1
|
Gallay PA, Ramirez CM, Baum MM. Acute antagonism in three-drug combinations for vaginal HIV prevention in humanized mice. Sci Rep 2023; 13:4594. [PMID: 36944714 PMCID: PMC10030891 DOI: 10.1038/s41598-023-31695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
Adolescent girls and young women in low- to middle-income countries are disproportionately at risk of becoming HIV-1 infected. New non-vaccine biomedical products aimed at overcoming this global health challenge need to provide a range of safe, effective, and discreet dosage forms based on the delivery of one or more antiviral compounds. An overarching strategy involves vaginal drug administration through inserts/tablets, gels, films, and intravaginal rings. The approach derives its appeal from being women-controlled and topical, there-by potentially minimizing systemic exposure to the agents and their metabolites. Oral regimens based on tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) are established and effective in HIV-1 pre-exposure prophylaxis (PrEP), and form a promising basis for vaginal PrEP. Here, we used bone marrow/liver/thymus humanized mice to measure the in vivo efficacy against HIV-1 of single and combination antiviral compounds applied vaginally, coupled with data analysis using the Chou-Talalay mathematical model to study the dose-effect characteristics. Unexpectedly, strong antagonism was observed in drug combinations composed of TDF-FTC coupled with a third agent using a different mode of action against HIV-1. The antagonistic effect was remedied when TDF was omitted from the regimen. Our approach provides a translational template for the preclinical, rational, and systematic evaluation of drug combinations for the prevention of HIV-1, and other viral diseases.
Collapse
Affiliation(s)
- Philippe A Gallay
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Christina M Ramirez
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Marc M Baum
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA.
| |
Collapse
|
2
|
Lantz AM, Nicol MR. Translational Models to Predict Target Concentrations for Pre-Exposure Prophylaxis in Women. AIDS Res Hum Retroviruses 2022; 38:909-923. [PMID: 36097755 PMCID: PMC9805887 DOI: 10.1089/aid.2022.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The HIV epidemic remains a significant public health burden. Women represent half of the global HIV epidemic, yet there is an urgent need for a variety of prevention options to meet the needs of more women. Pre-exposure prophylaxis (PrEP) is a valuable prevention tool that uses antiretrovirals before a potential HIV exposure to prevent virus transmission. Development of effective preventive drug regimens for women is dependent on convenient dosing schedules and routes of administration, and on identifying defined target concentrations in mucosal tissues that provide complete protection against HIV transmission. There is a critical need for a translational model that can accurately predict in vivo target concentrations that are completely protective against HIV infection. There is no gold-standard preclinical model to predict PrEP efficacy. In this study, we review the strengths and limitations of three different preclinical models and their utility in predicting target concentrations in the female genital tract: humanized mice, non-human primates, and the ex vivo tissue model.
Collapse
Affiliation(s)
- Alyssa M. Lantz
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melanie R. Nicol
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Gunawardana M, Remedios-Chan M, Sanchez D, Webster S, Castonguay AE, Webster P, Buser C, Moss JA, Trinh M, Beliveau M, Hendrix CW, Marzinke MA, Tuck M, Caprioli RM, Reyzer ML, Kuo J, Gallay PA, Baum MM. Fundamental aspects of long-acting tenofovir alafenamide delivery from subdermal implants for HIV prophylaxis. Sci Rep 2022; 12:8224. [PMID: 35581262 PMCID: PMC9114338 DOI: 10.1038/s41598-022-11020-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/15/2022] [Indexed: 01/04/2023] Open
Abstract
Global efforts aimed at preventing human immunodeficiency virus type one (HIV-1) infection in vulnerable populations appear to be stalling, limiting our ability to control the epidemic. Long-acting, controlled drug administration from subdermal implants holds significant potential by reducing the compliance burden associated with frequent dosing. We, and others, are exploring the development of complementary subdermal implant technologies delivering the potent prodrug, tenofovir alafenamide (TAF). The current report addresses knowledge gaps in the preclinical pharmacology of long-acting, subdermal TAF delivery using several mouse models. Systemic drug disposition during TAF implant dosing was explained by a multi-compartment pharmacokinetic (PK) model. Imaging mass spectrometry was employed to characterize the spatial distribution of TAF and its principal five metabolites in local tissues surrounding the implant. Humanized mouse studies determined the effective TAF dose for preventing vaginal and rectal HIV-1 acquisition. Our results represent an important step in the development of a safe and effective TAF implant for HIV-1 prevention.
