1
|
Mair I, Fenn J, Wolfenden A, Lowe AE, Bennett A, Muir A, Thompson J, Dieumerci O, Logunova L, Shultz S, Bradley JE, Else KJ. The adaptive immune response to Trichuris in wild versus laboratory mice: An established model system in context. PLoS Pathog 2024; 20:e1012119. [PMID: 38626206 PMCID: PMC11051619 DOI: 10.1371/journal.ppat.1012119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/26/2024] [Accepted: 03/13/2024] [Indexed: 04/18/2024] Open
Abstract
Laboratory model organisms have provided a window into how the immune system functions. An increasing body of evidence, however, suggests that the immune responses of naive laboratory animals may differ substantially to those of their wild counterparts. Past exposure, environmental challenges and physiological condition may all impact on immune responsiveness. Chronic infections of soil-transmitted helminths, which we define as establishment of adult, fecund worms, impose significant health burdens on humans, livestock and wildlife, with limited treatment success. In laboratory mice, Th1 versus Th2 immune polarisation is the major determinant of helminth infection outcome. Here we compared antigen-specific immune responses to the soil-transmitted whipworm Trichuris muris between controlled laboratory and wild free-ranging populations of house mice (Mus musculus domesticus). Wild mice harbouring chronic, low-level infections produced lower levels of cytokines in response to Trichuris antigen than laboratory-housed C57BL/6 mice. Wild mouse effector/memory CD4+ T cell phenotype reflected the antigen-specific cytokine response across the Th1/Th2 spectrum. Increasing egg shedding was associated with body condition loss. However, local Trichuris-specific Th1/Th2 balance was positively associated with worm burden only in older wild mice. Thus, although the fundamental relationships between the CD4+ T helper cell response and resistance to T. muris infection are similar in both laboratory and wild M. m. domesticus, there are quantitative differences and age-specific effects that are analogous to human immune responses. These context-dependent immune responses demonstrate the fundamental importance of understanding the differences between model and natural systems for translating mechanistic models to 'real world' immune function.
Collapse
Affiliation(s)
- Iris Mair
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Environmental Research Institute, Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Jonathan Fenn
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Andrew Wolfenden
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ann E. Lowe
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alex Bennett
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Andrew Muir
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jacob Thompson
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Olive Dieumerci
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Larisa Logunova
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Susanne Shultz
- School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Janette E. Bradley
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Kathryn J. Else
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Pacheco A, Conington J, Corripio-Miyar Y, Frew D, Banos G, McNeilly TN. Genetic profile of adaptive immune traits and relationships with parasite resistance and productivity in Scottish Blackface sheep. Animal 2024; 18:101061. [PMID: 38232660 DOI: 10.1016/j.animal.2023.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Gastrointestinal (GI) parasites cause significant production losses in grazing ruminants which can be mitigated by breeding animals resistant to disease. Lymphocyte cytokine production and parasite-specific Immunoglobulin A (IgA) are adaptive immune traits associated with immunity to GI parasites. To explore the utility of these traits for selective breeding purposes, this study estimated the genetic parameters of the immune traits in sheep and assessed their relationship with disease and productivity traits. Whole blood stimulation assays were performed on 1 040 Scottish Blackface lambs at two months of age in 2016-2017. Blood was stimulated with either pokeweed mitogen (PWM), a non-specific activator of lymphocytes, and Teladorsagia circumcincta (T-ci) larval antigen to activate parasite-specific T lymphocytes. The type of adaptive immune response was determined by quantifying production of cytokines interferon-gamma (IFN-γ), interleukin (IL)-4, and IL-10, which relate to T-helper type (Th) 1, Th2 and regulatory T cell responses, respectively. Serum T-ci specific IgA was also quantified. Heritabilities were estimated for each immune trait by univariate analyses. Genetic and phenotypic correlations were estimated between different immune traits, and between immune traits vs. disease and productivity traits that were recorded at three months of age. Disease phenotypes were expressed as faecal egg counts (FEC) of nematode parasites (Strongyles and Nematodirus), faecal oocyst counts (FOC) of coccidian parasites, and faecal soiling score; production was measured as lamb live weight. Significant genetic variation was observed in all immune response traits. Heritabilities of cytokine production varied from low (0.14 ± 0.06) to very high (0.77 ± 0.09) and were always significantly greater than zero (P < 0.05). IgA heritability was found to be moderate (0.41 ± 0.09). Negative associations previously identified between IFN-γ production and FOC, and IL-4 production and strongyle FEC, were not evident in this study, potentially due to the time-lag between immune and parasitology measures. Instead, a positive genetic correlation was found between FOC and PWM-induced IFN-γ production, while a negative genetic correlation was found between FOC and T-ci induced IL-10. Live weight was negatively genetically correlated with IFN-γ responses. Overall, IFN-γ and IL-4 responses were positively correlated, providing little evidence of cross-regulation of Th1 and Th2 immunity within individual sheep. Furthermore, T-ci specific IgA was highly positively correlated with PWM-induced IL-10, indicating a possible role for this cytokine in IgA production. Our results suggest that while genetic selection for adaptive immune response traits is possible and may be beneficial for parasite control, selection of high IFN-γ responsiveness may negatively affect productivity.
