1
|
Khbouz B, Musumeci L, Grahammer F, Jouret F. The Dual-specificity Phosphatase 3 (DUSP3): A Potential Target Against Renal Ischemia/Reperfusion Injury. Transplantation 2024; 108:2166-2173. [PMID: 39466786 DOI: 10.1097/tp.0000000000005009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Renal ischemia/reperfusion (I/R) injury is a common clinical challenge faced by clinicians in kidney transplantation. I/R is the leading cause of acute kidney injury, and it occurs when blood flow to the kidney is interrupted and subsequently restored. I/R impairs renal function in both short and long terms. Renal ischemic preconditioning refers to all maneuvers intended to prevent or attenuate ischemic damage. In this context, the present review focuses on the dual-specificity phosphatase 3 (DUSP3), also known as vaccinia H1-related phosphatase, an uncommon regulator of mitogen-activated protein kinase (MAPK) phosphorylation. DUSP3 has different biological functions: (1) it acts as a tumor modulator and (2) it is involved in the regulation of immune response, thrombosis, hemostasis, angiogenesis, and genomic stability. These functions occur either through MAPK-dependent or MAPK-independent mechanisms. DUSP3 genetic deletion dampens kidney damage and inflammation caused by I/R in mice, suggesting DUSP3 as a potential target for preventing renal I/R injury. Here, we discuss the putative role of DUSP3 in ischemic preconditioning and the potential mechanisms of such an attenuated inflammatory response via improved kidney perfusion and adequate innate immune response.
Collapse
Affiliation(s)
- Badr Khbouz
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège (ULiège), Liège, Belgium
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine (Nephrology, Rheumatology, Endocrinology), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lucia Musumeci
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège (ULiège), Liège, Belgium
- Department of Cardiovascular Surgery, CHU of Liège, Liège, Belgium
| | - Florian Grahammer
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine (Nephrology, Rheumatology, Endocrinology), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - François Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège (ULiège), Liège, Belgium
- Division of Nephrology, CHU of Liège, University of Liège (CHU ULiège), Liège, Belgium
| |
Collapse
|
2
|
Patysheva MR, Prostakishina EA, Budnitskaya AA, Bragina OD, Kzhyshkowska JG. Dual-Specificity Phosphatases in Regulation of Tumor-Associated Macrophage Activity. Int J Mol Sci 2023; 24:17542. [PMID: 38139370 PMCID: PMC10743672 DOI: 10.3390/ijms242417542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The regulation of protein kinases by dephosphorylation is a key mechanism that defines the activity of immune cells. A balanced process of the phosphorylation/dephosphorylation of key protein kinases by dual-specificity phosphatases is required for the realization of the antitumor immune response. The family of dual-specificity phosphatases is represented by several isoforms found in both resting and activated macrophages. The main substrate of dual-specificity phosphatases are three components of mitogen-activated kinase signaling cascades: the extracellular signal-regulated kinase ERK1/2, p38, and Janus kinase family. The results of the study of model tumor-associated macrophages supported the assumption of the crucial role of dual-specificity phosphatases in the formation and determination of the outcome of the immune response against tumor cells through the selective suppression of mitogen-activated kinase signaling cascades. Since mitogen-activated kinases mostly activate the production of pro-inflammatory mediators and the antitumor function of macrophages, the excess activity of dual-specificity phosphatases suppresses the ability of tumor-associated macrophages to activate the antitumor immune response. Nowadays, the fundamental research in tumor immunology is focused on the search for novel molecular targets to activate the antitumor immune response. However, to date, dual-specificity phosphatases received limited discussion as key targets of the immune system to activate the antitumor immune response. This review discusses the importance of dual-specificity phosphatases as key regulators of the tumor-associated macrophage function.
