1
|
Yadav P, Singh RP, Alodaini HA, Hatamleh AA, Santoyo G, Kumar A, Gupta RK. Impact of dehydration on the physiochemical properties of Nostoc calcicola BOT1 and its untargeted metabolic profiling through UHPLC-HRMS. FRONTIERS IN PLANT SCIENCE 2023; 14:1147390. [PMID: 37426961 PMCID: PMC10327440 DOI: 10.3389/fpls.2023.1147390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023]
Abstract
The global population growth has led to a higher demand for food production, necessitating improvements in agricultural productivity. However, abiotic and biotic stresses pose significant challenges, reducing crop yields and impacting economic and social welfare. Drought, in particular, severely constrains agriculture, resulting in unproductive soil, reduced farmland, and jeopardized food security. Recently, the role of cyanobacteria from soil biocrusts in rehabilitating degraded land has gained attention due to their ability to enhance soil fertility and prevent erosion. The present study focused on Nostoc calcicola BOT1, an aquatic, diazotrophic cyanobacterial strain collected from an agricultural field at Banaras Hindu University, Varanasi, India. The aim was to investigate the effects of different dehydration treatments, specifically air drying (AD) and desiccator drying (DD) at various time intervals, on the physicochemical properties of N. calcicola BOT1. The impact of dehydration was assessed by analyzing the photosynthetic efficiency, pigments, biomolecules (carbohydrates, lipids, proteins, osmoprotectants), stress biomarkers, and non-enzymatic antioxidants. Furthermore, an analysis of the metabolic profiles of 96-hour DD and control mats was conducted using UHPLC-HRMS. Notably, there was a significant decrease in amino acid levels, while phenolic content, fatty acids, and lipids increased. These changes in metabolic activity during dehydration highlighted the presence of metabolite pools that contribute to the physiological and biochemical adjustments of N. calcicola BOT1, mitigating the impact of dehydration to some extent. Overall, present study demonstrated the accumulation of biochemical and non-enzymatic antioxidants in dehydrated mats, which could be utilized to stabilize unfavorable environmental conditions. Additionally, the strain N. calcicola BOT1 holds promise as a biofertilizer for semi-arid regions.
Collapse
Affiliation(s)
- Priya Yadav
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rahul Prasad Singh
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | | | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ajay Kumar
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rajan Kumar Gupta
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Ridenour WM, Lortie CJ, Callaway RM. A realized facilitation cascade mediated by biological soil crusts in a sagebrush steppe community. Sci Rep 2023; 13:4803. [PMID: 36959466 PMCID: PMC10036522 DOI: 10.1038/s41598-023-31967-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023] Open
Abstract
Biological soil crusts can have strong effects on vascular plant communities which have been inferred from short-term germination and early establishment responses. However, biocrusts are often assumed to function as an "organizing principle" in communities because their effects can "cascade" to interactions among crust-associated plant species. We conducted surveys and experiments to explore these cascades and found that biocrusts were positively associated with large patches (> 10 m diameter) of a dominant shrub Artemisia tridentata. At the smaller scale of individual shrubs and the open matrices between shrubs, biocrusts were negatively associated with Artemisia. Juveniles of Artemisia were found only in biocrusts in intershrub spaces and never under shrubs or in soil without biocrusts. In two-year field experiments, biocrusts increased the growth of Festuca and the photosynthetic rates of Artemisia. Festuca planted under Artemisia were also at least twice as large as those planted in open sites without crusts or where Artemisia were removed. Thus, biocrusts can facilitate vascular plants over long time periods and can contribute to a "realized" cascade with nested negative and positive interactions for a range of species, but unusual among documented cascades in that it includes only autotrophs.