Collapse
Affiliation(s)
- Manjula Gunawardana
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Mariana Remedios-Chan
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Debbie Sanchez
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Simon Webster
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Amalia E Castonguay
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Paul Webster
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Christopher Buser
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - John A Moss
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - MyMy Trinh
- Certara Integrated Drug Development, 2000 Peel Street, Suite 570, Montreal, QC, Canada
| | - Martin Beliveau
- Certara Integrated Drug Development, 2000 Peel Street, Suite 570, Montreal, QC, Canada
| | - Craig W Hendrix
- Department of Medicine, Johns Hopkins University, 600 N. Wolfe Street, Baltimore, MD, USA
| | - Mark A Marzinke
- Department of Medicine, Johns Hopkins University, 600 N. Wolfe Street, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, 600 N. Wolfe Street/Carnegie 417, Baltimore, MD, USA
| | - Michael Tuck
- Department of Biochemistry, Vanderbilt University, 9160 MRB III, 465 21st Ave. South, Nashville, TN, USA
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, 9160 MRB III, 465 21st Ave. South, Nashville, TN, USA
| | - Michelle L Reyzer
- Department of Biochemistry, Vanderbilt University, 9160 MRB III, 465 21st Ave. South, Nashville, TN, USA
| | - Joseph Kuo
- Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Philippe A Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Marc M Baum
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA.
| |
Collapse
|
4
|
Rodríguez‐Izquierdo I, Sepúlveda‐Crespo D, Lasso JM, Resino S, Muñoz‐Fernández MÁ. Baseline and time-updated factors in preclinical development of anionic dendrimers as successful anti-HIV-1 vaginal microbicides. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1774. [PMID: 35018739 PMCID: PMC9285063 DOI: 10.1002/wnan.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Although a wide variety of topical microbicides provide promising in vitro and in vivo efficacy, most of them failed to prevent sexual transmission of human immunodeficiency virus type 1 (HIV-1) in human clinical trials. In vitro, ex vivo, and in vivo models must be optimized, considering the knowledge acquired from unsuccessful and successful clinical trials to improve the current gaps and the preclinical development protocols. To date, dendrimers are the only nanotool that has advanced to human clinical trials as topical microbicides to prevent HIV-1 transmission. This fact demonstrates the importance and the potential of these molecules as microbicides. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV-1 that disturb HIV-1 entry. Herein, the most significant advancements in topical microbicide development, trying to mimic the real-life conditions as closely as possible, are discussed. This review also provides the preclinical assays that anionic dendrimers have passed as microbicides because they can improve current antiviral treatments' efficacy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
| | - Daniel Sepúlveda‐Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | | | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | - Ma Ángeles Muñoz‐Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)MadridSpain
- Spanish HIV HGM BioBankMadridSpain
- Section of Immunology, Laboratorio InmunoBiología MolecularHospital General Universitario Gregorio Marañón (HGUGM)MadridSpain
| |
Collapse
|
5
|
Cazorla-Luna R, Ruiz-Caro R, Veiga MD, Malcolm RK, Lamprou DA. Recent advances in electrospun nanofiber vaginal formulations for women's sexual and reproductive health. Int J Pharm 2021; 607:121040. [PMID: 34450222 DOI: 10.1016/j.ijpharm.2021.121040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
Electrospinning is an innovative technique that allows production of nanofibers and microfibers by applying a high voltage to polymer solutions of melts. The properties of these fibers - which include high surface area, high drug loading capacity, and ability to be manufactured from mucoadhesive polymers - may be particularly useful in a myriad of drug delivery and tissue engineering applications. The last decade has witnessed a surge of interest in the application of electrospinning technology for the fabrication of vaginal drug delivery systems for the treatment and prevention of diseases associated with women's sexual and reproductive health, including sexually transmitted infections (e.g. infection with human immunodeficiency virus and herpes simplex virus) vaginitis, preterm birth, contraception, multipurpose prevention technology strategies, cervicovaginal cancer, and general maintenance of vaginal health. Due to their excellent mechanical properties, electrospun scaffolds are also being investigated as next-generation materials in the surgical treatment of pelvic organ prolapse. In this article, we review the latest advances in the field.
