1
|
Krebs N, Tebben J, Bock C, Mark FC, Lucassen M, Lannig G, Pörtner HO. Protein Synthesis Determined from Non-Radioactive Phenylalanine Incorporated by Antarctic Fish. Metabolites 2023; 13:metabo13030338. [PMID: 36984778 PMCID: PMC10051348 DOI: 10.3390/metabo13030338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Direct measurements of temperature-dependent weight gains are experimentally challenging and time-consuming in long-lived/slow-growing organisms such as Antarctic fish. Here, we reassess methodology to quantify the in vivo protein synthesis rate from amino acids, as a key component of growth. We tested whether it is possible to avoid hazardous radioactive materials and whether the analytical pathway chosen is robust against analytical errors. In the eelpout, Pachycara brachycephalum, 13C9H1115N1O2 phenylalanine was injected intraperitoneally and muscle tissue was sampled before injection and at 1.5 h time intervals up to 6 h thereafter. The incorporation of 13C15N-labeled-phenylalanine into muscle was monitored by quantification of bound and free phenylalanine through liquid chromatography–mass spectrometry. We found an increase in the pool of labeled, free phenylalanine in the cytosolic fraction that leveled off after 4.5 h. The labeled phenylalanine bound in the proteins increased linearly over time. The resulting protein synthesis rate (Ks) for P. brachycephalum was as low as 0.049 ± 0.021% day−1. This value and its variability were in good agreement with literature data obtained from studies using radioactive labels, indicating that this methodology is well suited for characterizing growth in polar fish under in situ conditions in remote areas or on research vessels.
Collapse
Affiliation(s)
- Nina Krebs
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Correspondence: (N.K.); (H.-O.P.)
| | - Jan Tebben
- Department of Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Christian Bock
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Felix C. Mark
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Magnus Lucassen
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Gisela Lannig
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Hans-Otto Pörtner
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Correspondence: (N.K.); (H.-O.P.)
| |
Collapse
|
2
|
Olesen AT, Malchow-Møller L, Bendixen RD, Kjær M, Mackey AL, Magnusson SP, Svensson RB. Intramuscular connective tissue content and mechanical properties: Influence of aging and physical activity in mice. Exp Gerontol 2022; 166:111893. [PMID: 35870752 DOI: 10.1016/j.exger.2022.111893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 11/25/2022]
Abstract
Aging is accompanied by morphological and mechanical changes to the intramuscular connective tissue (IMCT) of skeletal muscles, but whether physical exercise can influence these changes is debated. We investigated the effects of aging and exercise with high or low resistance on composition and mechanical properties of the IMCT, including direct measurements on isolated IMCT which has rarely been reported. Middle-aged (11 months, n = 24) and old (22 months, n = 18) C57BL/6 mice completed either high (HR) or low (LR) resistance voluntary wheel running or were sedentary (SED) for 10 weeks. Passive mechanical properties of the intact soleus and plantaris muscles and the isolated IMCT of the plantaris muscle were measured in vitro. IMCT thickness was measured on picrosirius red stained cross sections of the gastrocnemius and soleus muscle and for the gastrocnemius hydroxyproline content was quantified biochemically and advanced glycation end-products (AGEs) estimated by fluorometry. Mechanical stiffness, IMCT content and total AGEs were all elevated with aging in agreement with previous findings but were largely unaffected by training. Conclusion: IMCT accumulated with aging with a proportional increase in mechanical stiffness, but even the relatively high exercise volume achieved with voluntary wheel-running with or without resistance did not significantly influence these changes.