Collapse
Affiliation(s)
- A Pacheco
- Scotland's Rural College, Roslin Institute Building, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - J Conington
- Scotland's Rural College, Roslin Institute Building, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Y Corripio-Miyar
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, United Kingdom
| | - D Frew
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, United Kingdom
| | - G Banos
- Scotland's Rural College, Roslin Institute Building, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - T N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, United Kingdom.
| |
Collapse
|
3
|
Perez G. Role of bank vole (Myodes glareolus) personality on tick burden (Ixodes spp.). Folia Parasitol (Praha) 2022; 69. [DOI: 10.14411/fp.2022.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/11/2022] [Indexed: 11/19/2022]
|
4
|
Roumak VS, Popov VS, Shelepchikov AA, Osipova OV, Umnova NV. Seasonal peculiarities of PCDD/Fs levels in bank voles inhabiting sites in the vicinity of the landfill with municipal wastes (Moscow, Russia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52796-52805. [PMID: 35267167 DOI: 10.1007/s11356-022-19602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Differences in PCDD/Fs concentrations were registered among adult bank voles (Myodes glareolus) inhabiting forest in the vicinity of the Landfill Salariyevo (Moscow, Russia) and caught in early spring (over-winter survivors) and late summer. The levels of highly toxic congeners and WHO-TEQ05 in samples of wintering voles were much lower than those in samples got in summer. This difference was investigated analyzing PCDD/Fs in sexually matured animals and offspring obtained in vivarium. Practically, no significant differences of PCDD/Fs concentrations and general toxicity were revealed among sexes. The main impact to these seasonal differences in PCDD/Fs accumulation was assigned to the types of functional development and activity, diet variation as natural growth of all voles occurs on the same territory but in seasonally diverse conditions. So, the species functional ecology (lifestyle and seasonal features) should be considered in practical application of animal models from natural populations for local monitoring of PCDD/Fs body burden, and individual functional type of ontogenesis among cyclomorphic mammalian species, especially. Thus, the results obtained during monitoring should be carefully interpreted for a proper environmental management.
Collapse
Affiliation(s)
- Vladimir S Roumak
- A.N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect, RAS, 33, Moscow, 119071, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-12, Moscow, 119991, Russia
| | - Vladimir S Popov
- Faculty of Medicine, M.V. Lomonosov Moscow State University, 31-5, Lomonosovsky Prospect, Moscow, 117192, Russia
| | - Andrey A Shelepchikov
- A.N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect, RAS, 33, Moscow, 119071, Russia
| | - Olga V Osipova
- A.N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect, RAS, 33, Moscow, 119071, Russia
| | - Nataliya V Umnova
- A.N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect, RAS, 33, Moscow, 119071, Russia.
| |
Collapse
|
5
|
Corripio-Miyar Y, Hayward A, Lemon H, Sweeny AR, Bal X, Kenyon F, Pilkington JG, Pemberton JM, Nussey DH, McNeilly TN. Functionally distinct T-helper cell phenotypes predict resistance to different types of parasites in a wild mammal. Sci Rep 2022; 12:3197. [PMID: 35210503 PMCID: PMC8873199 DOI: 10.1038/s41598-022-07149-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 12/31/2022] Open
Abstract
The adaptive immune system is critical to an effective response to infection in vertebrates, with T-helper (Th) cells pivotal in orchestrating these responses. In natural populations where co-infections are the norm, different Th responses are likely to play an important role in maintaining host health and fitness, a relationship which remains poorly understood in wild animals. In this study, we characterised variation in functionally distinct Th responses in a wild population of Soay sheep by enumerating cells expressing Th-subset specific transcription factors and quantifying Th-associated cytokines. We tested the prediction that raised Th1 and Th2 responses should predict reduced apicomplexan and helminth parasite burdens, respectively. All measures of Th-associated cytokine production increased with age, while Th17- and regulatory Th-associated cytokine production increased more rapidly with age in males than females. Independent of age, sex, and each other, IL-4 and Gata3 negatively predicted gastro-intestinal nematode faecal egg count, while IFN-γ negatively predicted coccidian faecal oocyst count. Our results provide important support from outside the laboratory that Th1 and Th2 responses predict resistance to different kinds of parasites, and illustrate how harnessing specific reagents and tools from laboratory immunology will illuminate our understanding of host-parasite interactions in the wild.