Collapse
Affiliation(s)
- Raúl Cazorla-Luna
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Roberto Ruiz-Caro
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María-Dolores Veiga
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
6
|
Nunes R, Bogas S, Faria MJ, Gonçalves H, Lúcio M, Viseu T, Sarmento B, das Neves J. Electrospun fibers for vaginal administration of tenofovir disoproxil fumarate and emtricitabine in the context of topical pre-exposure prophylaxis. J Control Release 2021; 334:453-462. [PMID: 33961916 DOI: 10.1016/j.jconrel.2021.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022]
Abstract
Women are particularly vulnerable to sexual HIV-1 transmission. Oral pre-exposure prophylaxis (PrEP) with tenofovir disoproxil fumarate and emtricitabine (TDF/FTC) is highly effective in avoiding new infections in men, but protection has only been shown to be moderate in women. Such differences have been associated, at least partially, to poor drug penetration of the lower female genital tract and the need for strict adherence to continuous daily oral intake of TDF/FTC. On-demand topical microbicide products could help circumvent these limitations. We developed electrospun fibers based on polycaprolactone (PCL fibers) or liposomes associated to poly(vinyl alcohol) (liposomes-in-PVA fibers) for the vaginal co-delivery of TDF and FTC, and assessed their pharmacokinetics in mice. PCL fibers and liposomes-in-PVA fibers were tested for morphological and physicochemical properties using scanning electron microscopy, differential scanning calorimetry and X-ray diffractometry. Fibers featured organoleptic and mechanical properties compatible with their suitable handling and vaginal administration. Fluorescent quenching of mucin in vitro - used as a proxy for mucoadhesion - was intense for PCL fibers, but mild for liposomes-in-PVA fibers. Both fibers were shown safe in vitro and able to rapidly release drug content (15-30 min) under sink conditions. Liposomes-in-PVA fibers allowed increasing genital drug concentrations after a single intravaginal administration when compared to continuous daily treatment for five days with 25-times higher oral doses. For instance, the levels of tenofovir and FTC in vaginal lavage were around 4- and 29-fold higher, respectively. PCL fibers were also superior to oral treatment, although to a minor extent (approximately 2-fold higher drug concentrations in lavage). Vaginal tissue drug levels were generally low for all treatments, while systemic drug exposure was negligible in the case of fibers. These data suggest that proposed fibers may provide an interesting alternative or an ancillary option to oral PrEP in women.
Collapse
Affiliation(s)
- Rute Nunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
| | - Sarah Bogas
- CF-UM-UP - Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, Braga, Portugal
| | - Maria João Faria
- CF-UM-UP - Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, Braga, Portugal
| | | | - Marlene Lúcio
- CF-UM-UP - Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, Braga, Portugal; CBMA - Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal.
| | - Teresa Viseu
- CF-UM-UP - Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, Braga, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
| | - José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal.
| |
Collapse
|
7
|
Gillgrass A, Wessels JM, Yang JX, Kaushic C. Advances in Humanized Mouse Models to Improve Understanding of HIV-1 Pathogenesis and Immune Responses. Front Immunol 2021; 11:617516. [PMID: 33746940 PMCID: PMC7973037 DOI: 10.3389/fimmu.2020.617516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Although antiretroviral therapy has transformed human immunodeficiency virus-type 1 (HIV-1) from a deadly infection into a chronic disease, it does not clear the viral reservoir, leaving HIV-1 as an uncurable infection. Currently, 1.2 million new HIV-1 infections occur globally each year, with little decrease over many years. Therefore, additional research is required to advance the current state of HIV management, find potential therapeutic strategies, and further understand the mechanisms of HIV pathogenesis and prevention strategies. Non-human primates (NHP) have been used extensively in HIV research and have provided critical advances within the field, but there are several issues that limit their use. Humanized mouse (Hu-mouse) models, or immunodeficient mice engrafted with human immune cells and/or tissues, provide a cost-effective and practical approach to create models for HIV research. Hu-mice closely parallel multiple aspects of human HIV infection and disease progression. Here, we highlight how innovations in Hu-mouse models have advanced HIV-1 research in the past decade. We discuss the effect of different background strains of mice, of modifications on the reconstitution of the immune cells, and the pros and cons of different human cells and/or tissue engraftment methods, on the ability to examine HIV-1 infection and immune response. Finally, we consider the newest advances in the Hu-mouse models and their potential to advance research in emerging areas of mucosal infections, understand the role of microbiota and the complex issues in HIV-TB co-infection. These innovations in Hu-mouse models hold the potential to significantly enhance mechanistic research to develop novel strategies for HIV prevention and therapeutics.
