1
|
Huang S, Guo J, Xie Y, Bian R, Wang N, Qi W, Liu H. Distribution, sources, and potential health risks of fluoride, total iodine, and nitrate in rural drinking water sources of North and East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165561. [PMID: 37474072 DOI: 10.1016/j.scitotenv.2023.165561] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Small-scale water sources serving villages and towns are the main source of drinking water in rural areas. Compared to centralized water sources, rural water sources are less frequently monitored for water quality and have poor post-treatment facilities, making them vulnerable to drinking health risks. To reveal the hydrochemical characteristics, contaminant sources, and health risks in rural water sources, 189 water samples were collected from lakes and reservoirs, rivers, and groundwater in North and East China for major ions, nutrient salts, microelements, and stable isotope analysis. Statistical analysis and isotopic tracing were performed, as well as human health risk assessment. The exceeding threshold rates for fluoride (F-) and nitrate (NO3-) in surface water were 1.8 % and 9.1 %, respectively. For groundwater, the exceeding threshold rates were 20.9 % for F-, 15.7 % for total iodine (TI), and 4.5 % for NO3-. F- and TI were mainly derived from the leaching of fluoride- and iodine-containing minerals by cationic exchange, and NO3- is mainly derived from nitrogen in the soil (31.7-43.9 %), the use of ammonia fertilizers (24.3-36.1 %), and the discharge of manure and sewage (19.4-31.9 %). Nitrogen in the soil can be an important source of nitrate in the aquatic environment, and soils with higher clay content have a greater retention effect on the migration of nitrogen pollutants from the surface to the groundwater. F- in water sources contributes most to human health risks for drinking, followed by NO3- and TI, and a higher proportion of groundwater (37 %) present health risks for drinking than surface water (14 %) for children. Authorities should give high priority to optimizing the choice of water sources and technology for water treatment, and rational measures should be taken to protect water sources from the threats of anthropogenic pollution.
Collapse
Affiliation(s)
- Shier Huang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiaxun Guo
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu Xie
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Rui Bian
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Nan Wang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Arranz I, Grenouillet G, Cucherousset J. Human pressures modulate climate-warming-induced changes in size spectra of stream fish communities. Nat Ecol Evol 2023; 7:1072-1078. [PMID: 37264200 DOI: 10.1038/s41559-023-02083-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Climate warming can negatively affect the body size of ectothermic organisms and, based on known temperature-size rules, tends to benefit small-bodied organisms. Our understanding of the interactive effects of climate warming and other environmental factors on the temporal changes of body size structure is limited. We quantified the annual trends in size spectra of 583 stream fish communities sampled for more than 20 years across France. The results show that climate warming steepened the slope of the community size spectrum in streams with limited impacts from other human pressures. These changes were caused by increasing abundance of small-bodied individuals and decreasing abundance of large-bodied individuals. However, opposite effects of climate warming on the size spectrum slopes were observed in streams facing high levels of other human pressures. This demonstrates that the effects of temperature on body size structure can depend on other human pressures, disrupting the natural patterns of size spectra in wild communities with potentially strong implications for the fluxes of energy and nutrients in ecosystems.
Collapse
Affiliation(s)
- Ignasi Arranz
- Laboratoire Evolution et Diversité Biologique UMR 5174, Université Toulouse III-Paul Sabatier, CNRS, IRD, Toulouse, France.