Collapse
Affiliation(s)
- Wendy M Ridenour
- Department of Biology, University of Montana Western, Dillon, MT, 59725, USA.
| | - C J Lortie
- Department of Biology, York University, Toronto, ON, Canada
| | - Ragan M Callaway
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
3
|
Barrera A, Acuña-Rodríguez IS, Ballesteros GI, Atala C, Molina-Montenegro MA. Biological Soil Crusts as Ecosystem Engineers in Antarctic Ecosystem. Front Microbiol 2022; 13:755014. [PMID: 35391734 PMCID: PMC8981465 DOI: 10.3389/fmicb.2022.755014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/11/2022] [Indexed: 01/04/2023] Open
Abstract
Biological soil crusts (BSC) are considered as pivotal ecological elements among different ecosystems of the world. The effects of these BSC at the micro-site scale have been related to the development of diverse plant species that, otherwise, might be strongly limited by the harsh abiotic conditions found in environments with low water availability. Here, we describe for the first time the bacterial composition of BSCs found in the proximities of Admiralty Bay (Maritime Antarctica) through 16S metabarcoding. In addition, we evaluated their effect on soils (nutrient levels, enzymatic activity, and water retention), and on the fitness and performance of Colobanthus quitensis, one of the two native Antarctic vascular plants. This was achieved by comparing the photochemical performance, foliar nutrient, biomass, and reproductive investment between C. quitensis plants growing with or without the influence of BSC. Our results revealed a high diversity of prokaryotes present in these soil communities, although we found differences in terms of their abundances. We also found that the presence of BSCs is linked to a significant increase in soils' water retention, nutrient levels, and enzymatic activity when comparing with control soils (without BSCs). In the case of C. quitensis, we found that measured ecophysiological performance parameters were significantly higher on plants growing in association with BSCs. Taken together, our results suggest that BSCs in Antarctic soils are playing a key role in various biochemical processes involved in soil development, while also having a positive effect on the accompanying vascular flora. Therefore, BSCs would be effectively acting as ecosystem engineers for the terrestrial Antarctic ecosystem.
Collapse
Affiliation(s)
- Andrea Barrera
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | | | | | - Cristian Atala
- Facultad de Ciencias, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marco A. Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Facultad de Ciencias del Mar, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Coquimbo, Chile
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
4
|
Li X, Hui R, Tan H, Zhao Y, Liu R, Song N. Biocrust Research in China: Recent Progress and Application in Land Degradation Control. FRONTIERS IN PLANT SCIENCE 2021; 12:751521. [PMID: 34899777 PMCID: PMC8656959 DOI: 10.3389/fpls.2021.751521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Desert ecosystems are generally considered lifeless habitats characterised by extreme environmental conditions, yet they are successfully colonised by various biocrust nonvascular communities. A biocrust is not only an important ecosystem engineer and a bioindicator of desert ecological restoration but also plays a vital role in linking surficial abiotic and biotic factors. Thus, extensive research has been conducted on biocrusts in critical dryland zones. However, few studies have been conducted in the vast temperate deserts of China prior to the beginning of this century. We reviewed the research on biocrusts conducted in China since 2000, which firstly focused on the eco-physiological responses of biocrusts to species composition, abiotic stresses, and anthropological disturbances. Further, research on the spatial distributions of biocrusts as well as their succession at different spatial scales, and relationships with vascular plants and soil biomes (especially underlying mechanisms of seed retention, germination, establishment and survival of vascular plants during biocrust succession, and creation of suitable niches and food webs for soil animals and microorganisms) was analysed. Additionally, studies emphasising on the contribution of biocrusts to ecological and hydrological processes in deserts as well as their applications in the cultivation and inoculation of nonvascular plants for land degradation control and ecological restoration were assessed. Finally, recent research on biocrusts was evaluated to propose future emerging research themes and new frontiers.