Collapse
Affiliation(s)
- Amy Gillgrass
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Jocelyn M. Wessels
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Jack X. Yang
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Relaño-Rodríguez I, Muñoz-Fernández MÁ. Emergence of Nanotechnology to Fight HIV Sexual Transmission: The Trip of G2-S16 Polyanionic Carbosilane Dendrimer to Possible Pre-Clinical Trials. Int J Mol Sci 2020; 21:ijms21249403. [PMID: 33321835 PMCID: PMC7764023 DOI: 10.3390/ijms21249403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Development of new, safe, and effective microbicides to prevent human immunodeficiency virus HIV sexual transmission is needed. Unfortunately, most microbicides proved ineffective to prevent the risk of HIV-infection in clinical trials. We are working with G2-S16 polyanionic carbosilane dendrimer (PCD) as a new possible vaginal topical microbicide, based on its short reaction times, wide availability, high reproducibility, and quantitative yields of reaction. G2-S16 PCD exerts anti-HIV activity at an early stage of viral replication, by blocking gp120/CD4/CCR5 interaction, and providing a barrier against infection for long periods of time. G2-S16 PCD was stable at different pH values, as well as in the presence of seminal fluids. It maintained the anti-HIV activity against R5/X4 HIV over time, did not generate any type of drug resistance, and retained the anti-HIV effect when exposed to semen-enhanced viral infection. Importantly, G2-S16 PCD did not modify vaginal microbiota neither in vitro or in vivo. Histopathological examination did not show vaginal irritation, inflammation, lesions, or damage in the vaginal mucosa, after administration of G2-S16 PCD at different concentrations and times in female mice and rabbit animal models. Based on these promising data, G2-S16 PCD could become a good, safe, and readily available candidate to use as a topical vaginal microbicide against HIV.
Collapse
Affiliation(s)
- Ignacio Relaño-Rodríguez
- Head Section of Immunology, Molecular Immunology Laboratory, General Universitary Hospital Gregorio Marañón, C/Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Maria Ángeles Muñoz-Fernández
- Head Section of Immunology, Molecular Immunology Laboratory, General Universitary Hospital Gregorio Marañón, C/Dr. Esquerdo 46, 28007 Madrid, Spain;
- Health Research Institute Gregorio Marañon (IiSGM), C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Dr. Esquerdo 46, 28007 Madrid, Spain
- Correspondence: or ; Tel.: +34-91-586-8565
| |
Collapse
|
9
|
Gunawardana M, Remedios-Chan M, Sanchez D, Webster S, Galvan P, Fanter R, Castonguay AE, Webster P, Moss JA, Kuo J, Gallay PA, Vincent KL, Motamedi M, Weinberger D, Marzinke MA, Hendrix CW, Baum MM. Multispecies Evaluation of a Long-Acting Tenofovir Alafenamide Subdermal Implant for HIV Prophylaxis. Front Pharmacol 2020; 11:569373. [PMID: 33536904 PMCID: PMC7849190 DOI: 10.3389/fphar.2020.569373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
New HIV-1 infection rates far outpace the targets set by global health organizations, despite important progress in curbing the progression of the epidemic. Long-acting (LA) formulations delivering antiretroviral (ARV) agents for HIV-1 pre-exposure prophylaxis (PrEP) hold significant promise, potentially facilitating adherence due to reduced dosing frequency compared to oral regimens. We have developed a subdermal implant delivering the potent ARV drug tenofovir alafenamide that could provide protection from HIV-1 infection for 6 months, or longer. Implants from the same lot were investigated in mice and sheep for local safety and pharmacokinetics (PKs). Ours is the first report using these animal models to evaluate subdermal implants for HIV-1 PrEP. The devices appeared safe, and the plasma PKs as well as the drug and metabolite concentrations in dermal tissue adjacent to the implants were studied and contrasted in two models spanning the extremes of the body weight spectrum. Drug and drug metabolite concentrations in dermal tissue are key in assessing local exposure and any toxicity related to the active agent. Based on our analysis, both animal models were shown to hold significant promise in LA product development.