| | - Gaël Grenouillet
- Laboratoire Evolution et Diversité Biologique UMR 5174, Université Toulouse III-Paul Sabatier, CNRS, IRD, Toulouse, France
- Institut Universitaire de France, Paris, France
| | - Julien Cucherousset
- Laboratoire Evolution et Diversité Biologique UMR 5174, Université Toulouse III-Paul Sabatier, CNRS, IRD, Toulouse, France
| |
Collapse
|
3
|
Feng K, Deng W, Zhang Y, Tao K, Yuan J, Liu J, Li Z, Lek S, Wang Q, Hugueny B. Eutrophication induces functional homogenization and traits filtering in Chinese lacustrine fish communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159651. [PMID: 36280085 DOI: 10.1016/j.scitotenv.2022.159651] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Rapid anthropogenic nutrient enrichment has caused widespread ecological problems in aquatic ecosystems and the resulting eutrophication has dramatically changed fish communities throughout the world. However, few studies addressed how fish communities responded to eutrophication in terms of multidimensional functional and taxonomic structure, especially how eutrophication acted as an environment filter on functional traits. The aim of the present study was to investigate the effects of eutrophication on fish species composition, community metrics and species functional traits in 26 shallow lakes from the middle reaches of Yangtze River basin, China. This study validated that eutrophication is an important factor shaping the fish community structure. Regression analyses showed that eutrophication favored higher total biomass and lower functional diversity of fish communities but had little effect on species richness. Despite the fact that some pelagic zooplanktivorous species were more abundant in the most eutrophic lakes, multivariate analyses of the relationships between species traits and environmental variables revealed weak relationships between feeding traits and eutrophication. In contrast, species with a benthic life stage were negatively associated with eutrophication while those with a large body size and high absolute fecundity showed the opposite trend. Due to demersal habitat degradation, and to a lesser degree, to changes in trophic resources availability, eutrophication caused functional simplification of fish communities by increasing functional traits homogeneity among the most tolerant species. Some relationships between functional traits and eutrophication well established in the western palearctic have not been observed in this study, emphasizing the importance of biases resulting from specific evolutionary histories. This work will provide useful insights on on-going restoration and management of shallow lakes in the Yangtze River basin.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratoire Évolution et Diversité Biologique (EDB), Université de Toulouse, CNRS 5174, IRD 253, Toulouse, France
| | - Wenbo Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, Hubei, China
| | - Yinzhe Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, Hubei, China; National Research Centre for Freshwater Fisheries Engineering, Ministry of Sciences and Technology, 7 South Donghu Road, Wuhan 430072, Hubei, China
| | - Jiashou Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, Hubei, China; National Research Centre for Freshwater Fisheries Engineering, Ministry of Sciences and Technology, 7 South Donghu Road, Wuhan 430072, Hubei, China
| | - Zhongjie Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, Hubei, China; National Research Centre for Freshwater Fisheries Engineering, Ministry of Sciences and Technology, 7 South Donghu Road, Wuhan 430072, Hubei, China
| | - Sovan Lek
- Laboratoire Évolution et Diversité Biologique (EDB), Université de Toulouse, CNRS 5174, IRD 253, Toulouse, France
| | - Qidong Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, Hubei, China; National Research Centre for Freshwater Fisheries Engineering, Ministry of Sciences and Technology, 7 South Donghu Road, Wuhan 430072, Hubei, China.
| | - Bernard Hugueny
- Laboratoire Évolution et Diversité Biologique (EDB), Université de Toulouse, CNRS 5174, IRD 253, Toulouse, France
| |
Collapse
|
4
|
Narangoda CNK, Dangalle CD, Amarathunga D. Selected freshwater fish species for assessing the water quality of the lower catchment of the Kelani River, Sri Lanka. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:650. [PMID: 35931827 DOI: 10.1007/s10661-022-10319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Kelani River is the most polluted river in Sri Lanka and the lower catchment is more polluted than the upper catchment. In the present study, freshwater fish species of the lower catchment of the river were investigated for the use of assessing the water quality. Cast net sampling and identification recorded 34 freshwater fish species from the lower catchment, the majority represented by family Cyprinidae. Fish species richness, diversity indices, distribution, abundance and the regression analysis of fish species with water quality parameters revealed high sensitivity and tolerance of three fish species with certain water quality parameters. Dawkinsia singhala was tolerant to the fluctuations of the chemical parameters of the water, while Rasbora daniconius and Pethia reval were tolerant to the physical parameters. Positive correlations were evident between the ammonium and phosphate concentrations of the water and distribution and abundance of D. singhala, while R. daniconius and P. reval showed positive correlations with turbidity of water and pH value respectively. Furthermore, the study reveals that D. singhala is more suitable for predicting the water quality of urban and peri-urban locations of the river, while P. reval and R. daniconius are more suitable for assessing the water quality of rural locations. Thus, the present study reveals a strong possibility of using D. singhala, R. daniconius and P. reval, as biological indicators for assessing the variation of water quality of the lower catchment of the Kelani River. However, despite the fact that such a study has been conducted for the first time in Sri Lanka, it is restrained by certain limitations, and seasonal variations of water quality parameters with fish parameters, adaptations inherent to fish species and food availability in different locations combined with long-term monitoring of fish assemblages have not been considered. Future studies investigating these aspects will further enhance the value of the study.