Collapse
Affiliation(s)
- Marina R. Patysheva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Elizaveta A. Prostakishina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Arina A. Budnitskaya
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
| | - Olga D. Bragina
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Julia G. Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Mannheim Institute of Innate Immunosciences (MI3), University of Heidelberg, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 69117 Mannheim, Germany
| |
Collapse
|
3
|
Macri M, Luigi-Sierra MG, Guan D, Delgado JV, Alvarez JF, Amills M, Martínez AM. Univariate and multivariate genome-wide association studies for hematological traits in Murciano-Granadina goats. Anim Genet 2023. [PMID: 37127297 DOI: 10.1111/age.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Hematological traits are important indicators of health status, and they are frequently used as criteria for clinical diagnosis. In humans, the genomic architecture of blood traits has been investigated in depth and thousands of associations with genetic variants have been found. In contrast, the association between marker genotypes and the variation of hematological traits has not been investigated in goats yet. Herewith, we have recorded 12 hematological parameters in 882 Murciano-Granadina goats that were also genotyped with the Goat SNP50 BeadChip (Illumina). Performance of a univariate genome-wide association study (GWAS) made it possible to detect one genomic region on goat chromosome (CHI) 21 (19.2-19.5 Mb) associated, at the genome-wide level of significance, with 4 red blood cell traits. The three markers displaying the highest significances were rs268272996 (CHI21: 19225290 bp), rs268273004 (CHI21: 19565629 bp) and rs268239059 (CHI13: 9615190 bp). Consistently, a multivariate GWAS indicated that the rs268273004 marker on chromosome 21 is associated with seven blood cell traits. Interestingly, this marker maps close to the FA Complementation Group I (FANCI) gene (CHI21: 20021947-20077025 bp), which is functionally related to Fanconi anemia, a syndrome characterized by bone marrow failure, aplastic anemia, and congenital disorders. We have also uncovered additional chromosome-wide significant associations between genetic markers and erythrocyte and leukocyte traits in the univariate GWAS. These findings evidence that the phenotypic variation of hematological traits in goats is regulated, at least to some extent, by polygenic determinants distributed in multiple chromosomes.
Collapse
Affiliation(s)
- Martina Macri
- Animal Breeding Consulting S.L. Parque Científico Tecnológico de Córdoba, Córdoba, Spain
- Departamento de Genética, Universidad de Córdoba, Campus Universitario de Rabanales, Córdoba, Spain
| | - Maria Gracia Luigi-Sierra
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Juan Vicente Delgado
- Departamento de Genética, Universidad de Córdoba, Campus Universitario de Rabanales, Córdoba, Spain
| | - Javier Fernández Alvarez
- Asociación Nacional de Criadores de Caprino de Raza Murciano-Granadina (CAPRIGRAN), Granada, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Amparo Martínez Martínez
- Departamento de Genética, Universidad de Córdoba, Campus Universitario de Rabanales, Córdoba, Spain
| |
Collapse
|
4
|
Zhang Y, Bao J, Gong X, Shi W, Liu T, Wang X. Transcriptomics and metabolomics revealed the molecular mechanism of the toxic effect of mancozeb on liver of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114003. [PMID: 36007320 DOI: 10.1016/j.ecoenv.2022.114003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Mancozeb (MCZ), a broad-spectrum fungicide, has been widely used in crops (tomatoes and potatoes) in the past few decades, resulting in its bioaccumulation in the food web. However, the mechanism of MCZ on liver injury has not been reported yet. This study combined transcriptomics and metabolomics to explore the potential mechanism of MCZ on liver injury. MCZ group was given 100 mg/kg MCZ every day, and the C group was given 0.2 mL of deionized water every day. One hundred mg/kg MCZ led to unclear hepatocyte structure and hemorrhagic inflammatory cell infiltration. Transcriptomics and metabolomics analyses showed that the MCZ group resulted in 326 differentially expressed genes (DEGs) and 179 differential metabolites. Joint analysis showed that DEGs and differential metabolites were mainly enriched in the adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway. We found that MCZ could increase the content of reactive oxygen species (ROS) and reduce the activities of superoxide dismutase (SOD) and catalase (CAT). The contents of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) in the liver decreased significantly, and the state of DNA methylation was significantly higher than the control (C) group (p < 0.05). Our results suggest that AMPK and mitogen‑activated protein kinase (MAPK) signaling pathways play an important role in MCZ-induced liver injury and are the key mechanisms for understanding the hepatotoxicity of MCZ.