Collapse
Affiliation(s)
- Manjula Gunawardana
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - Mariana Remedios-Chan
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - Debbie Sanchez
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - Simon Webster
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - Patricia Galvan
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - Rob Fanter
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - Amalia E. Castonguay
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - Paul Webster
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - John A. Moss
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - Joseph Kuo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Philippe A. Gallay
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Kathleen L. Vincent
- Center for Biomedical Engineering, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Massoud Motamedi
- Center for Biomedical Engineering, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | | | - Mark A. Marzinke
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Craig W. Hendrix
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Marc M. Baum
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| |
Collapse
|
10
|
Highly synergistic drug combination prevents vaginal HIV infection in humanized mice. Sci Rep 2020; 10:12995. [PMID: 32747682 PMCID: PMC7400648 DOI: 10.1038/s41598-020-69937-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 01/01/2023] Open
Abstract
The HIV-1 epidemic remains an urgent global health concern. Young women are disproportionately at risk of acquiring the virus. A range of highly effective, female-controlled, discrete vaginal products therefore is needed to help curb the epidemic. Oral tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) are effective in HIV-1 pre-exposure prophylaxis (PrEP) and form a promising basis for a vaginal product. Here, we evaluate TDF and FTC in combination with the broadly neutralizing antibody VRC01-N using a highly reproducible humanized mouse model. The agents were vaginally dosed individually and in combination, and the efficacy of HIV-1 prevention was analyzed using the established, rigorous median-effect model. Surprisingly, the triple combination showed a high degree of synergism, unprecedented for in vivo HIV-1 PrEP, leading to a possible fivefold dose reduction for some of the agents. Vaginal administration of the TDF-FTC-VRC01-N combination holds significant promise for HIV-1 PrEP.
Collapse
|
11
|
Agarwal Y, Beatty C, Biradar S, Castronova I, Ho S, Melody K, Bility MT. Moving beyond the mousetrap: current and emerging humanized mouse and rat models for investigating prevention and cure strategies against HIV infection and associated pathologies. Retrovirology 2020; 17:8. [PMID: 32276640 PMCID: PMC7149862 DOI: 10.1186/s12977-020-00515-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022] Open
Abstract
The development of safe and effective combination antiretroviral therapies for human immunodeficiency virus (HIV) infection over the past several decades has significantly reduced HIV-associated morbidity and mortality. Additionally, antiretroviral drugs have provided an effective means of protection against HIV transmission. Despite these advances, significant limitations exist; namely, the inability to eliminate HIV reservoirs, the inability to reverse lymphoid tissues damage, and the lack of an effective vaccine for preventing HIV transmission. Evaluation of the safety and efficacy of therapeutics and vaccines for eliminating HIV reservoirs and preventing HIV transmission requires robust in vivo models. Since HIV is a human-specific pathogen, that targets hematopoietic lineage cells and lymphoid tissues, in vivo animal models for HIV-host interactions require incorporation of human hematopoietic lineage cells and lymphoid tissues. In this review, we will discuss the construction of mouse models with human lymphoid tissues and/or hematopoietic lineage cells, termed, human immune system (HIS)-humanized mice. These HIS-humanized mouse models can support the development of functional human innate and adaptive immune cells, along with primary (thymus) and secondary (spleen) lymphoid tissues. We will discuss applications of HIS-humanized mouse models in evaluating the safety and efficacy of therapeutics against HIV reservoirs and associated immunopathology, and delineate the human immune response elicited by candidate HIV vaccines. In addition to focusing on how these HIS-humanized mouse models have already furthered our understanding of HIV and contributed to HIV therapeutics development, we discuss how emerging HIS-humanized rat models could address the limitations of HIS-mouse models.