Collapse
Affiliation(s)
- Yolanda Corripio-Miyar
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK.
| | - Adam Hayward
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| | - Hannah Lemon
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Amy R Sweeny
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Xavier Bal
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Fiona Kenyon
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| | - Jill G Pilkington
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Daniel H Nussey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| |
Collapse
|
6
|
Jackson JA, Friberg IM, Hablützel PI, Masud N, Stewart A, Synnott R, Cable J. Partitioning the environmental drivers of immunocompetence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141152. [PMID: 32799018 DOI: 10.1016/j.scitotenv.2020.141152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/08/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
By determining susceptibility to disease, environment-driven variation in immune responses can affect the health, productivity and fitness of vertebrates. Yet how the different components of the total environment control this immune variation is remarkably poorly understood. Here, through combining field observation, experimentation and modelling, we are able to quantitatively partition the key environmental drivers of constitutive immune allocation in a model wild vertebrate (three-spined stickleback, Gasterosteus aculeatus). We demonstrate that, in natural populations, thermal conditions and diet alone are sufficient (and necessary) to explain a dominant (seasonal) axis of variation in immune allocation. This dominant axis contributes to both infection resistance and tolerance and, in turn, to the vital rates of infectious agents and the progression of the disease they cause. Our results illuminate the environmental regulation of vertebrate immunity (given the evolutionary conservation of the molecular pathways involved) and they identify mechanisms through which immunocompetence and host-parasite dynamics might be impacted by changing environments. In particular, we predict a dominant sensitivity of immunocompetence and immunocompetence-driven host-pathogen dynamics to host diet shifts.
Collapse
Affiliation(s)
- Joseph A Jackson
- Ecoimmunology Laboratory, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| | - Ida M Friberg
- Ecoimmunology Laboratory, School of Science, Engineering and Environment, University of Salford, Manchester, UK
| | - Pascal I Hablützel
- IBERS, Aberystwyth University, Aberystwyth, UK; Flanders Marine Institute, Oostende, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, Biology Department, University of Leuven, Leuven, Belgium
| | - Numair Masud
- School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Rebecca Synnott
- Ecoimmunology Laboratory, School of Science, Engineering and Environment, University of Salford, Manchester, UK
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
7
|
Becker DJ, Albery GF, Kessler MK, Lunn TJ, Falvo CA, Czirják GÁ, Martin LB, Plowright RK. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J Anim Ecol 2020; 89:972-995. [PMID: 31856309 DOI: 10.1111/1365-2656.13166] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/06/2019] [Indexed: 01/26/2023]
Abstract
The prevalence and intensity of parasites in wild hosts varies across space and is a key determinant of infection risk in humans, domestic animals and threatened wildlife. Because the immune system serves as the primary barrier to infection, replication and transmission following exposure, we here consider the environmental drivers of immunity. Spatial variation in parasite pressure, abiotic and biotic conditions, and anthropogenic factors can all shape immunity across spatial scales. Identifying the most important spatial drivers of immunity could help pre-empt infectious disease risks, especially in the context of how large-scale factors such as urbanization affect defence by changing environmental conditions. We provide a synthesis of how to apply macroecological approaches to the study of ecoimmunology (i.e. macroimmunology). We first review spatial factors that could generate spatial variation in defence, highlighting the need for large-scale studies that can differentiate competing environmental predictors of immunity and detailing contexts where this approach might be favoured over small-scale experimental studies. We next conduct a systematic review of the literature to assess the frequency of spatial studies and to classify them according to taxa, immune measures, spatial replication and extent, and statistical methods. We review 210 ecoimmunology studies sampling multiple host populations. We show that whereas spatial approaches are relatively common, spatial replication is generally low and unlikely to provide sufficient environmental variation or power to differentiate competing spatial hypotheses. We also highlight statistical biases in macroimmunology, in that few studies characterize and account for spatial dependence statistically, potentially affecting inferences for the relationships between environmental conditions and immune defence. We use these findings to describe tools from geostatistics and spatial modelling that can improve inference about the associations between environmental and immunological variation. In particular, we emphasize exploratory tools that can guide spatial sampling and highlight the need for greater use of mixed-effects models that account for spatial variability while also allowing researchers to account for both individual- and habitat-level covariates. We finally discuss future research priorities for macroimmunology, including focusing on latitudinal gradients, range expansions and urbanization as being especially amenable to large-scale spatial approaches. Methodologically, we highlight critical opportunities posed by assessing spatial variation in host tolerance, using metagenomics to quantify spatial variation in parasite pressure, coupling large-scale field studies with small-scale field experiments and longitudinal approaches, and applying statistical tools from macroecology and meta-analysis to identify generalizable spatial patterns. Such work will facilitate scaling ecoimmunology from individual- to habitat-level insights about the drivers of immune defence and help predict where environmental change may most alter infectious disease risk.
