the alveolar epithelium and aberrant alveolar wound healing with impaired re-epithelialization define the initial steps of the pathogenic trajectory. Failure of timely alveolar epithelial repair triggers hyper-proliferation of mesenchymal cells accompanied by increased deposition of extracellular matrix into the lung interstitium. Methods We previously isolated fibrosis-specific mesenchymal stem cell (MSC)-like cells from lung tissue of patients with interstitial lung diseases. These cells produced factors bearing anti-fibrotic potential and changed their morphology from mesenchymal to epithelial upon culture in an epithelial cell (EC)-specific growth medium. Here, we set out to molecularly characterize these MSC-like cell-derived ECs using global gene expression profiling by RNA-sequencing. Moreover, we aimed at characterizing disease-specific differences by comparing the transcriptomes of ECs from IPF and non-IPF sources. Results Our results suggest that differentially expressed genes are enriched for factors related to fibrosis, hypoxia, bacterial colonization and metabolism, thus reflecting many of the hallmark characteristics of pulmonary fibrosis. IPF-ECs showed enrichment of both pro- and anti-fibrotic genes, consistent with the notion of adaptive, compensatory regulation. Conclusions Our findings support the hypothesis of a functional impairment of IPF-ECs, which could possibly explain the poor clinical outcome of IPF that roughly compares to those of advanced-stage cancers. Our study provides a valuable resource for downstream mechanistic investigation and the quest for novel therapeutic IPF targets.
Collapse
Affiliation(s)
- Maximilian Boesch
- Lung Center, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, CH-9007, St.Gallen, Switzerland.
| | - Florent Baty
- Lung Center, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, CH-9007, St.Gallen, Switzerland.
| | - Martin H Brutsche
- Lung Center, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, CH-9007, St.Gallen, Switzerland
| | - Michael Tamm
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland.,Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Julien Roux
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, University Hospital Bern, Bern, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital Bern, Bern, Switzerland
| | - Petra Khan
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland
| | - Katrin E Hostettler
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland. .,Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
26
|
Yang X, Ma X, Don O, Song Y, Chen X, Liu J, Qu J, Feng Y. Mesenchymal stem cells combined with liraglutide relieve acute lung injury through apoptotic signaling restrained by PKA/β-catenin. Stem Cell Res Ther 2020; 11:182. [PMID: 32429994 PMCID: PMC7238586 DOI: 10.1186/s13287-020-01689-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/19/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022] Open
Abstract
Background ARDS and ALI are life-threatening diseases with extremely high mortality in patients. Different sources of MSCs could mitigate the symptoms of ALI from diverse mechanisms. Liraglutide is an activator of glucagon-like peptide-1 receptor (GLP-1R) that activates anti-apoptotic pathways and exerts anti-inflammatory effects. We mainly compared the effects of human chorionic villus-derived mesenchymal stem cells (hCMSCs), human bone marrow-derived mesenchymal stem cells (hBMSCs), and human adipose-derived mesenchymal stem cells (hAMSCs) on the treatment of ALI and explored the apoptosis mechanism of combination MSCs of liraglutide. Methods The proliferation of MSCs was detected by MTT assay. Western blot and RT-qPCR were used to detect the expression of GLP-1R, SPC, Ang-1, and KGF in MSCs stimulated by LPS and liraglutide. By using flow cytometry and TUNEL assay to compare the apoptosis of three MSCs under the action of LPS and liraglutide, we selected hCMSCs as the target cells to study the expression of apoptotic protein through the PKA/β-catenin pathway. In ALI animal models, we observed the effects of liraglutide alone, MSCs alone, and MSCs combined with liraglutide by H&E staining, cell counting, immunohistochemistry, and ELISA assay. Results We demonstrated that LPS attenuates the proliferation of the three MSCs and the expression of GLP-1R. Liraglutide could reverse the effects of LPS; increase the expression of SPC, Ang-1, and KGF; and can reduce the apoptosis of three MSCs through the PKA/β-catenin pathway. In the LPS-induced ALI model, MSCs combined with liraglutide showed a significant therapeutic effect, and hCMSCs combined with liraglutide have advantages in the treatment of ALI. Conclusions The therapeutic effect of combination MSCs of liraglutide on ALI was higher than that of MSCs alone or liraglutide alone, and liraglutide could alleviate the symptoms of ALI by reducing MSCs apoptosis.
