1
|
Yoon J, Lee DG, Song H, Hong D, Park JS, Hong C, An KM, Lee JW, Park JT, Yoon H, Tak J, Kim SG. Xelaglifam, a novel GPR40/FFAR1 agonist, exhibits enhanced β-arrestin recruitment and sustained glycemic control for type 2 diabetes. Biomed Pharmacother 2024; 177:117044. [PMID: 38941892 DOI: 10.1016/j.biopha.2024.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Xelaglifam, developed as a GPR40/FFAR1 agonist, induces glucose-dependent insulin secretion and reduces circulating glucose levels for Type 2 diabetes treatment. This study investigated the effects of Xelaglifam in comparison with Fasiglifam on the in vitro/in vivo anti-diabetic efficacy and selectivity, and the mechanistic basis. In vitro studies on downstream targets of Xelaglifam were performed in GPR40-expressing cells. Xelaglifam treatment exhibited dose-dependent effects, increasing inositol phosphate-1, Ca2+ mobilization, and β-arrestin recruitment (EC50: 0.76 nM, 20 nM, 68 nM), supporting its role in Gq protein-dependent and G-protein-independent mechanisms. Despite a lack of change in the cAMP pathway, the Xelaglifam-treated group demonstrated increased insulin secretion compared to Fasiglifam in HIT-T15 β cells under high glucose conditions. High doses of Xelaglifam (<30 mg/kg) did not induce hypoglycemia in Sprague-Dawley rats. In addition, Xelaglifam lowered glucose and increased insulin levels in diabetic rat models (GK, ZDF, OLETF). In GK rats, 1 mg/kg of Xelaglifam improved glucose tolerance (33.4 % and 15.6 % for the 1 and 5 h) after consecutive glucose challenges. Moreover, repeated dosing in ZDF and OLETF rats resulted in superior glucose tolerance (34 % and 35.1 % in ZDF and OLETF), reducing fasting hyperglycemia (18.3 % and 30 % in ZDF and OLETF) at lower doses; Xelaglifam demonstrated a longer-lasting effect with a greater effect on β-cells including 3.8-fold enhanced insulin secretion. Co-treatment of Xelaglifam with SGLT-2 inhibitors showed additive or synergistic effects. Collectively, these results demonstrate the therapeutic efficacy and selectivity of Xelaglifam on GPR40, supportive of its potential for the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Jongmin Yoon
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Don-Gil Lee
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Haengjin Song
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Dahae Hong
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Ji Soo Park
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Changhee Hong
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Kyung Mi An
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Jung Woo Lee
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Joon-Tae Park
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Hongchul Yoon
- YUNOVIA Co., Ltd., 20, Samsung 1-ro 1-gil, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
2
|
Jurica EA, Wu X, Williams KN, Haque LE, Rampulla RA, Mathur A, Zhou M, Cao G, Cai H, Wang T, Liu H, Xu C, Kunselman LK, Antrilli TM, Hicks MB, Sun Q, Dierks EA, Apedo A, Moore DB, Foster KA, Cvijic ME, Panemangalore R, Khandelwal P, Wilkes JJ, Zinker BA, Robertson DG, Janovitz EB, Galella M, Li YX, Li J, Ramar T, Jalagam PR, Jayaram R, Whaley JM, Barrish JC, Robl JA, Ewing WR, Ellsworth BA. Optimization of Physicochemical Properties of Pyrrolidine GPR40 AgoPAMs Results in a Differentiated Profile with Improved Pharmacokinetics and Reduced Off-Target Activities. Bioorg Med Chem 2023; 85:117273. [PMID: 37030194 DOI: 10.1016/j.bmc.2023.117273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
GPR40 AgoPAMs are highly effective antidiabetic agents that have a dual mechanism of action, stimulating both glucose-dependent insulin and GLP-1 secretion. The early lipophilic, aromatic pyrrolidine and dihydropyrazole GPR40 AgoPAMs from our laboratory were highly efficacious in lowering plasma glucose levels in rodents but possessed off-target activities and triggered rebound hyperglycemia in rats at high doses. A focus on increasing molecular complexity through saturation and chirality in combination with reducing polarity for the pyrrolidine AgoPAM chemotype resulted in the discovery of compound 46, which shows significantly reduced off-target activities as well as improved aqueous solubility, rapid absorption, and linear PK. In vivo, compound 46 significantly lowers plasma glucose levels in rats during an oral glucose challenge yet does not demonstrate the reactive hyperglycemia effect at high doses that was observed with earlier GPR40 AgoPAMs.