Collapse
Affiliation(s)
- Chandima N K Narangoda
- Department of Zoology and Environment Science, Faculty of Science, University of Colombo, Colombo 03, 00300, Sri Lanka
- Environmental Studies Division, National Aquatic Resources Research and Development Agency, Crow Island, Colombo 15, 01500, Sri Lanka
| | - Chandima D Dangalle
- Department of Zoology and Environment Science, Faculty of Science, University of Colombo, Colombo 03, 00300, Sri Lanka.
| | - Deeptha Amarathunga
- Environmental Studies Division, National Aquatic Resources Research and Development Agency, Crow Island, Colombo 15, 01500, Sri Lanka
| |
Collapse
|
5
|
Hansen GJA, Wehrly KE, Vitense K, Walsh JR, Jacobson PC. Quantifying the resilience of coldwater lake habitat to climate and land use change to prioritize watershed conservation. Ecosphere 2022. [DOI: 10.1002/ecs2.4172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Gretchen J. A. Hansen
- Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota St. Paul Minnesota USA
| | - Kevin E. Wehrly
- Michigan Department of Natural Resources Institute for Fisheries Research Ann Arbor Michigan USA
| | - Kelsey Vitense
- Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota St. Paul Minnesota USA
| | - Jake R. Walsh
- Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota St. Paul Minnesota USA
| | - Peter C. Jacobson
- Minnesota Department of Natural Resources Fisheries Research Unit St. Paul Minnesota USA
| |
Collapse
|
6
|
Shi Y, Bouska KL, McKinney GJ, Dokai W, Bartels A, McPhee MV, Larson WA. Gene flow influences the genomic architecture of local adaptation in six riverine fish species. Mol Ecol 2021; 32:1549-1566. [PMID: 34878685 DOI: 10.1111/mec.16317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
Understanding how gene flow influences adaptive divergence is important for predicting adaptive responses. Theoretical studies suggest that when gene flow is high, clustering of adaptive genes in fewer genomic regions would protect adaptive alleles from recombination and thus be selected for, but few studies have tested it with empirical data. Here, we used restriction site-associated sequencing to generate genomic data for six fish species with contrasting life histories from six reaches of the Upper Mississippi River System, USA. We used four differentiation-based outlier tests and three genotype-environment association analyses to define neutral single nucleotide polymorphisms (SNPs) and outlier SNPs that were putatively under selection. We then examined the distribution of outlier SNPs along the genome and investigated whether these SNPs were found in genomic islands of differentiation and inversions. We found that gene flow varied among species, and outlier SNPs were clustered more tightly in species with higher gene flow. The two species with the highest overall FST (0.0303-0.0720) and therefore lowest gene flow showed little evidence of clusters of outlier SNPs, with outlier SNPs in these species spreading uniformly across the genome. In contrast, nearly all outlier SNPs in the species with the lowest FST (0.0003) were found in a single large putative inversion. Two other species with intermediate gene flow (FST ~ 0.0025-0.0050) also showed clustered genomic architectures, with most islands of differentiation clustered on a few chromosomes. Our results provide important empirical evidence to support the hypothesis that increasingly clustered architecture of local adaptation is associated with high gene flow.