Collapse
Affiliation(s)
- Xiaotong Yang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China.,State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ocholi Don
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 20003, China
| | - Xiaoyan Chen
- Department of Pathology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jieming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China. .,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China.
| | - Yun Feng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China. .,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China.
| |
Collapse
|
27
|
Rogers CJ, Harman RJ, Bunnell BA, Schreiber MA, Xiang C, Wang FS, Santidrian AF, Minev BR. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. J Transl Med 2020; 18:203. [PMID: 32423449 PMCID: PMC7232924 DOI: 10.1186/s12967-020-02380-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023] Open
Abstract
In late 2019, a novel coronavirus (SARS-CoV-2) emerged in Wuhan, capital city of Hubei province in China. Cases of SARS-CoV-2 infection quickly grew by several thousand per day. Less than 100 days later, the World Health Organization declared that the rapidly spreading viral outbreak had become a global pandemic. Coronavirus disease 2019 (COVID-19) is typically associated with fever and respiratory symptoms. It often progresses to severe respiratory distress and multi-organ failure which carry a high mortality rate. Older patients or those with medical comorbidities are at greater risk for severe disease. Inflammation, pulmonary edema and an over-reactive immune response can lead to hypoxia, respiratory distress and lung damage. Mesenchymal stromal/stem cells (MSCs) possess potent and broad-ranging immunomodulatory activities. Multiple in vivo studies in animal models and ex vivo human lung models have demonstrated the MSC's impressive capacity to inhibit lung damage, reduce inflammation, dampen immune responses and aid with alveolar fluid clearance. Additionally, MSCs produce molecules that are antimicrobial and reduce pain. Upon administration by the intravenous route, the cells travel directly to the lungs where the majority are sequestered, a great benefit for the treatment of pulmonary disease. The in vivo safety of local and intravenous administration of MSCs has been demonstrated in multiple human clinical trials, including studies of acute respiratory distress syndrome (ARDS). Recently, the application of MSCs in the context of ongoing COVID-19 disease and other viral respiratory illnesses has demonstrated reduced patient mortality and, in some cases, improved long-term pulmonary function. Adipose-derived stem cells (ASC), an abundant type of MSC, are proposed as a therapeutic option for the treatment of COVID-19 in order to reduce morbidity and mortality. Additionally, when proven to be safe and effective, ASC treatments may reduce the demand on critical hospital resources. The ongoing COVID-19 outbreak has resulted in significant healthcare and socioeconomic burdens across the globe. There is a desperate need for safe and effective treatments. Cellular based therapies hold great promise for the treatment of COVID-19. This literature summary reviews the scientific rationale and need for clinical studies of adipose-derived stem cells and other types of mesenchymal stem cells in the treatment of patients who suffer with COVID-19.