Collapse
Affiliation(s)
- Elizabeth A Jurica
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States.
| | - Ximao Wu
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Kristin N Williams
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Lauren E Haque
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Richard A Rampulla
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Arvind Mathur
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Min Zhou
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Gary Cao
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Hong Cai
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Tao Wang
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Heng Liu
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Carrie Xu
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Lori K Kunselman
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Thomas M Antrilli
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Michael B Hicks
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Qin Sun
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Elizabeth A Dierks
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Atsu Apedo
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Douglas B Moore
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Kimberly A Foster
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Mary Ellen Cvijic
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Reshma Panemangalore
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Purnima Khandelwal
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Jason J Wilkes
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Bradley A Zinker
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Donald G Robertson
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Evan B Janovitz
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Michael Galella
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Yi-Xin Li
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Julia Li
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Thangeswaran Ramar
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Prasada Rao Jalagam
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Ramya Jayaram
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Jean M Whaley
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Joel C Barrish
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Jeffrey A Robl
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - William R Ewing
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| | - Bruce A Ellsworth
- Research and Development, Bristol Myers Squibb, Co., P.O. Box 4000, Princeton, NJ 08543-4000, United States
| |
Collapse
|
3
|
Guan HP, Xiong Y. Learn from failures and stay hopeful to GPR40, a GPCR target with robust efficacy, for therapy of metabolic disorders. Front Pharmacol 2022; 13:1043828. [PMID: 36386134 PMCID: PMC9640913 DOI: 10.3389/fphar.2022.1043828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
GPR40 is a class A G-protein coupled receptor (GPCR) mainly expressed in pancreas, intestine, and brain. Its endogenous ligand is long-chain fatty acids, which activate GPR40 after meal ingestion to induce secretion of incretins in the gut, including GLP-1, GIP, and PYY, the latter control appetite and glucose metabolism. For its involvement in satiety regulation and metabolic homeostasis, partial and AgoPAM (Positive Allosteric Modulation agonist) GPR40 agonists had been developed for type 2 diabetes (T2D) by many pharmaceutical companies. The proof-of-concept of GPR40 for control of hyperglycemia was achieved by clinical trials of partial GPR40 agonist, TAK-875, demonstrating a robust decrease in HbA1c (-1.12%) after chronic treatment in T2D. The development of TAK-875, however, was terminated due to liver toxicity in 2.7% patients with more than 3-fold increase of ALT in phase II and III clinical trials. Different mechanisms had since been proposed to explain the drug-induced liver injury, including acyl glucuronidation, inhibition of mitochondrial respiration and hepatobiliary transporters, ROS generation, etc. In addition, activation of GPR40 by AgoPAM agonists in pancreas was also linked to β-cell damage in rats. Notwithstanding the multiple safety concerns on the development of small-molecule GPR40 agonists for T2D, some partial and AgoPAM GPR40 agonists are still under clinical development. Here we review the most recent progress of GPR40 agonists development and the possible mechanisms of the side effects in different organs, and discuss the possibility of developing novel strategies that retain the robust efficacy of GPR40 agonists for metabolic disorders while avoid toxicities caused by off-target and on-target mechanisms.
Collapse
|
4
|
How Arrestins and GRKs Regulate the Function of Long Chain Fatty Acid Receptors. Int J Mol Sci 2022; 23:ijms232012237. [PMID: 36293091 PMCID: PMC9602559 DOI: 10.3390/ijms232012237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
FFA1 and FFA4, two G protein-coupled receptors that are activated by long chain fatty acids, play crucial roles in mediating many biological functions in the body. As a result, these fatty acid receptors have gained considerable attention due to their potential to be targeted for the treatment of type-2 diabetes. However, the relative contribution of canonical G protein-mediated signalling versus the effects of agonist-induced phosphorylation and interactions with β-arrestins have yet to be fully defined. Recently, several reports have highlighted the ability of β-arrestins and GRKs to interact with and modulate different functions of both FFA1 and FFA4, suggesting that it is indeed important to consider these interactions when studying the roles of FFA1 and FFA4 in both normal physiology and in different disease settings. Here, we discuss what is currently known and show the importance of understanding fully how β-arrestins and GRKs regulate the function of long chain fatty acid receptors.