Collapse
Affiliation(s)
- Daniel J Becker
- Department of Biology, Indiana University, Bloomington, IN, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Tamika J Lunn
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Caylee A Falvo
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Lynn B Martin
- Department of Global and Planetary Health, University of South Florida, Tampa, FL, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
8
|
Seguel M, Beechler BR, Coon CC, Snyder PW, Spaan JM, Jolles AE, Ezenwa VO. Immune stability predicts tuberculosis infection risk in a wild mammal. Proc Biol Sci 2019; 286:20191401. [PMID: 31575363 DOI: 10.1098/rspb.2019.1401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immunity is one of the most variable phenotypic traits in animals; however, some individuals may show less fluctuation in immune traits, resulting in stable patterns of immune variation over time. It is currently unknown whether immune variation has consequences for infectious disease risk. In this study, we identified moderately stable immune traits in wild African buffalo and asked whether the stability of these traits affected bovine tuberculosis (TB) infection risk. We found that adaptive immune traits such as the level of interferon-γ (IFN-γ) released after white blood cell stimulation, the number of circulating lymphocytes and the level of antibodies against bovine adenovirus-3 were moderately repeatable (i.e. stable) over time, whereas parameters related to innate immunity either had low repeatability (circulating eosinophil numbers) or were not repeatable (e.g. neutrophil numbers, plasma bacteria killing capacity). Intriguingly, individuals with more repeatable IFN-γ and lymphocyte levels were at a significantly higher risk of acquiring TB infection. In stark contrast, average IFN-γ and lymphocyte levels were poor predictors of TB risk, indicating that immune variability rather than absolute response level better captured variation in disease susceptibility. This work highlights the important and under-appreciated role of immune variability as a predictor of infection risk.
Collapse
Affiliation(s)
- Mauricio Seguel
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Brianna R Beechler
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Courtney C Coon
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa.,Felidae Conservation Fund, Mill Valley, CA, USA
| | - Paul W Snyder
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Johannie M Spaan
- College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Lebanon, OR, USA
| | - Anna E Jolles
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.,Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Vanessa O Ezenwa
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
Taylor CH, Young S, Fenn J, Lamb AL, Lowe AE, Poulin B, MacColl ADC, Bradley JE. Immune state is associated with natural dietary variation in wild mice Mus musculus domesticus. Funct Ecol 2019; 33:1425-1435. [PMID: 31588159 PMCID: PMC6767599 DOI: 10.1111/1365-2435.13354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/10/2019] [Indexed: 12/25/2022]
Abstract
The ability, propensity and need to mount an immune response vary both among individuals and within a single individual over time.A wide array of parameters has been found to influence immune state in carefully controlled experiments, but we understand much less about which of these parameters are important in determining immune state in wild populations.Diet can influence immune responses, for example when nutrient availability is limited. We therefore predict that natural dietary variation will play a role in modulating immune state, but this has never been tested.We measured carbon and nitrogen stable isotope ratios in an island population of house mice Mus musculus domesticus as an indication of dietary variation, and the expression of a range of immune-related genes to represent immune state.After accounting for potential confounding influences such as age, sex and helminth load, we found a significant association between carbon isotope ratio and levels of immune activity in the mesenteric lymph nodes, particularly in relation to the inflammatory response.This association demonstrates the important interplay between diet and an animal's response to immune challenges, and therefore potentially its susceptibility to disease. A plain language summary is available for this article.