Collapse
Affiliation(s)
- Xinrong Li
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Breeding Base for Key Laboratory Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
| | - Rong Hui
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Huijuan Tan
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Yang Zhao
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Rentao Liu
- Breeding Base for Key Laboratory Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
| | - Naiping Song
- Breeding Base for Key Laboratory Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
| |
Collapse
|
5
|
Terlova EF, Holzinger A, Lewis LA. Terrestrial Green Algae Show Higher Tolerance to Dehydration than Do Their Aquatic Sister-Species. MICROBIAL ECOLOGY 2021; 82:770-782. [PMID: 33502573 PMCID: PMC7612456 DOI: 10.1007/s00248-020-01679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/29/2020] [Indexed: 05/09/2023]
Abstract
Diverse algae possess the ability to recover from extreme desiccation without forming specialized resting structures. Green algal genera such as Tetradesmus (Sphaeropleales, Chlorophyceae) contain temperate terrestrial, desert, and aquatic species, providing an opportunity to compare physiological traits associated with the transition to land in closely related taxa. We subjected six species from distinct habitats to three dehydration treatments varying in relative humidity (RH 5%, 65%, 80%) followed by short- and long-term rehydration. We tested the capacity of the algae to recover from dehydration using the effective quantum yield of photosystem II as a proxy for physiological activity. The degree of recovery was dependent both on the habitat of origin and the dehydration scenario, with terrestrial, but not aquatic, species recovering from dehydration. Distinct strains of each species responded similarly to dehydration and rehydration, with the exception of one aquatic strain that recovered from the mildest dehydration treatment. Cell ultrastructure was uniformly maintained in both aquatic and desert species during dehydration and rehydration, but staining with an amphiphilic styryl dye indicated damage to the plasma membrane from osmotically induced water loss in the aquatic species. These analyses demonstrate that terrestrial Tetradesmus possess a vegetative desiccation tolerance phenotype, making these species ideal for comparative omics studies.
Collapse
Affiliation(s)
- Elizaveta F Terlova
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA.
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, Austria
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
6
|
Nascimento CEDS, da Silva CAD, Leal IR, Tavares WDS, Serrão JE, Zanuncio JC, Tabarelli M. Seed germination and early seedling survival of the invasive species Prosopis juliflora (Fabaceae) depend on habitat and seed dispersal mode in the Caatinga dry forest. PeerJ 2020; 8:e9607. [PMID: 32953255 PMCID: PMC7474883 DOI: 10.7717/peerj.9607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/05/2020] [Indexed: 11/20/2022] Open
Abstract
Background Biological invasion is one of the main threats to tropical biodiversity and ecosystem functioning. Prosopis juliflora (Sw) DC. (Fabales: Fabaceae: Caesalpinioideae) was introduced in the Caatinga dry forest of Northeast Brazil at early 1940s and successfully spread across the region. As other invasive species, it may benefit from the soils and seed dispersal by livestock. Here we examine how seed dispersal ecology and soil conditions collectively affect seed germination, early seedling performance and consequently the P. juliflora invasive potential. Methods Seed germination, early seedling survival, life expectancy and soil attributes were examined in 10 plots located across three habitats (flooding plain, alluvial terrace and plateau) into a human-modified landscape of the Caatinga dry forest (a total of 12,000 seeds). Seeds were exposed to four seed dispersal methods: deposition on the soil surface, burial in the soil, passed through cattle (Boss taurus) digestive tracts and mixed with cattle manure and passed through mule (Equus africanus asinus × Equus ferus caballus) digestive tracts and mixed with mule manure. Seeds and seedlings were monitored through a year and their performance examined with expectancy tables. Results Soils differed among habitats, particularly its nutrient availability, texture and water with finely-textured and more fertile soils in the flooding plain. Total seed germination was relatively low (14.5%), with the highest score among seeds buried in the flooding plain (47.4 ± 25.3%). Seed dispersal by cattle and mule also positively impacted seed germination. Early seedling survival rate of P. juliflora was dramatically reduced with few seedlings still alive elapsed a year. Survival rate was highest in the first 30 days and declined between 30 and 60 days with stabilization at 70 days after germination in all seed treatments and habitats. However, survival and life expectancy were higher in the flooding plain at 75 days and lower in the plateau. Prosopis juliflora seedling survival and life expectancy were higher in the case seeds were mixed with cattle manure. Synthesis Prosopis juliflora seeds and seedlings are sensitive to water stress and habitat desiccation. Therefore, they benefit from the humid soils often present across human-disturbed flooding plains. This plant also benefits from seed deposition/dispersal by livestock in these landscapes, since cattle manure represents a nutrient-rich and humid substrate for both seeds and seedlings. The quality of the seed dispersal service varies among livestock species, but this key mutualism between exotic species is due to the arillate, hard-coated and palatable seeds. Prosopis juliflora traits allow this species to take multiple benefits from human presence and thus operating as a human commensal.