Collapse
Affiliation(s)
| | | | - Bruce A. Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA USA
| | - Martin A. Schreiber
- Department of Surgery, Oregon Health and Science University, Portland, OR USA
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center, Beijing, 100039 China
| | | | - Boris R. Minev
- Calidi Biotherapeutics, Inc., San Diego, CA USA
- Department of Radiation Medicine and Applied Sciences, Moores UCSD Cancer Center, San Diego, CA USA
| |
Collapse
|
28
|
Cruz T, López-Giraldo A, Noell G, Guirao A, Casas-Recasens S, Garcia T, Saco A, Sellares J, Agustí A, Faner R. Smoking Impairs the Immunomodulatory Capacity of Lung-Resident Mesenchymal Stem Cells in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2019; 61:575-583. [DOI: 10.1165/rcmb.2018-0351oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Tamara Cruz
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
| | - Alejandra López-Giraldo
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Guillaume Noell
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| | - Angela Guirao
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | - Tamara Garcia
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
| | - Adela Saco
- Department of Pathology, Hospital Clinic, Barcelona, Spain
| | - Jacobo Sellares
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| | - Alvar Agustí
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| | - Rosa Faner
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| |
Collapse
|
29
|
Abstract
Introduction: Mesenchymal stem/stromal cells (MSCs) have been shown to improve lung function and survival in chronic inflammatory lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), pulmonary arterial hypertension (PAH), and silicosis.Areas covered: This review covers rationale for the use of MSC therapy, along with preclinical studies and clinical trials with MSC therapy in chronic lung diseases.Expert opinion: MSC therapy holds promise for the treatment of chronic lung diseases, mainly when administered at early stages. In clinical trials, MSC administration was safe, but associated with limited effects on clinical outcomes. Further studies are required to elucidate unresolved issues, including optimal MSC source and dose, route of administration, and frequency (single vs. multiple-dose regimens). A better understanding of the mechanisms of MSC action, local microenvironment of each disease, and development of strategies to potentiate the beneficial effects of MSCs may improve outcomes.
Collapse
|
30
|
Characterization of Different Sources of Human MSCs Expanded in Serum-Free Conditions with Quantification of Chondrogenic Induction in 3D. Stem Cells Int 2019; 2019:2186728. [PMID: 31320905 PMCID: PMC6610765 DOI: 10.1155/2019/2186728] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/11/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent alternative candidates to chondrocytes for cartilage engineering. However, it remains difficult to identify the ideal source of MSCs for cartilage repair since conditions supporting chondrogenic induction are diverse among published works. In this study, we characterized and evaluated the chondrogenic potential of MSCs from bone marrow (BM), Wharton's jelly (WJ), dental pulp (DP), and adipose tissue (AT) isolated and cultivated under serum-free conditions. BM-, WJ-, DP-, and AT-MSCs did not differ in terms of viability, clonogenicity, and proliferation. By an extensive polychromatic flow cytometry analysis, we found notable differences in markers of the osteochondrogenic lineage between the 4 MSC sources. We then evaluated their chondrogenic potential in a micromass culture model, and only BM-MSCs showed chondrogenic conversion. This chondrogenic differentiation was specifically ascertained by the production of procollagen IIB, the only type II collagen isoform synthesized by well-differentiated chondrocytes. As a pilot study toward cartilage engineering, we encapsulated BM-MSCs in hydrogel and developed an original method to evaluate their chondrogenic conversion by flow cytometry analysis, after release of the cells from the hydrogel. This allowed the simultaneous quantification of procollagen IIB and α10, a subunit of a type II collagen receptor crucial for proper cartilage development. This work represents the first comparison of detailed immunophenotypic analysis and chondrogenic differentiation potential of human BM-, WJ-, DP-, and AT-MSCs performed under the same serum-free conditions, from their isolation to their induction. Our study, achieved in conditions compliant with clinical applications, highlights that BM-MSCs are good candidates for cartilage engineering.
Collapse
|
31
|
Liu F, Hu S, Wang S, Cheng K. Cell and biomaterial-based approaches to uterus regeneration. Regen Biomater 2019; 6:141-148. [PMID: 31198582 PMCID: PMC6547309 DOI: 10.1093/rb/rbz021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 01/16/2023] Open
Abstract
Asherman's syndrome (AS) is an endometrial disorder in which intrauterine adhesions crowd the uterine cavity and wall. The fibrotic adhesions are primarily the result of invasive uterine procedures that usually involve the insertion of surgical equipment into the uterus. This syndrome is accompanied by a number of clinical manifestations, including irregular or painful menstruation and infertility. The most prevalent treatment is hysteroscopy, which involves the physical removal of the fibrous strands. Within the last decade, however, the field has been exploring the use of cell-based therapeutics, in conjunction with biomaterials, to treat AS. This review is a recapitulation of the literature focused on cellular therapies for treating AS.