Collapse
Affiliation(s)
- Annesofie T Olesen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Lasse Malchow-Møller
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Rune D Bendixen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Michael Kjær
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Denmark; XLab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - S Peter Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Denmark; Department of Physical and Occupational Therapy, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark
| | - Rene B Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
3
|
Choi H, Simpson D, Wang D, Prescott M, Pitsillides AA, Dudhia J, Clegg PD, Ping P, Thorpe CT. Heterogeneity of proteome dynamics between connective tissue phases of adult tendon. eLife 2020; 9:e55262. [PMID: 32393437 PMCID: PMC7217697 DOI: 10.7554/elife.55262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/16/2020] [Indexed: 12/29/2022] Open
Abstract
Maintenance of connective tissue integrity is fundamental to sustain function, requiring protein turnover to repair damaged tissue. However, connective tissue proteome dynamics remain largely undefined, as do differences in turnover rates of individual proteins in the collagen and glycoprotein phases of connective tissue extracellular matrix (ECM). Here, we investigate proteome dynamics in the collagen and glycoprotein phases of connective tissues by exploiting the spatially distinct fascicular (collagen-rich) and interfascicular (glycoprotein-rich) ECM phases of tendon. Using isotope labelling, mass spectrometry and bioinformatics, we calculate turnover rates of individual proteins within rat Achilles tendon and its ECM phases. Our results demonstrate complex proteome dynamics in tendon, with ~1000 fold differences in protein turnover rates, and overall faster protein turnover within the glycoprotein-rich interfascicular matrix compared to the collagen-rich fascicular matrix. These data provide insights into the complexity of proteome dynamics in tendon, likely required to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Howard Choi
- Department of Physiology and Medicine, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Deborah Simpson
- Centre for Proteome Research, Biosciences Building, Institute of Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Ding Wang
- Department of Physiology and Medicine, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Mark Prescott
- Centre for Proteome Research, Biosciences Building, Institute of Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Andrew A Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary CollegeLondonUnited Kingdom
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, Royal Veterinary CollegeHatfieldUnited Kingdom
| | - Peter D Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of LiverpoolLiverpoolUnited Kingdom
| | - Peipei Ping
- Department of Physiology and Medicine, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Chavaunne T Thorpe
- Department of Comparative Biomedical Sciences, Royal Veterinary CollegeLondonUnited Kingdom
| |
Collapse
|
4
|
Noah AC, Li TM, Martinez LM, Wada S, Swanson JB, Disser NP, Sugg KB, Rodeo SA, Lu TT, Mendias CL. Adaptive and innate immune cell responses in tendons and lymph nodes after tendon injury and repair. J Appl Physiol (1985) 2020; 128:473-482. [PMID: 31944888 DOI: 10.1152/japplphysiol.00682.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tendon injuries are a common clinical condition with limited treatment options. The cellular components of the innate immune system, such as neutrophils and macrophages, have been studied in tendon injuries. However, the adaptive immune system, comprising specialized lymphocytes, plays an important role in orchestrating the healing of numerous tissues, but less is known about these cells in tendon healing. To gain a greater understanding of the biological processes that regulate tendon healing, we determined how the cellular components of the adaptive and innate immune system respond to a tendon injury using two-month-old male mice. We observed that lymphatic vasculature is present in the epitenon and superficial regions of Achilles tendons, and that the lymphatics drain into the popliteal lymph node. We then created an acute Achilles tenotomy followed by repair, and collected tendons and popliteal lymph nodes 1, 2, and 4 wk after injury. Tendon injury resulted in a robust adaptive immune cell response that followed an initial innate immune cell response in tendons and lymph nodes. Monocytes, neutrophils, and macrophages initially accumulated at 1 wk after injury in tendons, while dendritic cells and CD4+ T cells peaked at 2 wk after injury. B cells and CD8+ T cells progressively increased over time. In parallel, immune cells of the popliteal lymph node demonstrated a similarly coordinated response to the injury. These results suggest that there is an adaptive immune response to tendon injury, and adaptive immune cells may play a role in regulating tendon healing.NEW & NOTEWORTHY While the innate immune system, consisting of macrophages and related hematopoietic cells, has been studied in tendon injury, less is known about the adaptive immune system. Using a mouse model of Achilles tendon tenotomy and repair, we observed an adaptive immune cell response, consisting of CD4+ and CD8+ T cells, and B cells, which occur through 4 wk after tendon injury. This response appeared to be coordinated by the draining popliteal lymph node.