Collapse
Affiliation(s)
- Yan Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Jialu Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xincheng Gong
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Veterinary Biological Technology Innovation Center of Hebei Province, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Veterinary Biological Technology Innovation Center of Hebei Province, Baoding 071001, China
| | - Tao Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Veterinary Biological Technology Innovation Center of Hebei Province, Baoding 071001, China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Veterinary Biological Technology Innovation Center of Hebei Province, Baoding 071001, China.
| |
Collapse
|
5
|
Wu WR, Shi XD, Zhang FP, Zhu K, Zhang R, Yu XH, Qin YF, He SP, Fu HW, Zhang L, Zeng H, Zhu MS, Xu LB, Wong PP, Liu C. Activation of the Notch1-c-myc-VCAM1 signalling axis initiates liver progenitor cell-driven hepatocarcinogenesis and pulmonary metastasis. Oncogene 2022; 41:2340-2356. [DOI: 10.1038/s41388-022-02246-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
|
6
|
Wei C, Chen M, Deng W, Bie L, Ma Y, Zhang C, Liu K, Shen W, Wang S, Yang C, Luo S, Li N. Characterization of gastric cancer stem-like molecular features, immune and pharmacogenomic landscapes. Brief Bioinform 2021; 23:6375060. [PMID: 34571533 DOI: 10.1093/bib/bbab386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells (CSCs) actively reprogram their tumor microenvironment (TME) to sustain a supportive niche, which may have a dramatic impact on prognosis and immunotherapy. However, our knowledge of the landscape of the gastric cancer stem-like cell (GCSC) microenvironment needs to be further improved. A multi-step process of machine learning approaches was performed to develop and validate the prognostic and predictive potential of the GCSC-related score (GCScore). The high GCScore subgroup was not only associated with stem cell characteristics, but also with a potential immune escape mechanism. Furthermore, we experimentally demonstrated the upregulated infiltration of CD206+ tumor-associated macrophages (TAMs) in the invasive margin region, which in turn maintained the stem cell properties of tumor cells. Finally, we proposed that the GCScore showed a robust capacity for prediction for immunotherapy, and investigated potential therapeutic targets and compounds for patients with a high GCScore. The results indicate that the proposed GCScore can be a promising predictor of prognosis and responses to immunotherapy, which provides new strategies for the precision treatment of GCSCs.
Collapse
Affiliation(s)
- Chen Wei
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| | - Mingkai Chen
- Department of Digestion Internal Medicine, Zhengzhou Yihe Hospital Affiliated to Henan University, Zhengzhou, Henan, 450001, China
| | - Wenying Deng
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| | - Liangyu Bie
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| | - Yijie Ma
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| | - Chi Zhang
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Wei Shen
- Department of Internal Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Suxia Luo
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| | - Ning Li
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| |
Collapse
|
7
|
Jacques S, Arjomand A, Perée H, Collins P, Mayer A, Lavergne A, Wéry M, Mni M, Hego A, Thuillier V, Becker G, Bahri MA, Plenevaux A, Di Valentin E, Oury C, Moutschen M, Delvenne P, Paquot N, Rahmouni S. Dual-specificity phosphatase 3 deletion promotes obesity, non-alcoholic steatohepatitis and hepatocellular carcinoma. Sci Rep 2021; 11:5817. [PMID: 33712680 PMCID: PMC7954796 DOI: 10.1038/s41598-021-85089-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/25/2021] [Indexed: 01/31/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic hepatic pathology in Western countries. It encompasses a spectrum of conditions ranging from simple steatosis to more severe and progressive non-alcoholic steatohepatitis (NASH) that can lead to hepatocellular carcinoma (HCC). Obesity and related metabolic syndrome are important risk factors for the development of NAFLD, NASH and HCC. DUSP3 is a small dual-specificity protein phosphatase with a poorly known physiological function. We investigated its role in metabolic syndrome manifestations and in HCC using a mouse knockout (KO) model. While aging, DUSP3-KO mice became obese, exhibited insulin resistance, NAFLD and associated liver damage. These phenotypes were exacerbated under high fat diet (HFD). In addition, DEN administration combined to HFD led to rapid HCC development in DUSP3-KO compared to wild type (WT) mice. DUSP3-KO mice had more serum triglycerides, cholesterol, AST and ALT compared to control WT mice under both regular chow diet (CD) and HFD. The level of fasting insulin was higher compared to WT mice, though, fasting glucose as well as glucose tolerance were normal. At the molecular level, HFD led to decreased expression of DUSP3 in WT mice. DUSP3 deletion was associated with increased and consistent phosphorylation of the insulin receptor (IR) and with higher activation of the downstream signaling pathway. In conclusion, our results support a new role for DUSP3 in obesity, insulin resistance, NAFLD and liver damage.