Collapse
Affiliation(s)
| | - Stuart Young
- School of Life SciencesUniversity of NottinghamNottinghamUK
- IUCN SSC Asian Wild Cattle Specialist GroupChesterUK
| | - Jonathan Fenn
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Angela L. Lamb
- Environmental Science CentreBritish Geological SurveyKeyworthUK
| | - Ann E. Lowe
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Benoit Poulin
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | | | | |
Collapse
|
10
|
Friberg IM, Taylor JD, Jackson JA. Diet in the Driving Seat: Natural Diet-Immunity-Microbiome Interactions in Wild Fish. Front Immunol 2019; 10:243. [PMID: 30837993 PMCID: PMC6389695 DOI: 10.3389/fimmu.2019.00243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Natural interactions between the diet, microbiome, and immunity are largely unstudied. Here we employ wild three-spined sticklebacks as a model, combining field observations with complementary experimental manipulations of diet designed to mimic seasonal variation in the wild. We clearly demonstrate that season-specific diets are a powerful causal driver of major systemic immunophenotypic variation. This effect occurred largely independently of the bulk composition of the bacterial microbiome (which was also driven by season and diet) and of host condition, demonstrating neither of these, per se, constrain immune allocation in healthy individuals. Nonetheless, through observations in multiple anatomical compartments, differentially exposed to the direct effects of food and immunity, we found evidence of immune-driven control of bacterial community composition in mucus layers. This points to the interactive nature of the host-microbiome relationship, and is the first time, to our knowledge, that this causal chain (diet → immunity → microbiome) has been demonstrated in wild vertebrates. Microbiome effects on immunity were not excluded and, importantly, we identified outgrowth of potentially pathogenic bacteria (especially mycolic-acid producing corynebacteria) as a consequence of the more animal-protein-rich summertime diet. This may provide part of the ultimate explanation (and possibly a proximal cue) for the dramatic immune re-adjustments that we saw in response to diet change.
Collapse
Affiliation(s)
- Ida M Friberg
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Joe D Taylor
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Joseph A Jackson
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| |
Collapse
|
11
|
Immunological MHC supertypes and allelic expression: how low is the functional MHC diversity in free-ranging Namibian cheetahs? CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01143-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Trade-off between tolerance and resistance to infections: an experimental approach with malaria parasites in a passerine bird. Oecologia 2018; 188:1001-1010. [PMID: 30377770 DOI: 10.1007/s00442-018-4290-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 10/22/2018] [Indexed: 10/28/2022]
Abstract
Avian malaria parasites are known to have negative effects on their hosts, including consequences for reproductive success and survival. However, the outcome of disease may vary greatly among individuals, due to their particular genetic background, their past history of exposure to infections, or the way they respond to infections at the physiological level. We experimentally reduced parasitemia in naturally infected birds to examine individual-level variation in physiological parameters involved in anti-parasite defense, focusing specifically on disease resistance and tolerance. As a measure of disease resistance, we used circulating levels of IgY, and as a measure of disease tolerance, we estimated haptoglobin concentrations. Our results show individual consistency in the physiological parameters studied during the experiment, that was statistically significant for body condition, and marginally significant for IgY levels, and a trade-off between physiological mechanisms involved in resistance and tolerance that seem to be mediated by parasitemia. The medication experiment with primaquine was successful in reducing parasite intensity, but was not sufficient to clear the infection, and there was a generalized improvement in body condition in all birds maintained in captivity during the experiment. We suggest that the observed changes in the association between resistance and tolerance estimates may be due to the decrease in parasitemia attained through medication, to the improved nutritional status observed during the experiment or to the combined effect of both. Our study adds to the understanding of how wild animals cope with the diseases they are exposed to in their natural environment, and ultimately the consequences of parasitism at the individual level.
Collapse
|
13
|
Abolins S, Lazarou L, Weldon L, Hughes L, King EC, Drescher P, Pocock MJO, Hafalla JCR, Riley EM, Viney M. The ecology of immune state in a wild mammal, Mus musculus domesticus. PLoS Biol 2018; 16:e2003538. [PMID: 29652925 PMCID: PMC5919074 DOI: 10.1371/journal.pbio.2003538] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 04/25/2018] [Accepted: 03/09/2018] [Indexed: 01/08/2023] Open
Abstract
The immune state of wild animals is largely unknown. Knowing this and what affects it is important in understanding how infection and disease affects wild animals. The immune state of wild animals is also important in understanding the biology of their pathogens, which is directly relevant to explaining pathogen spillover among species, including to humans. The paucity of knowledge about wild animals' immune state is in stark contrast to our exquisitely detailed understanding of the immunobiology of laboratory animals. Making an immune response is costly, and many factors (such as age, sex, infection status, and body condition) have individually been shown to constrain or promote immune responses. But, whether or not these factors affect immune responses and immune state in wild animals, their relative importance, and how they interact (or do not) are unknown. Here, we have investigated the immune ecology of wild house mice-the same species as the laboratory mouse-as an example of a wild mammal, characterising their adaptive humoral, adaptive cellular, and innate immune state. Firstly, we show how immune variation is structured among mouse populations, finding that there can be extensive immune discordance among neighbouring populations. Secondly, we identify the principal factors that underlie the immunological differences among mice, showing that body condition promotes and age constrains individuals' immune state, while factors such as microparasite infection and season are comparatively unimportant. By applying a multifactorial analysis to an immune system-wide analysis, our results bring a new and unified understanding of the immunobiology of a wild mammal.