Collapse
Affiliation(s)
- Feiran Liu
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Beijing, China
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Zhang L, Li Q, Liu W, Liu Z, Shen H, Zhao M. Mesenchymal Stem Cells Alleviate Acute Lung Injury and Inflammatory Responses Induced by Paraquat Poisoning. Med Sci Monit 2019; 25:2623-2632. [PMID: 30967525 PMCID: PMC6474293 DOI: 10.12659/msm.915804] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) show anti-oxidative and anti-inflammatory effects that have prompted further research into their potential applications in treating paraquat (PQ) poisoning cases in emergency rooms. We assessed the protective effects, underlying mechanisms, and secondary inflammatory responses of MSCs on PQ-induced acute lung injury. Material/Methods Sprague-Dawley rats were injected intraperitoneally with PQ (20 μg per gram of body weight). MSCs were injected through the caudal vein 1 h after PQ treatment. The severity of lung injury and oxidative stress and levels of inflammatory mediators were examined with and without MSC grafting. Expression levels of TLR4, NF-κB, p65, Nrf2, HO-1, and activated caspase-3 protein were determined by Western blotting. Results Administration of MSCs significantly decreased the levels of TNF-α, IL-1β, and IL-6 and polymorphonuclear neutrophil (PMN) count in the bronchoalveolar lavage fluid (BALF) of rats with PQ-induced ALI. In addition, MSC also effectively reduced the wet-to-dry lung weight ratio, lung injury score, and the levels of MDA and 8-OHdG. Conversely, MSC increased SOD and GSH-PX activity in the lung tissue. Moreover, MSC significantly upregulated HO-1, Nrf-2 protein expression in the lung tissue. In contrast, the levels of TLR4, NF-κB p65 and activated caspase-3 protein were decreased in MSC-treated rats (P<0.05). Conclusions Treatment with MSCs overexpressed Nrf2 gene and activated downstream antioxidant HO-1, leading to inhibit oxidative stress, cell apoptosis and inflammatory response in lung tissue, thereby significantly improving PQ-induced acute lung injury in rats.
Collapse
Affiliation(s)
- Lichun Zhang
- Emergency Department, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China (mainland)
| | - Qiuhe Li
- Emergency Department, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China (mainland)
| | - Wei Liu
- Emergency Department, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China (mainland)
| | - Zhenning Liu
- Emergency Department, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China (mainland)
| | - Haitao Shen
- Emergency Department, Shengjing Hospital Affiliated to China Medical University, shenyang, China (mainland)
| | - Min Zhao
- Emergency Department, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
33
|
Usher KM, Zhu S, Mavropalias G, Carrino JA, Zhao J, Xu J. Pathological mechanisms and therapeutic outlooks for arthrofibrosis. Bone Res 2019; 7:9. [PMID: 30937213 PMCID: PMC6433953 DOI: 10.1038/s41413-019-0047-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Arthrofibrosis is a fibrotic joint disorder that begins with an inflammatory reaction to insults such as injury, surgery and infection. Excessive extracellular matrix and adhesions contract pouches, bursae and tendons, cause pain and prevent a normal range of joint motion, with devastating consequences for patient quality of life. Arthrofibrosis affects people of all ages, with published rates varying. The risk factors and best management strategies are largely unknown due to a poor understanding of the pathology and lack of diagnostic biomarkers. However, current research into the pathogenesis of fibrosis in organs now informs the understanding of arthrofibrosis. The process begins when stress signals stimulate immune cells. The resulting cascade of cytokines and mediators drives fibroblasts to differentiate into myofibroblasts, which secrete fibrillar collagens and transforming growth factor-β (TGF-β). Positive feedback networks then dysregulate processes that normally terminate healing processes. We propose two subtypes of arthrofibrosis occur: active arthrofibrosis and residual arthrofibrosis. In the latter the fibrogenic processes have resolved but the joint remains stiff. The best therapeutic approach for each subtype may differ significantly. Treatment typically involves surgery, however, a pharmacological approach to correct dysregulated cell signalling could be more effective. Recent research shows that myofibroblasts are capable of reversing differentiation, and understanding the mechanisms of pathogenesis and resolution will be essential for the development of cell-based treatments. Therapies with significant promise are currently available, with more in development, including those that inhibit TGF-β signalling and epigenetic modifications. This review focuses on pathogenesis of sterile arthrofibrosis and therapeutic treatments.