Collapse
Affiliation(s)
- Sophie Jacques
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Arash Arjomand
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Hélène Perée
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Patrick Collins
- Department of Pathology, Liège University Hospital, Liège, Belgium
| | - Alice Mayer
- GIGA-Genomics Core Facility, GIGA-Institute, University of Liège, Liège, Belgium
| | - Arnaud Lavergne
- GIGA-Genomics Core Facility, GIGA-Institute, University of Liège, Liège, Belgium
| | - Marie Wéry
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Myriam Mni
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Alexandre Hego
- GIGA-Imaging Core Facility, GIGA-Institute, University of Liège, Liège, Belgium
| | - Virginie Thuillier
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Guillaume Becker
- GIGA-CRC-In Vivo Imaging, GIGA-Institute, University of Liège, Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA-CRC-In Vivo Imaging, GIGA-Institute, University of Liège, Liège, Belgium
| | - Alain Plenevaux
- GIGA-CRC-In Vivo Imaging, GIGA-Institute, University of Liège, Liège, Belgium
| | - Emmanuel Di Valentin
- GIGA-Viral Vectors Core Facility, GIGA-Institute, University of Liège, Liège, Belgium
| | - Cécile Oury
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, GIGA-Institute, University of Liège, Liège, Belgium
| | - Michel Moutschen
- Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | | | - Nicolas Paquot
- Division of Diabetes, Nutrition and Metabolic Diseases, Department of Medicine, CHU Sart-Tilman and GIGA-I3, Immunometabolism and Nutrition Unit, University of Liège, Liège, Belgium
| | - Souad Rahmouni
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium.
| |
Collapse
|
8
|
Li M, Fan K, Zheng B, Zekria D, Suo T, Liu H, Shen S, Liu H, Ni X. Knockdown of SLC39A4 Expression Inhibits the Proliferation and Motility of Gallbladder Cancer Cells and Tumor Formation in Nude Mice. Cancer Manag Res 2021; 13:2235-2246. [PMID: 33727860 PMCID: PMC7955045 DOI: 10.2147/cmar.s282269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose Gallbladder cancer (GBC) is a common malignancy of the biliary tract and is characterized by rapid progression and early metastasis. Elucidating the molecular mechanisms of GBC could help to develop better treatment strategies. Materials and Methods Human GBC cell lines (GBC-SD and NOZ) were applied to determine the capacity of the proliferation and migration of cells using the MTT assay, colony formation, wound-healing assay as well as the Transwell™ assay. A nude xenograft was used to evaluate tumor growth in vivo. Results Using two types of GBC cell lines, we found that absence of solute carrier family (SLC) 39A4 (which encodes the zinc transporter ZRT/IRT-like protein [ZIP]4), could suppress the proliferation and migration of cells. Additionally, absence of ZIP4 could impair growth of xenografts in nude mice. While, over-expression of SLC39A4 could promote the GBC cell proliferation and migration, and inhibit apoptosis. We revealed that SLC39A4 might affect GBC progression by modulating the signaling pathways responsible for the survival, energy supply and metastasis of cells, and indicated that SLC39A4 could serve as a novel therapeutic target for GBC. Conclusion SLC39A4 promoted the viability and motility of GBC cells, and tumor formation in nude mice. We demonstrated an oncogenic potential for SLC39A4.