Collapse
Affiliation(s)
- Yue Shi
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA.,Wisconsin Cooperative Fishery Research Unit, College of Natural Resources, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, USA
| | - Kristen L Bouska
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, USA
| | - Garrett J McKinney
- NRC Research Associateship Program, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - William Dokai
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA.,Wisconsin Cooperative Fishery Research Unit, College of Natural Resources, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, USA
| | - Andrew Bartels
- Long Term Resource Monitoring Program, Wisconsin Department of Natural Resources, La Crosse, Wisconsin, USA
| | - Megan V McPhee
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | - Wesley A Larson
- National Oceanographic and Atmospheric Administration, Auke Bay Laboratories, National Marine Fisheries Service, Alaska Fisheries Science Center, Juneau, Alaska, USA.,U.S. Geological Survey, Wisconsin Cooperative Fishery Research Unit, College of Natural Resources, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, USA
| |
Collapse
|
7
|
Gronchi E, Jöhnk KD, Straile D, Diehl S, Peeters F. Local and continental-scale controls of the onset of spring phytoplankton blooms: Conclusions from a proxy-based model. GLOBAL CHANGE BIOLOGY 2021; 27:1976-1990. [PMID: 33459454 DOI: 10.1111/gcb.15521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/05/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
A key phenological event in the annual cycle of many pelagic ecosystems is the onset of the spring algal bloom (OAB). Descriptions of the factors controlling the OAB in temperate to polar lakes have been limited to isolated studies of single systems and conceptual models. Here we present a validated modelling approach that, for the first time, enables a quantitative prediction of the OAB and a systematic assessment of the processes controlling its timing on a continental scale. We used a weather-driven, one-dimensional lake model to simulate the seasonal dynamics of the underwater light climate in 16 lake types characterized by the factorial combination of four lake depths with four levels of water transparency. We did so at 1962 locations across Western Europe and over 31 years (1979-2009). Assuming that phytoplankton production is light-limited in winter, we identified four patterns of OAB control across lake types and climate zones. OAB timing is controlled by (i) the timing of ice-off in ice-covered clear or shallow lakes, (ii) the onset of thermal stratification in sufficiently deep and turbid lakes and (iii) the seasonal increase in incident radiation in all other lakes, except for (iv) ice-free, shallow and clear lakes in the south, where phytoplankton is not light-limited. The model predicts that OAB timing should respond to two pervasive environmental changes, global warming and browning, in opposite ways. OAB timing should be highly sensitive to warming in lakes where it is controlled by either ice-off or the onset of stratification, but resilient to warming in lakes where it is controlled by incident radiation. Conversely, OAB timing should be most sensitive to browning where it is controlled by incident radiation, but resilient to browning where it is controlled by ice-off or the onset of stratification. Available lake data are consistent with our findings.
Collapse
Affiliation(s)
- Enzo Gronchi
- Limnological Institute, University of Konstanz, Konstanz, Germany
| | | | - Dietmar Straile
- Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Sebastian Diehl
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Integrated Science Lab - IceLab, Umeå University, Umeå, Sweden
| | - Frank Peeters
- Limnological Institute, University of Konstanz, Konstanz, Germany
| |
Collapse
|
8
|
Abstract
Bioenergy is becoming increasingly relevant as an alternative to fossil fuels. Various bioenergy feedstocks are suggested as environmentally friendly solutions due to their positive impact on stream health and ability to sequester carbon, but most evaluations for bioenergy feedstocks have not evaluated the implications of bioenergy crop production holistically to date. Through the application of multi-objective optimization on 10 bioenergy feedstock rotations in a Michigan watershed, a Pareto front is searched to identify optimal trade-off solutions for three objective functions representing stream health, environmental emissions/carbon footprint, and economic feasibility. Various multi-criteria decision-making techniques are then applied to the resulting Pareto front to select a set of most-preferred trade-off solutions, which are compared to optimal solutions from each individual objective function. The most-preferred trade-off solutions indicate that a diverse mix of rotations are necessary to optimize all three objectives, whereas the individually optimal solutions do not consider a diverse range of feedstocks, thereby making the proposed multi-objective treatment an important and pragmatic strategy.