Collapse
Affiliation(s)
- Yash Agarwal
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cole Beatty
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shivkumar Biradar
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Isabella Castronova
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sara Ho
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin Melody
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Moses Turkle Bility
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Bobardt M, Kuo J, Chatterji U, Wiedemann N, Vuagniaux G, Gallay P. The inhibitor of apoptosis proteins antagonist Debio 1143 promotes the PD-1 blockade-mediated HIV load reduction in blood and tissues of humanized mice. PLoS One 2020; 15:e0227715. [PMID: 31978106 PMCID: PMC6980394 DOI: 10.1371/journal.pone.0227715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
The immune checkpoint programmed cell death protein 1 (PD-1) plays a major role in T cell exhaustion in cancer and chronic HIV infection. The inhibitor of apoptosis protein antagonist Debio 1143 (D1143) enhances tumor cell death and synergizes with anti-PD-1 agents to promote tumor immunity and displayed HIV latency reversal activity in vitro. We asked in this study whether D1143 would stimulate the potency of an anti-human PD-1 monoclonal antibody (mAb) to reduce HIV loads in humanized mice. Anti-PD-1 mAb treatment decreased PD-1+ CD8+ cell population by 32.3% after interruption of four weeks treatment, and D1143 co-treatment further reduced it from 32.3 to 73%. Anti-PD-1 mAb administration reduced HIV load in blood by 94%, and addition of D1143 further enhanced this reduction from 94 to 97%. D1143 also more profoundly promoted with the anti-PD-1-mediated reduction of HIV loads in all tissues analyzed including spleen (71 to 96.4%), lymph nodes (64.3 to 80%), liver (64.2 to 94.4), lung (64.3 to 80.1%) and thymic organoid (78.2 to 98.2%), achieving a >5 log reduction of HIV loads in CD4+ cells isolated from tissues 2 weeks after drug treatment interruption. Ex vivo anti-CD3/CD28 stimulation increased the ability to activate exhausted CD8+ T cells in infected mice having received in vivo anti-PD-1 treatment by 7.9-fold (5 to 39.6%), and an additional increase by 1.7-fold upon D1143 co-treatment (39.6 to 67.3%). These findings demonstrate for the first time that an inhibitor of apoptosis protein antagonist enhances in a statistically manner the effects of an immune check point inhibitor on antiviral immunity and on HIV load reduction in tissues of humanized mice, suggesting that the combination of two distinct classes of immunomodulatory agents constitutes a promising anti-HIV immunotherapeutic approach.
Collapse
Affiliation(s)
- Michael Bobardt
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joseph Kuo
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Udayan Chatterji
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | | | | | - Philippe Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Curran M, Mairesse M, Matas-Céspedes A, Bareham B, Pellegrini G, Liaunardy A, Powell E, Sargeant R, Cuomo E, Stebbings R, Betts CJ, Saeb-Parsy K. Recent Advancements and Applications of Human Immune System Mice in Preclinical Immuno-Oncology. Toxicol Pathol 2019; 48:302-316. [PMID: 31847725 DOI: 10.1177/0192623319886304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significant advances in immunotherapies have resulted in the increasing need of predictive preclinical models to improve immunotherapeutic drug development, treatment combination, and to prevent or minimize toxicity in clinical trials. Immunodeficient mice reconstituted with human immune system (HIS), termed humanized mice or HIS mice, permit detailed analysis of human immune biology, development, and function. Although this model constitutes a great translational model, some aspects need to be improved as the incomplete engraftment of immune cells, graft versus host disease and the lack of human cytokines and growth factors. In this review, we discuss current HIS platforms, their pathology, and recent advances in their development to improve the quality of human immune cell reconstitution. We also highlight new technologies that can be used to better understand these models and how improved characterization is needed for their application in immuno-oncology safety, efficacy, and new modalities therapy development.
Collapse
Affiliation(s)
- Michelle Curran
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Maelle Mairesse
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alba Matas-Céspedes
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Bethany Bareham
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Giovanni Pellegrini
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ardi Liaunardy
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Edward Powell