Collapse
Affiliation(s)
- Stephen Abolins
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Luke Lazarou
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Laura Weldon
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Louise Hughes
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Elizabeth C. King
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Paul Drescher
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Julius C. R. Hafalla
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eleanor M. Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Mark Viney
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Wanelik KM, Begon M, Birtles RJ, Bradley JE, Friberg IM, Jackson JA, Taylor CH, Thomason AG, Turner AK, Paterson S. A candidate tolerance gene identified in a natural population of field voles (Microtus agrestis). Mol Ecol 2018; 27:1044-1052. [PMID: 29290094 DOI: 10.1111/mec.14476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 01/27/2023]
Abstract
The animal immune response has hitherto been viewed primarily in the context of resistance only. However, individuals can also employ a tolerance strategy to maintain good health in the face of ongoing infection. To shed light on the genetic and physiological basis of tolerance, we use a natural population of field voles, Microtus agrestis, to search for an association between the expression of the transcription factor Gata3, previously identified as a marker of tolerance in this system, and polymorphism in 84 immune and nonimmune genes. Our results show clear evidence for an association between Gata3 expression and polymorphism in the Fcer1a gene, with the explanatory power of this polymorphism being comparable to that of other nongenetic variables previously identified as important predictors of Gata3 expression. We also uncover the possible mechanism behind this association using an existing protein-protein interaction network for the mouse model rodent, Mus musculus, which we validate using our own expression network for M. agrestis. Our results suggest that the polymorphism in question may be working at the transcriptional level, leading to changes in the expression of the Th2-related genes, Tyrosine-protein kinase BTK and Tyrosine-protein kinase TXK, and hence potentially altering the strength of the Th2 response, of which Gata3 is a mediator. We believe our work has implications for both treatment and control of infectious disease.
Collapse
Affiliation(s)
- Klara M Wanelik
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Michael Begon
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Richard J Birtles
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | | | - Ida M Friberg
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Joseph A Jackson
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | | | - Anna G Thomason
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Andrew K Turner
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Viney M, Riley EM. The Immunology of Wild Rodents: Current Status and Future Prospects. Front Immunol 2017; 8:1481. [PMID: 29184549 PMCID: PMC5694458 DOI: 10.3389/fimmu.2017.01481] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Wild animals' immune responses contribute to their evolutionary fitness. These responses are moulded by selection to be appropriate to the actual antigenic environment in which the animals live, but without imposing an excessive energetic demand which compromises other component of fitness. But, exactly what these responses are, and how they compare with those of laboratory animals, has been little studied. Here, we review the very small number of published studies of immune responses of wild rodents, finding general agreement that their humoral (antibody) responses are highly elevated when compared with those of laboratory animals, and that wild rodents' cellular immune system reveals extensive antigenic exposure. In contrast, proliferative and cytokine responses of ex vivo-stimulated immune cells of wild rodents are typically depressed compared with those of laboratory animals. Collectively, these responses are appropriate to wild animals' lives, because the elevated responses reflect the cumulative exposure to infection, while the depressed proliferative and cytokine responses are indicative of effective immune homeostasis that minimizes immunopathology. A more comprehensive understanding of the immune ecology of wild animals requires (i) understanding the antigenic load to which wild animals are exposed, and identification of any key antigens that mould the immune repertoire, (ii) identifying immunoregulatory processes of wild animals and the events that induce them, and (iii) understanding the actual resource state of wild animals, and the immunological consequences that flow from this. Together, by extending studies of wild rodents, particularly addressing these questions (while drawing on our immunological understanding of laboratory animals), we will be better able to understand how rodents' immune responses contribute to their fitness in the wild.
Collapse
Affiliation(s)
- Mark Viney
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Eleanor M. Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|