Collapse
|
5
|
Lok KH, Wareham NJ, Nair RS, How CW, Chuah LH. Revisiting the concept of incretin and enteroendocrine L-cells as type 2 diabetes mellitus treatment. Pharmacol Res 2022; 180:106237. [PMID: 35487405 PMCID: PMC7614293 DOI: 10.1016/j.phrs.2022.106237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/19/2022]
Abstract
The significant growth in type 2 diabetes mellitus (T2DM) prevalence strikes a common threat to the healthcare and economic systems globally. Despite the availability of several anti-hyperglycaemic agents in the market, none can offer T2DM remission. These agents include the prominent incretin-based therapy such as glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 inhibitors that are designed primarily to promote GLP-1R activation. Recent interest in various therapeutically useful gastrointestinal hormones in T2DM and obesity has surged with the realisation that enteroendocrine L-cells modulate the different incretins secretion and glucose homeostasis, reflecting the original incretin definition. Targeting L-cells offers promising opportunities to mimic the benefits of bariatric surgery on glucose homeostasis, bodyweight management, and T2DM remission. Revising the fundamental incretin theory is an essential step for therapeutic development in this area. Therefore, the present review explores enteroendocrine L-cell hormone expression, the associated nutrient-sensing mechanisms, and other physiological characteristics. Subsequently, enteroendocrine L-cell line models and the latest L-cell targeted therapies are reviewed critically in this paper. Bariatric surgery, pharmacotherapy and new paradigm of L-cell targeted pharmaceutical formulation are discussed here, offering both clinician and scientist communities a new common interest to push the scientific boundary in T2DM therapy.
Collapse
Affiliation(s)
- Kok-Hou Lok
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Nicholas J Wareham
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; MRC Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Cambridge, UK.
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
6
|
Rady B, Liu J, Huang H, Bakaj I, Qi J, Lee SP, Martin T, Norquay L, Player M, Pocai A. A FFAR1 full agonist restores islet function in models of impaired glucose-stimulated insulin secretion and diabetic non-human primates. Front Endocrinol (Lausanne) 2022; 13:1061688. [PMID: 36482991 PMCID: PMC9723222 DOI: 10.3389/fendo.2022.1061688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
The free fatty acid receptor 1 (FFAR1/GPR40) mediates fatty acid-induced insulin secretion from pancreatic β-cells. At least 3 distinct binding sites exist on the FFAR1 receptor and numerous synthetic ligands have been investigated for their anti-diabetic actions. Fasiglifam, binds to site-1 and stimulates intra-cellular calcium release and improves glycemic control in diabetic patients. Recently, small molecule FFAR1 agonists were discovered which bind to site-3, stimulating both intra-cellular calcium and cAMP, resulting in insulin and glucagon-like peptide-1 (GLP-1) secretion. The ability of our site-3 FFAR1 agonist (compound A) to control blood glucose was evaluated in spontaneously diabetic cynomolgus monkeys during an oral glucose tolerance test. In type-2 diabetic (T2D) animals, significant reductions in blood glucose and insulin were noted. To better understand the mechanism of these in vivo findings, we evaluated the effect of compound A in islets under several conditions of dysfunction. First, healthy human and non-human primate islets were treated with compound A and showed potentiation of insulin and glucagon secretion from both species. Next, we determined glucose-responsive insulin secretion under gluco-lipotoxic conditions and from islets isolated from type-2 diabetic humans. Despite a dysfunctional phenotype that failed to secrete insulin in response to glucose, site-3 FFAR1 agonism not only enhanced insulin secretion, but restored glucose responsiveness across a range of glucose concentrations. Lastly, we treated ex vivo human islets chronically with a sulfonylurea to induce secondary beta-cell failure. Again, this model showed reduced glucose-responsive insulin secretion that was restored and potentiated by site-3 FFAR1 agonism. Together these data suggest a mechanism for FFAR1 where agonists have direct effects on islet hormone secretion that can overcome a dysfunctional T2D phenotype. These unique characteristics of FFAR1 site-3 agonists make them an appealing potential therapy to treat type-2 diabetes.