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Rebecca Sargeant
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Emanuela Cuomo
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Richard Stebbings
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Catherine J Betts
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
14
|
Bobardt M, Kuo J, Chatterji U, Chanda S, Little SJ, Wiedemann N, Vuagniaux G, Gallay PA. The inhibitor apoptosis protein antagonist Debio 1143 Is an attractive HIV-1 latency reversal candidate. PLoS One 2019; 14:e0211746. [PMID: 30716099 PMCID: PMC6361451 DOI: 10.1371/journal.pone.0211746] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 01/08/2023] Open
Abstract
Antiretroviral therapy (ART) suppresses HIV replication, but does not cure the infection because replication-competent virus persists within latently infected CD4+ T cells throughout years of therapy. These reservoirs contain integrated HIV-1 genomes and can resupply active virus. Thus, the development of strategies to eliminate the reservoir of latently infected cells is a research priority of global significance. In this study, we tested efficacy of a new inhibitor of apoptosis protein antagonist (IAPa) called Debio 1143 at reversing HIV latency and investigated its mechanisms of action. Debio 1143 activates HIV transcription via NF-kB signaling by degrading the ubiquitin ligase baculoviral IAP repeat-containing 2 (BIRC2), a repressor of the non-canonical NF-kB pathway. Debio 1143-induced BIRC2 degradation results in the accumulation of NF-κB-inducing kinase (NIK) and proteolytic cleavage of p100 into p52, leading to nuclear translocation of p52 and RELB. Debio 1143 greatly enhances the binding of RELB to the HIV-1 LTR. These data indicate that Debio 1143 activates the non-canonical NF-kB signaling pathway by promoting the binding of RELB:p52 complexes to the HIV-1 LTR, resulting in the activation of the LTR-dependent HIV-1 transcription. Importantly, Debio 1143 reverses viral latency in HIV-1 latent T cell lines. Using knockdown (siRNA BIRC2), knockout (CRIPSR NIK) and proteasome machinery neutralization (MG132) approaches, we found that Debio 1143-mediated HIV latency reversal is BIRC2 degradation- and NIK stabilization-dependent. Debio 1143 also reverses HIV-1 latency in resting CD4+ T cells derived from ART-treated patients or HIV-1-infected humanized mice under ART. Interestingly, daily oral administration of Debio 1143 in cancer patients at well-tolerated doses elicited BIRC2 target engagement in PBMCs and induced a moderate increase in cytokines and chemokines mechanistically related to NF-kB signaling. In conclusion, we provide strong evidences that the IAPa Debio 1143, by initially activating the non-canonical NF-kB signaling and subsequently reactivating HIV-1 transcription, represents a new attractive viral latency reversal agent (LRA).
Collapse
Affiliation(s)
- Michael Bobardt
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joseph Kuo
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Udayan Chatterji
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sumit Chanda
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States of America
| | - Susan J. Little
- Department of Medicine, University of California, San Diego, California, United States of America
| | | | | | - Philippe A. Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Hendrix CW. HIV Antiretroviral Pre-Exposure Prophylaxis: Development Challenges and Pipeline Promise. Clin Pharmacol Ther 2018; 104:1082-1097. [PMID: 30199098 PMCID: PMC6925668 DOI: 10.1002/cpt.1227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022]
Abstract
The US Food and Drug Administration (FDA) approved oral daily tenofovir/emtricitabine (Truvada) for pre-exposure prophylaxis of human immunodeficiency virus (HIV) infection in 2012 on the basis of two randomized controlled trials (RCTs), one in men who have sex with men (MSM) and another in HIV serodiscordant heterosexual couples. Subsequently, even greater efficacy has been demonstrated in MSM with rapid population-level incidence reductions in some locations. In contrast, studies of antiretroviral pre-exposure prophylaxis (PrEP) in heterosexual women showed only modest or no efficacy, largely attributed to low adherence. The mixed results of antiretroviral-based PrEP bear witness to unique drug development challenges at this complicated intersection of sexual behavior, public health, and drug development. Multiple innovative methods and formulation strategies followed to address unmet medical needs of persons struggling with daily oral PrEP adherence or preference for nonsystemic PrEP options. Clinical pharmacology plays essential roles throughout this PrEP development process, especially in early product development and through pharmacologically informed enhancement and interpretation of clinical trials.