Collapse
Affiliation(s)
- Kayley M. Usher
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia Australia
| | - Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Georgios Mavropalias
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia Australia
| | | | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia Australia
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi China
| |
Collapse
|
34
|
Purdon S, Patete CL, Glassberg MK. Multipotent Mesenchymal Stromal Cells for Pulmonary Fibrosis? Am J Med Sci 2019; 357:390-393. [PMID: 31010466 DOI: 10.1016/j.amjms.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 01/31/2023]
Abstract
With the combination of ideologic beliefs and the will to survive, fraught patients and determined clinicians seek alternative therapies for treatment of terminal conditions, such as idiopathic pulmonary fibrosis. Unfortunately, the need for treatment has supported the growth of unapproved stem cell therapy over the years spanning across many countries. The reality, however, is that the science behind this therapy is lagging. While there have been promising results from phase I trials, there remain multiple reasons that "stem cells" are not ready for clinical application, starting from a gap in understanding at the bench research level, all the way to optimal clinical application in order to provide effective therapy.
Collapse
Affiliation(s)
- Stefanie Purdon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Carissa L Patete
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Marilyn K Glassberg
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
35
|
Milenkovic U, Albersen M, Castiglione F. The mechanisms and potential of stem cell therapy for penile fibrosis. Nat Rev Urol 2018; 16:79-97. [DOI: 10.1038/s41585-018-0109-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Tzouvelekis A, Toonkel R, Karampitsakos T, Medapalli K, Ninou I, Aidinis V, Bouros D, Glassberg MK. Mesenchymal Stem Cells for the Treatment of Idiopathic Pulmonary Fibrosis. Front Med (Lausanne) 2018; 5:142. [PMID: 29868594 PMCID: PMC5962715 DOI: 10.3389/fmed.2018.00142] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/25/2018] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an inexorably progressive lung disease of unknown origin. Prognosis is poor, with limited treatment options available, and the median survival remains just 3-5 years. Despite the use of pirfenidone and nintedanib for the treatment of IPF, curative therapies remain elusive and mortality remains high. Regenerative medicine and the use of cell-based therapies has recently emerged as a potential option for various diseases. Promising results of preclinical studies using mesenchymal stem cells (MSCs) suggest that they may represent a potential therapeutic option for the treatment of chronic lung diseases including IPF. Encouraging results of Phase 1 studies of MSCs various have reduced safety concerns. Nonetheless, there is still a pressing need for exploratory biomarkers and interval end-points in the context of MSCs investigation. This review intends to summarize the current state of knowledge for stem cells in the experimental and clinical setting of IPF, present important safety and efficacy issues, highlight future challenges and address the need for large, multicenter clinical trials coupled with realistic end-points, including biomarkers, to assess treatment efficacy.
Collapse
Affiliation(s)
- Argyrios Tzouvelekis
- First Academic Respiratory Department, Sotiria General Hospital for Thoracic Diseases, University of Athens, Athens, Greece.,Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| | - Rebecca Toonkel
- Department of Medicine, Florida International University Herbert Wertheim College of Medicine, Miami, FL, United States
| | - Theodoros Karampitsakos
- First Academic Respiratory Department, Sotiria General Hospital for Thoracic Diseases, University of Athens, Athens, Greece
| | - Kantha Medapalli
- Department of Medicine, Florida International University Herbert Wertheim College of Medicine, Miami, FL, United States.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ioanna Ninou
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| | - Vasilis Aidinis
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Demosthenes Bouros
- First Academic Respiratory Department, Sotiria General Hospital for Thoracic Diseases, University of Athens, Athens, Greece
| | - Marilyn K Glassberg
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
37
|
Correction: Multipotent mesenchymal stem cells in lung fibrosis. PLoS One 2018; 13:e0191144. [PMID: 29315335 PMCID: PMC5760093 DOI: 10.1371/journal.pone.0191144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|