Collapse
Affiliation(s)
- Clóvis Eduardo de Souza Nascimento
- Centro de Pesquisa Agropecuária do Trópico Semi-Árido, Empresa Brasileira de Pesquisa Agropecuária, Petrolina, Pernambuco, Brasil.,Departamento de Ciências Humanas, Universidade do Estado da Bahia, Juazeiro, Bahia, Brasil
| | - Carlos Alberto Domingues da Silva
- Centro Nacional de Pesquisa de Algodão, Empresa Brasileira de Pesquisa Agropecuária, Campina Grande, Paraíba, Brasil.,Programa de Pós-Graduação em Ciências Agrárias, Universidade Estadual da Paraíba, Campina Grande, Paraíba, Brasil
| | - Inara Roberta Leal
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil
| | - Wagner de Souza Tavares
- Asia Pacific Resources International Holdings Ltd. (APRIL), PT. Riau Andalan Pulp and Paper (RAPP), Pangkalan Kerinci, Riau, Indonesia
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - José Cola Zanuncio
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Marcelo Tabarelli
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil
| |
Collapse
|
7
|
Song G, Li X, Hui R. Biological soil crusts increase stability and invasion resistance of desert revegetation communities in northern China. Ecosphere 2020. [DOI: 10.1002/ecs2.3043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Guang Song
- Shapotou Desert Research and Experimental Station Northwest Institute of Eco‐Environment and Resources Chinese Academy of Science Lanzhou 730000 China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences Lanzhou 730000 China
| | - Xinrong Li
- Shapotou Desert Research and Experimental Station Northwest Institute of Eco‐Environment and Resources Chinese Academy of Science Lanzhou 730000 China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences Lanzhou 730000 China
| | - Rong Hui
- Shapotou Desert Research and Experimental Station Northwest Institute of Eco‐Environment and Resources Chinese Academy of Science Lanzhou 730000 China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
8
|
Szyja M, Menezes AGDS, Oliveira FDA, Leal I, Tabarelli M, Büdel B, Wirth R. Neglected but Potent Dry Forest Players: Ecological Role and Ecosystem Service Provision of Biological Soil Crusts in the Human-Modified Caatinga. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Chua M, Erickson TE, Merritt DJ, Chilton AM, Ooi MKJ, Muñoz‐Rojas M. Bio‐priming seeds with cyanobacteria: effects on native plant growth and soil properties. Restor Ecol 2019. [DOI: 10.1111/rec.13040] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Melissa Chua
- School of Biological Sciences University of Western Australia Crawley WA 6009 Australia
- Department of Biodiversity, Conservation and Attractions Kings Park Science Kings Park WA 6005 Australia
| | - Todd E. Erickson
- School of Biological Sciences University of Western Australia Crawley WA 6009 Australia
- Department of Biodiversity, Conservation and Attractions Kings Park Science Kings Park WA 6005 Australia
| | - David J. Merritt
- School of Biological Sciences University of Western Australia Crawley WA 6009 Australia
- Department of Biodiversity, Conservation and Attractions Kings Park Science Kings Park WA 6005 Australia
| | - Angela M. Chilton
- Centre for Ecosystem Science, School of Biological, Earth & Environmental Sciences University of New South Wales Sydney NSW 2052 Australia
| | - Mark K. J. Ooi
- Centre for Ecosystem Science, School of Biological, Earth & Environmental Sciences University of New South Wales Sydney NSW 2052 Australia
| | - Miriam Muñoz‐Rojas
- School of Biological Sciences University of Western Australia Crawley WA 6009 Australia
- Department of Biodiversity, Conservation and Attractions Kings Park Science Kings Park WA 6005 Australia
- Centre for Ecosystem Science, School of Biological, Earth & Environmental Sciences University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
10
|
Gilbert JA, Corbin JD. Biological soil crusts inhibit seed germination in a temperate pine barren ecosystem. PLoS One 2019; 14:e0212466. [PMID: 30785942 PMCID: PMC6382267 DOI: 10.1371/journal.pone.0212466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/01/2019] [Indexed: 11/18/2022] Open
Abstract
Biological soil crusts (BSCs) are known to affect plants’ germination and seedling establishment in arid ecosystems, but their ecological role in more mesic climates is not so well-known. We tested the effects of moss-crusted versus uncrusted soils on seed germination dynamics in a temperate pine barren ecosystem. We conducted a 35-day laboratory assay of seed germination on moss-crusted soils versus uncrusted soils from the Albany (NY) Pine Bush Preserve. We compared total seed germination and the number of days to 50% of total germination of two herbaceous perennial forb species in each soil type. Three and five times more seeds germinated on uncrusted soil than on crusted soil for bush clover (Lespedeza capitata) and wild lupine (Lupinus perennis), respectively. Seeds of both species also germinated approximately 10 days earlier on uncrusted soil than on crusted soil. This study, and others in similar habitats, show that BSCs in mesic climates can influence germination and other early life-history stages of plants. We hope that further study of the interactions between BSCs and vascular plants in mesic climates will contribute to our understanding of the ecology of BSCs outside the arid and semiarid climates where they are more extensively studied.