Collapse
Affiliation(s)
- Min Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Kun Fan
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Bohao Zheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - David Zekria
- Department of Radiology, Leicester Royal Infirmary, Leicester, LE1 5WW, UK
| | - Tao Suo
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Han Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Sheng Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Houbao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiaoling Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
9
|
Kim BR, Ha J, Cho EK&S. Regulation of signal transducer and activator of transcription 3 activation by dual-specificity phosphatase 3. BMB Rep 2020. [PMID: 32475380 PMCID: PMC7330810 DOI: 10.5483/bmbrep.2020.53.6.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since cancer is the leading cause of death worldwide, there is an urgent need to understand the mechanisms underlying cancer progression and the development of cancer inhibitors. Signal transducer and activator of transcription 3 (STAT3) is a major transcription factor that regulates the proliferation and survival of various cancer cells. Here, dual-specificity phosphatase 3 (DUSP3) was identified as a regulator of STAT3 based on an interaction screening performed using the protein tyrosine phosphatase library. DUSP3 interacted with the C-terminal domain of STAT3 and dephosphorylated p-Y705 of STAT3. In vitro dephosphorylation assay revealed that DUSP3 directly dephosphorylated p-STAT3. The suppressive effects of DUSP3 on STAT3 were evaluated by a decreased STAT3-specific promoter activity, which in turn reduced the expression of the downstream target genes of STAT3. In summary, DUSP3 downregulated the transcriptional activity of STAT3 via dephosphorylation at Y705 and also suppressed the migratory activity of cancer cells. This study demonstrated that DUSP3 inhibits interleukin 6 (IL-6)/STAT3 signaling and is expected to regulate cancer development. Novel functions of DUSP3 discovered in IL-6/STAT3 signaling regulation would help expand the understanding of cancer development mechanisms.
Collapse
Affiliation(s)
- Ba Reum Kim
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jain Ha
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Eunjeong Kang & Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
10
|
Kefayat A, Ghahremani F, Safavi A, Hajiaghababa A, Moshtaghian J. Spirulina extract enriched for Braun-type lipoprotein (Immulina®) for inhibition of 4T1 breast tumors' growth and metastasis. Phytother Res 2019; 34:368-378. [PMID: 31691383 DOI: 10.1002/ptr.6527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/21/2019] [Accepted: 09/28/2019] [Indexed: 12/27/2022]
Abstract
Spirulina platensis extracts have exhibited considerable anti-cancer effects. To investigate the efficacy of the Spirulina extract enriched for Braun-type lipoprotein (Immulina®) for breast cancer treatment, 4T1 breast tumor-bearing mice were treated with 40 mg/kg Immulina® daily and the tumors' growth and metastasis were assessed. Also, CD4, CD8, and CD56 staining were performed to investigate the Immulina® effect on the immune cells' recruitment to the tumors by immunohistochemistry. Immulina® could significantly (P < 0.001) inhibit 4T1 breast tumors' growth. Immulina®-treated group exhibited a 63% decrease in the tumors' volume in comparison with control (P < 0.001). Also, Immulina® could significantly (P < 0.001) decrease metastatic burden at the vital organs as 68% and 61% decrease in the liver and lungs metastatic colonies were observed, respectively. Also, Immulina® could increase mean survival time of the tumor-bearing mice for 29 days. The Spirulina-treated mice tumors contained significantly more infiltrated NK, CD4+, and CD8+ T lymphocytes in comparison with control. Taking together, Immulina® can be a safe anti-cancer supplement with the ability to cause direct apoptosis to the cancer cells and activate the immune system against tumor. This supplement with natural origin seems to have bright future to help breast cancer patients.
Collapse
Affiliation(s)
- Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Fatemeh Ghahremani
- Department of Medical Physics and Radiotherapy, Arak University of Medical Sciences, Arak, 38481-76941, Iran
| | - Ashkan Safavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Jamal Moshtaghian
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| |
Collapse
|
11
|
Lang R, Raffi FAM. Dual-Specificity Phosphatases in Immunity and Infection: An Update. Int J Mol Sci 2019; 20:ijms20112710. [PMID: 31159473 PMCID: PMC6600418 DOI: 10.3390/ijms20112710] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
Kinase activation and phosphorylation cascades are key to initiate immune cell activation in response to recognition of antigen and sensing of microbial danger. However, for balanced and controlled immune responses, the intensity and duration of phospho-signaling has to be regulated. The dual-specificity phosphatase (DUSP) gene family has many members that are differentially expressed in resting and activated immune cells. Here, we review the progress made in the field of DUSP gene function in regulation of the immune system during the last decade. Studies in knockout mice have confirmed the essential functions of several DUSP-MAPK phosphatases (DUSP-MKP) in controlling inflammatory and anti-microbial immune responses and support the concept that individual DUSP-MKP shape and determine the outcome of innate immune responses due to context-dependent expression and selective inhibition of different mitogen-activated protein kinases (MAPK). In addition to the canonical DUSP-MKP, several small-size atypical DUSP proteins regulate immune cells and are therefore also reviewed here. Unexpected and complex findings in DUSP knockout mice pose new questions regarding cell type-specific and redundant functions. Another emerging question concerns the interaction of DUSP-MKP with non-MAPK binding partners and substrate proteins. Finally, the pharmacological targeting of DUSPs is desirable to modulate immune and inflammatory responses.