Collapse
Affiliation(s)
- Brian Rady
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- *Correspondence: Brian Rady,
| | - Jianying Liu
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - Hui Huang
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Discovery Chemistry, Janssen R&D, Spring House, PA, United States
| | - Ivona Bakaj
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - Jenson Qi
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - S. P. Lee
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| | - Tonya Martin
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Medical Affairs, Janssen R&D, Spring House, PA, United States
| | - Lisa Norquay
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Business Development, Janssen R&D, Raritan, NJ, United States
| | - Mark Player
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
- Discovery Chemistry, Janssen R&D, Spring House, PA, United States
| | - Alessandro Pocai
- Cardiovascular and Metabolism Discovery, Janssen Research and Development, Spring House, PA, United States
| |
Collapse
|
7
|
Rani L, Grewal AS, Sharma N, Singh S. Recent Updates on Free Fatty Acid Receptor 1 (GPR-40) Agonists for the Treatment of Type 2 Diabetes Mellitus. Mini Rev Med Chem 2021; 21:426-470. [PMID: 33100202 DOI: 10.2174/1389557520666201023141326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The global incidence of type 2 diabetes mellitus (T2DM) has enthused the development of new antidiabetic targets with low toxicity and long-term stability. In this respect, free fatty acid receptor 1 (FFAR1), which is also recognized as a G protein-coupled receptor 40 (GPR40), is a novel target for the treatment of T2DM. FFAR1/GPR40 has a high level of expression in β-cells of the pancreas, and the requirement of glucose for stimulating insulin release results in immense stimulation to utilise this target in the medication of T2DM. METHODS The data used for this review is based on the search of several scienctific databases as well as various patent databases. The main search terms used were free fatty acid receptor 1, FFAR1, FFAR1 agonists, diabetes mellitus, G protein-coupled receptor 40 (GPR40), GPR40 agonists, GPR40 ligands, type 2 diabetes mellitus and T2DM. RESULTS The present review article gives a brief overview of FFAR1, its role in T2DM, recent developments in small molecule FFAR1 (GPR40) agonists reported till now, compounds of natural/plant origin, recent patents published in the last few years, mechanism of FFAR1 activation by the agonists, and clinical status of the FFAR1/GPR40 agonists. CONCLUSION The agonists of FFAR1/GRP40 showed considerable potential for the therapeutic control of T2DM. Most of the small molecule FFAR1/GPR40 agonists developed were aryl alkanoic acid derivatives (such as phenylpropionic acids, phenylacetic acids, phenoxyacetic acids, and benzofuran acetic acid derivatives) and thiazolidinediones. Some natural/plant-derived compounds, including fatty acids, sesquiterpenes, phenolic compounds, anthocyanins, isoquinoline, and indole alkaloids, were also reported as potent FFAR1 agonists. The clinical investigations of the FFAR1 agonists demonstrated their probable role in the improvement of glucose control. Though, there are some problems still to be resolved in this field as some FFAR1 agonists terminated in the late phase of clinical studies due to "hepatotoxicity." Currently, PBI-4050 is under clinical investigation by Prometic. Further investigation of pharmacophore scaffolds for FFAR1 full agonists as well as multitargeted modulators and corresponding clinical investigations will be anticipated, which can open up new directions in this area.
Collapse
Affiliation(s)
- Lata Rani
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Ajmer Singh Grewal
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
8
|
Zhao X, Yoon DO, Yoo J, Park HJ. Structure-Activity Relationship Study and Biological Evaluation of 2-(Disubstituted phenyl)-indole-5-propanoic Acid Derivatives as GPR40 Full Agonists. J Med Chem 2021; 64:4130-4149. [PMID: 33769827 DOI: 10.1021/acs.jmedchem.1c00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
G-protein-coupled receptor 40 (GPR40) is considered as an attractive drug target for treating type 2 diabetes, owing to its role in the free fatty acid-mediated increase in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. To identify a new chemotype of GPR40 agonist, a series of 2-aryl-substituted indole-5-propanoic acid derivatives were designed and synthesized. We identified two GPR40 agonist lead compounds-4k (3-[2-(4-fluoro-2-methylphenyl)-1H-indol-5-yl]propanoic acid) and 4o (3-[2-(2,5-dimethylphenyl)-1H-indol-5-yl]propanoic acid), having GSIS and glucagon-like peptide 1 secretory effects. Unlike previously reported GPR40 partial agonists that only activate the Gq pathway, 4k and 4o activated both the Gq and Gs signaling pathways and were characterized as GPR40 full agonists. In in vivo efficacy studies, 4o significantly improved glycemic control in both C57BL/6J and db/db mice and increased plasma-active GLP-1 in C57BL/6J mice. Thus, 4o represents a promising lead for further development as a novel GPR40 full agonist against type 2 diabetes.