Collapse
Affiliation(s)
| | - Thomas M Li
- Hospital for Special Surgery, New York, New York
| | | | - Susumu Wada
- Hospital for Special Surgery, New York, New York
| | | | | | - Kristoffer B Sugg
- Section of Plastic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Scott A Rodeo
- Hospital for Special Surgery, New York, New York.,Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, New York
| | - Theresa T Lu
- Hospital for Special Surgery, New York, New York.,Department of Microbiology & Immunology, Weill Cornell Medical College, New York, New York
| | - Christopher L Mendias
- Hospital for Special Surgery, New York, New York.,Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, New York.,Department of Physiology & Biophysics, Weill Cornell Medical College, New York, New York
| |
Collapse
|
5
|
Holm L, Dideriksen K, Nielsen RH, Doessing S, Bechshoeft RL, Højfeldt G, Moberg M, Blomstrand E, Reitelseder S, van Hall G. An exploration of the methods to determine the protein-specific synthesis and breakdown rates in vivo in humans. Physiol Rep 2019; 7:e14143. [PMID: 31496135 PMCID: PMC6732504 DOI: 10.14814/phy2.14143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/02/2023] Open
Abstract
The present study explores the methods to determine human in vivo protein-specific myofibrillar and collagenous connective tissue protein fractional synthesis and breakdown rates. We found that in human myofibrillar proteins, the protein-bound tracer disappearance method to determine the protein fractional breakdown rate (FBR) (via 2 H2 O ingestion, endogenous labeling of 2 H-alanine that is incorporated into proteins, and FBR quantified by its disappearance from these proteins) has a comparable intrasubject reproducibility (range: 0.09-53.5%) as the established direct-essential amino acid, here L-ring-13 C6 -phenylalanine, incorporation method to determine the muscle protein fractional synthesis rate (FSR) (range: 2.8-56.2%). Further, the determination of the protein breakdown in a protein structure with complex post-translational processing and maturation, exemplified by human tendon tissue, was not achieved in this experimentation, but more investigation is encouraged to reveal the possibility. Finally, we found that muscle protein FBR measured with an essential amino acid tracer prelabeling is inappropriate presumably because of significant and prolonged intracellular recycling, which also may become a significant limitation for determination of the myofibrillar FSR when repeated infusion trials are completed in the same participants.
Collapse
Affiliation(s)
- Lars Holm
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Kasper Dideriksen
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
| | - Rie H. Nielsen
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
| | - Simon Doessing
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
| | - Rasmus L. Bechshoeft
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Grith Højfeldt
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
| | - Marcus Moberg
- Aastrand LaboratorySwedish School of Sport and Health SciencesStockholmSweden
| | - Eva Blomstrand
- Aastrand LaboratorySwedish School of Sport and Health SciencesStockholmSweden
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Søren Reitelseder
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
| | - Gerrit van Hall
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Clinical Metabolomics Core FacilityDepartment of Clinical Biochemistry, RigshospitaletCopenhagenDenmark
| |
Collapse
|
6
|
Magnusson SP, Kjaer M. The impact of loading, unloading, ageing and injury on the human tendon. J Physiol 2018; 597:1283-1298. [PMID: 29920664 DOI: 10.1113/jp275450] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
A tendon transfers force from the contracting muscle to the skeletal system to produce movement and is therefore a crucial component of the entire muscle-tendon complex and its function. However, tendon research has for some time focused on mechanical properties without any major appreciation of potential cellular and molecular changes. At the same time, methodological developments have permitted determination of the mechanical properties of human tendons in vivo, which was previously not possible. Here we review the current understanding of how tendons respond to loading, unloading, ageing and injury from cellular, molecular and mechanical points of view. A mechanistic understanding of tendon tissue adaptation will be vital for development of adequate guidelines in physical training and rehabilitation, as well as for optimal injury treatment.
Collapse
Affiliation(s)
- S Peter Magnusson
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, NV.,Department of Physical and Occupational Therapy Bispebjerg Hospital, Copenhagen, NV.,Center for Healthy Aging, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, NV.,Center for Healthy Aging, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
7
|
Monahan FJ, Schmidt O, Moloney AP. Meat provenance: Authentication of geographical origin and dietary background of meat. Meat Sci 2018; 144:2-14. [PMID: 29859716 DOI: 10.1016/j.meatsci.2018.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023]
Abstract
The authenticity of meat is now an important consideration in the multi-step food chain from production of animals on farm to consumer consumption of the final meat product. A range of techniques, involving analysis of elemental and molecular constituents of meat, fingerprint profiling and multivariate statistical analysis exists and these techniques are evolving in the quest to provide robust methods of establishing the dietary background of animals and the geographical origin of the meat derived from them. The potential application to meat authentication of techniques such as stable isotope ratio analysis applied to different animal tissues, measurement in meat of compounds directly derived from the diet of animals, such as fatty acids and fat soluble vitamins, and spectroscopy is explored. Challenges pertaining to the interpretation of data, as they relate to assignment of dietary background or geographical origin, are discussed.
Collapse
Affiliation(s)
- Frank J Monahan
- University College Dublin, School of Agriculture and Food Science, Dublin 4, Ireland.
| | - Olaf Schmidt
- University College Dublin, School of Agriculture and Food Science, Dublin 4, Ireland.
| | - Aidan P Moloney
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Co. Meath, Ireland.
| |
Collapse
|