Collapse
|
9
|
Fadhullah W, Yaccob NS, Syakir MI, Muhammad SA, Yue FJ, Li SL. Nitrate sources and processes in the surface water of a tropical reservoir by stable isotopes and mixing model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134517. [PMID: 31629263 DOI: 10.1016/j.scitotenv.2019.134517] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Nitrate is one of the primary nutrients associated with sedimentation and fuels eutrophication in reservoir systems. In this study, water samples from Bukit Merah Reservoir (BMR) were analysed using a combination of water chemistry, water stable isotopes (δ2H-H2O and δ18O-H2O) and nitrate stable isotopes (δ15N-NO3- and δ18O-NO3-). The objective was to evaluate nitrate sources and processes in BMR, the oldest man-made reservoir in Malaysia. The δ15N-NO3- values in the river and reservoir water samples were in the range +0.4 to +14.9‰ while the values of δ18O-NO3- were between -0.01 and +39.4‰, respectively. The dual plots of δ15N-NO3- and δ18O-NO3- reflected mixing sources from atmospheric deposition (AD) input, ammonium in fertilizer/rain, soil nitrogen, and manure and sewage (MS) as the sources of nitrate in the surface water of BMR. Nitrate stable isotopes suggested that BMR undergoes processes such as nitrification and mixing. Denitrification and assimilation were not prevalent in the system. The Bayesian mixing model highlighted the dominance of MS sources in the system while AD contributed more proportion in the reservoir during both seasons than in the river. The use of δ13C, δ15N, and C:N ratios enabled the identification of terrestrial sources of the organic matter in the sediment, enhancing the understanding of sedimentation associated with nutrients previously reported in BMR. Overall, the nitrate sources and processes should be considered in decision-making in the management of the reservoir for irrigation, Arowana fish culture and domestic water supply.
Collapse
Affiliation(s)
- Widad Fadhullah
- Environmental Technology Section, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Penang, Malaysia; Environmental and Occupational Health Program, School of Health Sciences, Health Campus, Universiti Sains Malaysia 16150 USM, Kubang Kerian, Kelantan, Malaysia.
| | - Nur Syahirah Yaccob
- Environmental Technology Section, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | - M I Syakir
- Environmental Technology Section, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Penang, Malaysia; Centre for Global Sustainability Studies (CGSS), Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | - Syahidah Akmal Muhammad
- Environmental Technology Section, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | - Fu-Jun Yue
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Morrissey-McCaffrey E, Shephard S, Kelly FL, Kelly-Quinn M. Non-native species and lake warming negatively affect Arctic char Salvelinus alpinus abundance; deep thermal refugia facilitate co-existence. JOURNAL OF FISH BIOLOGY 2019; 94:5-16. [PMID: 30315584 DOI: 10.1111/jfb.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
This study finds that non-native species and warming temperatures have significant negative effects on Arctic char Salvelinus alpinus abundance in Irish lakes. Eutrophication was not important at the range of total phosphorus tested (0.005-0.023 mg l-1 ). Model results predict that S. alpinus occur across the temperature range sampled (8.2-19.7°C) when non-natives are absent, but S. alpinus catch is predicted to be close to zero irrespective of temperature when non-native catch is high. This result indicates that to persist, S. alpinus may require a habitat where non-natives are at low abundance or absent. Salvelinus alpinus segregated from other species along the thermal axis, inhabiting significantly colder water and actively avoided non-native species, which appeared to limit their distribution. The thermal niche realized by S. alpinus in non-native dominated lakes was thus compressed relative to native dominated lakes and S. alpinus population density was significantly lower. These findings were consistent even when the only non-native present was Perca fluviatilis. Temperature appeared to limit the distribution of non-native species, such that the presence of deep thermal refugia is currently facilitating S. alpinus co-existence with non-natives in associated lakes. Diet analysis identified P. fluviatilis as potential predators and competitors. This study provides strong evidence that non-native species are a key driver of low S. alpinus abundance in Irish lakes. Temperature increases associated with climate change are identified as a secondary concern, as they could erode S. alpinus' thermal niche and lead to their extirpation. The lower thermal buffering capacity of shallow lakes identifies these as higher risk systems. Salvelinus alpinus conservation in Ireland should focus on preventing future illegal non-native species introductions because unlike other stressors (e.g., eutrophication etc.), species introductions are rarely reversible.
Collapse
Affiliation(s)
- Emma Morrissey-McCaffrey
- Inland Fisheries Ireland, Dublin, Ireland
- Freshwater Biodiversity, Ecology and Fisheries Research Group, School of Biology and Environmental Science, & Earth Institute, University College Dublin, Belfield, Ireland
| | | | | | - Mary Kelly-Quinn
- Freshwater Biodiversity, Ecology and Fisheries Research Group, School of Biology and Environmental Science, & Earth Institute, University College Dublin, Belfield, Ireland
| |
Collapse
|