Collapse
Affiliation(s)
- Jessica A. Gilbert
- Department of Biological Sciences, Union College, Schenectady, New York, United States of America
| | - Jeffrey D. Corbin
- Department of Biological Sciences, Union College, Schenectady, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Havrilla CA, Barger NN. Biocrusts and their disturbance mediate the recruitment of native and exotic grasses from a hot desert ecosystem. Ecosphere 2018. [DOI: 10.1002/ecs2.2361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Caroline A. Havrilla
- Ecology and Evolutionary Biology Department; University of Colorado; Campus Box 334 Boulder Colorado 80309-0334 USA
| | - Nichole N. Barger
- Ecology and Evolutionary Biology Department; University of Colorado; Campus Box 334 Boulder Colorado 80309-0334 USA
| |
Collapse
|
12
|
Dettweiler-Robinson E, Sinsabaugh RL, Rudgers JA. Biocrusts benefit from plant removal. AMERICAN JOURNAL OF BOTANY 2018; 105:1133-1141. [PMID: 30011080 DOI: 10.1002/ajb2.1120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Productivity in drylands may depend on the sensitivity of interactions between plants and biocrusts. Given future climate variability, it is essential to understand how interactions may be context-dependent with precipitation regime. Furthermore, little is known about the additional interactions of these producers with the belowground biota (e.g., roots, fungi, microarthropods). We evaluated the effect of removal (such as could occur following disturbance) and net interaction of plants and biocrusts and additionally manipulated the abiotic and biotic context. METHODS We established field mesocosms containing grass (Bouteloua gracilis) and surrounding biocrusts, then clipped the plant or heat-sterilized the biocrust to simulate the loss of dryland producers. To test for context-dependency on the precipitation pattern, we imposed a large, infrequent or small, frequent precipitation regime. A mesh barrier was used to impede belowground connections that may couple the dynamics of producers. Productivity was assessed by plant biomass and biocrust chlorophyll content. KEY RESULTS Biocrusts increased chlorophyll content more when plants were removed than when they were present in the first year, but only in the small, frequent precipitation regime. In contrast, plant growth slightly declined with biocrust removal. Plant biomass and biocrust chlorophyll content were negatively correlated in the second year, suggesting net competition. Belowground connectivity weakly promoted overall biocrust relative productivity, but was generally weakly detrimental to plant relative productivity. CONCLUSIONS Altered precipitation patterns can amplify positive effects of plant removal on biocrust producers. Furthermore, we discovered that belowground networks contributed to dryland productivity by promoting biocrust performance.
Collapse
Affiliation(s)
- Eva Dettweiler-Robinson
- Department of Biology, University of New Mexico, MSC 03 2020, 1 University of New Mexico, Albuquerque, NM, 87131-0001
| | - Robert L Sinsabaugh
- Department of Biology, University of New Mexico, MSC 03 2020, 1 University of New Mexico, Albuquerque, NM, 87131-0001
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, MSC 03 2020, 1 University of New Mexico, Albuquerque, NM, 87131-0001
| |
Collapse
|