Collapse
Affiliation(s)
- Craig W Hendrix
- 1Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Nunes R, Araújo F, Barreiros L, Bártolo I, Segundo MA, Taveira N, Sarmento B, das Neves J. Noncovalent PEG Coating of Nanoparticle Drug Carriers Improves the Local Pharmacokinetics of Rectal Anti-HIV Microbicides. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34942-34953. [PMID: 30234288 DOI: 10.1021/acsami.8b12214] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Antiretroviral drug nanocarriers hold great promise for developing anti-human immunodeficiency virus (HIV) rectal microbicides. However, challenges remain, namely, concerning which properties are more suited for enhancing colorectal distribution and retention of microbicide compounds. In this work, we developed and assessed the in vitro and in vivo performance of poly(lactic- co-glycolic acid) (PLGA)-based nanoparticles (NPs) as carriers for the model drug efavirenz (EFV). We particularly focused on the effect of noncovalent poly(ethylene glycol) coating of PLGA NPs (PEG-PLGA NPs) conferring a mucus-diffusive behavior on the pharmacokinetics (PK) of EFV following rectal administration to mice. Drug-loaded PLGA NPs and PEG-PLGA NPs (200-225 nm) were obtained by nanoprecipitation. Both types of systems were able to retain native antiretroviral activity of EFV in vitro, while featuring lower cytotoxicity against different epithelial cell lines and HIV target cells. Also, PLGA NPs and PEG-PLGA NPs were readily taken up by colorectal cell lines and mildly reduced EFV permeation while increasing membrane retention in Caco-2 and Caco-2/HT29-MTX cell monolayer models. When administered intrarectally to CD-1 mice in phosphate-buffered saline (pH 7.4), EFV-loaded PEG-PLGA NPs consistently provided higher drug levels in colorectal tissues and lavages, as compared to free EFV or drug-loaded PLGA NPs. Mean values for the area-under-the-curve between 15 min and 12 h following administration were particularly higher for PEG-PLGA NPs in distal and middle colorectal tissues, with relative bioavailability values of 3.7 and 29, respectively, as compared to free EFV (2.2 and 6.0 over PLGA NPs, respectively). Systemic exposure to EFV was reduced for all treatments. NPs were further shown safe after once-daily administration for 14 days, as assessed by histological analysis of colorectal tissues and chemokine/cytokine assay of rectal lavages. Overall, PEG-PLGA NPs demonstrated to be safe carriers for rectal microbicide drug delivery and able to provide enhanced local PK that could be valuable in preventing rectal HIV transmission.
Collapse
Affiliation(s)
- Rute Nunes
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , Gandra 4585-116 , Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar Universidade do Porto, Porto 4050-313 , Portugal
| | | | - Luisa Barreiros
- LAQV, REQUIMTE, Departamento de Ciências Quı́micas, Faculdade de Farmácia , Universidade do Porto , Porto 4050-313 , Portugal
| | - Inês Bártolo
- HIV Evolution, Epidemiology and Prevention, Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia , Universidade de Lisboa , Lisboa 1649-003 , Portugal
| | - Marcela A Segundo
- LAQV, REQUIMTE, Departamento de Ciências Quı́micas, Faculdade de Farmácia , Universidade do Porto , Porto 4050-313 , Portugal
| | - Nuno Taveira
- HIV Evolution, Epidemiology and Prevention, Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia , Universidade de Lisboa , Lisboa 1649-003 , Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM) , Instituto Universitário Egas Moniz , Monte de Caparica 2829-511 , Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , Gandra 4585-116 , Portugal
| | - José das Neves
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , Gandra 4585-116 , Portugal
| |
Collapse
|
17
|
Cautela MP, Moshe H, Sosnik A, Sarmento B, das Neves J. Composite films for vaginal delivery of tenofovir disoproxil fumarate and emtricitabine. Eur J Pharm Biopharm 2018; 138:3-10. [PMID: 29408341 DOI: 10.1016/j.ejpb.2018.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/18/2018] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
Prevention of male-to-female HIV transmission remains a huge challenge and topical pre-exposure prophylaxis (PrEP) using microbicides may help overcoming the problem. In this work, different types of films containing the antiretroviral drugs tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) were developed. Formulations based in poly(vinyl alcohol) and pectin were produced as single- or double-layered films. Films containing TDF/FTC or TDF/FTC-loaded Eudragit® L 100 nanoparticles (NPs) obtained by nano spray-drying were tested for physicochemical, technological and biological properties relevant to microbicide development. All systems featured organoleptic and mechanical properties considered suitable for vaginal use and potentially favoring users' acceptability. Film design (single- or double-layered, and the incorporation or not of NPs) had a greater impact on disintegration time and drug release in a simulated vaginal fluid. Upon film disintegration, pH and osmolality of the fluid remained within values considered compatible with the vaginal environment. Double-layered films significantly reduced burst effect and the overall release of both drugs as compared to fast releasing, single-layered films. The effect on delaying drug release was most noticeable when TDF/FTC-loaded NPs were incorporated into double-layered films. This last design seems particularly advantageous for the development of a coitus-independent, on-demand microbicide product. Moreover, all film types were shown potentially safe when evaluated by the MTT metabolic activity and lactate dehydrogenase release assays using HeLa and CaSki cervical cell lines. Overall, results support that proposed films may be suitable for the vaginal delivery of TDF/FTC in the context of topical PrEP.
Collapse
Affiliation(s)
- Mafalda Pereira Cautela
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Hen Moshe
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| | - José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|