Collapse
Affiliation(s)
- Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Faizal A M Raffi
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
12
|
Tomar VS, Baral TK, Nagavelu K, Somasundaram K. Serine/threonine/tyrosine-interacting-like protein 1 (STYXL1), a pseudo phosphatase, promotes oncogenesis in glioma. Biochem Biophys Res Commun 2019; 515:241-247. [PMID: 31146910 DOI: 10.1016/j.bbrc.2019.05.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/12/2019] [Indexed: 12/12/2022]
Abstract
Phosphatases play an important role in cellular signaling and are often found dysregulated in cancers including glioblastoma (GBM). A comprehensive bioinformatics analysis of phosphatases (n = 403) in multiple datasets revealed their deregulation in GBM. Among the differentially regulated phosphatases (n = 186; 46.1%), majority of them were found to be regulated by microRNA (n = 94; 50.5%) followed by DNA methylation (n = 22; 11.8%) and altered copy number variation (n = 10; 5.37%). STYXL1 (Serine/threonine/tyrosine-interacting-like protein 1) was found to be the second most amplified gene in GBM, upregulated, and correlated to poor prognosis. The expression of STYXL1 was also found to be higher in IDH1 mutant gliomas and G-CIMP- gliomas which are reported to be more aggressive than their corresponding counterparts. Silencing STYXL1 inhibited glioma cell growth, soft agar colony formation, migration, invasion, proliferation, and xenograft tumor growth. Further, ectopic expression of STYXL1 was found to promote glioma cell growth, soft agar colony formation, migration, and RasV12 induced in-vitro transformation of immortalized human astrocytes, thus confirming its oncogenic potential in GBM. In this report, we provide a comprehensive overview of deregulation of phosphatases in GBM and demonstrate for the first time, the oncogenic nature of STYXL1 in GBM. This study might be useful for treatment of GBM patients with deregulated STYXL1.
Collapse
Affiliation(s)
- Vivek Singh Tomar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Tapan Kumar Baral
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | | | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
13
|
Aya-Bonilla C, Gray ES, Manikandan J, Freeman JB, Zaenker P, Reid AL, Khattak MA, Frank MH, Millward M, Ziman M. Immunomagnetic-Enriched Subpopulations of Melanoma Circulating Tumour Cells (CTCs) Exhibit Distinct Transcriptome Profiles. Cancers (Basel) 2019; 11:cancers11020157. [PMID: 30769764 PMCID: PMC6406574 DOI: 10.3390/cancers11020157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma circulating tumour cells (CTCs) are phenotypically and molecularly heterogeneous. We profiled the gene expression of CTC subpopulations immunomagnetic-captured by targeting either the melanoma-associated marker, MCSP, or the melanoma-initiating marker, ABCB5. Firstly, the expression of a subset of melanoma genes was investigated by RT-PCR in MCSP-enriched and ABCB5-enriched CTCs isolated from a total of 59 blood draws from 39 melanoma cases. Of these, 6 MCSP- and 6 ABCB5-enriched CTC fractions were further analysed using a genome-wide gene expression microarray. The transcriptional programs of both CTC subtypes included cell survival maintenance, cell proliferation, and migration pathways. ABCB5-enriched CTCs were specifically characterised by up-regulation of genes involved in epithelial to mesenchymal transition (EMT), suggesting an invasive phenotype. These findings underscore the presence of at least two distinct melanoma CTC subpopulations with distinct transcriptional programs, which may have distinct roles in disease progression and response to therapy.
Collapse
Affiliation(s)
- Carlos Aya-Bonilla
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | | | - James B Freeman
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Pauline Zaenker
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Anna L Reid
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Muhammad A Khattak
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia.
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia.
| | - Markus H Frank
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
- Transplantation Research Program, Boston Children's Hospital and Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| | - Michael Millward
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia.
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia.
| | - Mel Ziman
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
- School of Biomedical Science, University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
14
|
M1-like macrophages change tumor blood vessels and microenvironment in murine melanoma. PLoS One 2018; 13:e0191012. [PMID: 29320562 PMCID: PMC5761928 DOI: 10.1371/journal.pone.0191012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play a significant role in at least two key processes underlying neoplastic progression: angiogenesis and immune surveillance. TAMs phenotypic changes play important role in tumor vessel abnormalization/ normalization. M2-like TAMs stimulate immunosuppression and formation of defective tumor blood vessels leading to tumor progression. In contrast M1-like TAMs trigger immune response and normalize irregular tumor vascular network which should sensitize cancer cells to chemo- and radiotherapy and lead to tumor growth regression. Here, we demonstrated that combination of endoglin-based DNA vaccine with interleukin 12 repolarizes TAMs from tumor growth-promoting M2-like phenotype to tumor growth-inhibiting M1-like phenotype. Combined therapy enhances tumor infiltration by CD4+, CD8+ lymphocytes and NK cells. Depletion of TAMs as well as CD8+ lymphocytes and NK cells, but not CD4+ lymphocytes, reduces the effect of combined therapy. Furthermore, combined therapy improves tumor vessel maturation, perfusion and reduces hypoxia. It caused that suboptimal doses of doxorubicin reduced the growth of tumors in mice treated with combined therapy. To summarize, combination of antiangiogenic drug and immunostimulatory agent repolarizes TAMs phenotype from M2-like (pro-tumor) into M1-like (anti-tumor) which affects the structure of tumor blood vessels, improves the effect of chemotherapy and leads to tumor growth regression.
Collapse
|
15
|
Monteiro LF, Ferruzo PYM, Russo LC, Farias JO, Forti FL. DUSP3/VHR: A Druggable Dual Phosphatase for Human Diseases. Rev Physiol Biochem Pharmacol 2018; 176:1-35. [PMID: 30069819 DOI: 10.1007/112_2018_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein tyrosine kinases (PTK), discovered in the 1970s, have been considered master regulators of biological processes with high clinical significance as targets for human diseases. Their actions are countered by protein tyrosine phosphatases (PTP), enzymes yet underrepresented as drug targets because of the high homology of their catalytic domains and high charge of their catalytic pocket. This scenario is still worse for some PTP subclasses, for example, for the atypical dual-specificity phosphatases (ADUSPs), whose biological functions are not even completely known. In this sense, the present work focuses on the dual-specificity phosphatase 3 (DUSP3), also known as VH1-related phosphatase (VHR), an uncommon regulator of mitogen-activated protein kinase (MAPK) phosphorylation. DUSP3 expression and activities are suggestive of a tumor suppressor or tumor-promoting enzyme in different types of human cancers. Furthermore, DUSP3 has other biological functions involving immune response mediation, thrombosis, hemostasis, angiogenesis, and genomic stability that occur through either MAPK-dependent or MAPK-independent mechanisms. This broad spectrum of actions is likely due to the large substrate diversity and molecular mechanisms that are still under scrutiny. The growing advances in characterizing new DUSP3 substrates will allow the development of pharmacological inhibitors relevant for possible future clinical trials. This review covers all aspects of DUSP3, since its gene cloning and crystallographic structure resolution, in addition to its classical and novel substrates and the biological processes involved, followed by an update of what is currently known about the DUSP3/VHR-inhibiting compounds that might be considered potential drugs to treat human diseases.
Collapse
Affiliation(s)
- Lucas Falcão Monteiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | | | - Lilian Cristina Russo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Jessica Oliveira Farias
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Fábio Luís Forti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|