Collapse
Affiliation(s)
- Xiaodi Zhao
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dong-Oh Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jaeho Yoo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
9
|
Ghislain J, Poitout V. Targeting lipid GPCRs to treat type 2 diabetes mellitus - progress and challenges. Nat Rev Endocrinol 2021; 17:162-175. [PMID: 33495605 DOI: 10.1038/s41574-020-00459-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Therapeutic approaches to the treatment of type 2 diabetes mellitus that are designed to increase insulin secretion either directly target β-cells or indirectly target gastrointestinal enteroendocrine cells (EECs), which release hormones that modulate insulin secretion (for example, incretins). Given that β-cells and EECs both express a large array of G protein-coupled receptors (GPCRs) that modulate insulin secretion, considerable research and development efforts have been undertaken to design therapeutic drugs targeting these GPCRs. Among them are GPCRs specific for free fatty acid ligands (lipid GPCRs), including free fatty acid receptor 1 (FFA1, otherwise known as GPR40), FFA2 (GPR43), FFA3 (GPR41) and FFA4 (GPR120), as well as the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). These lipid GPCRs have demonstrated important roles in the control of islet and gut hormone secretion. Advances in lipid GPCR pharmacology have led to the identification of a number of synthetic agonists that exert beneficial effects on glucose homeostasis in preclinical studies. Yet, translation of these promising results to the clinic has so far been disappointing. In this Review, we present the physiological roles, pharmacology and clinical studies of these lipid receptors and discuss the challenges associated with their clinical development for the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Julien Ghislain
- Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.
- Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
10
|
Grundmann M, Bender E, Schamberger J, Eitner F. Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators. Int J Mol Sci 2021; 22:ijms22041763. [PMID: 33578942 PMCID: PMC7916689 DOI: 10.3390/ijms22041763] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
The physiological function of free fatty acids (FFAs) has long been regarded as indirect in terms of their activities as educts and products in metabolic pathways. The observation that FFAs can also act as signaling molecules at FFA receptors (FFARs), a family of G protein-coupled receptors (GPCRs), has changed the understanding of the interplay of metabolites and host responses. Free fatty acids of different chain lengths and saturation statuses activate FFARs as endogenous agonists via binding at the orthosteric receptor site. After FFAR deorphanization, researchers from the pharmaceutical industry as well as academia have identified several ligands targeting allosteric sites of FFARs with the aim of developing drugs to treat various diseases such as metabolic, (auto)inflammatory, infectious, endocrinological, cardiovascular, and renal disorders. GPCRs are the largest group of transmembrane proteins and constitute the most successful drug targets in medical history. To leverage the rich biology of this target class, the drug industry seeks alternative approaches to address GPCR signaling. Allosteric GPCR ligands are recognized as attractive modalities because of their auspicious pharmacological profiles compared to orthosteric ligands. While the majority of marketed GPCR drugs interact exclusively with the orthosteric binding site, allosteric mechanisms in GPCR biology stay medically underexploited, with only several allosteric ligands currently approved. This review summarizes the current knowledge on the biology of FFAR1 (GPR40), FFAR2 (GPR43), FFAR3 (GPR41), FFAR4 (GPR120), and GPR84, including structural aspects of FFAR1, and discusses the molecular pharmacology of FFAR allosteric ligands as well as the opportunities and challenges in research from the perspective of drug discovery.
Collapse
Affiliation(s)
- Manuel Grundmann
- Research and Early Development, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany;
- Correspondence:
| | - Eckhard Bender
- Drug Discovery Sciences, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany; (E.B.); (J.S.)
| | - Jens Schamberger
- Drug Discovery Sciences, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany; (E.B.); (J.S.)
| | - Frank Eitner
- Research and Early Development, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany;
| |
Collapse
|
11
|
Gimeno RE, Briere DA, Seeley RJ. Leveraging the Gut to Treat Metabolic Disease. Cell Metab 2020; 31:679-698. [PMID: 32187525 PMCID: PMC7184629 DOI: 10.1016/j.cmet.2020.02.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/23/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
25 years ago, the future of treating obesity and diabetes focused on end organs known to be involved in energy balance and glucose regulation, including the brain, muscle, adipose tissue, and pancreas. Today, the most effective therapies are focused around the gut. This includes surgical options, such as vertical sleeve gastrectomy and Roux-en-Y gastric bypass, that can produce sustained weight loss and diabetes remission but also extends to pharmacological treatments that simulate or amplify various signals that come from the gut. The purpose of this Review is to discuss the wealth of approaches currently under development that seek to further leverage the gut as a source of novel therapeutic opportunities with the hope that we can achieve the effects of surgical interventions with less invasive and more scalable solutions.
Collapse
Affiliation(s)
- Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Daniel A Briere
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
GPR40 full agonism exerts feeding suppression and weight loss through afferent vagal nerve. PLoS One 2019; 14:e0222653. [PMID: 31525244 PMCID: PMC6746387 DOI: 10.1371/journal.pone.0222653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022] Open
Abstract
GPR40/FFAR1 is a Gq protein-coupled receptor expressed in pancreatic β cells and enteroendocrine cells, and mediates insulin and incretin secretion to regulate feeding behavior. Several GPR40 full agonists have been reported to reduce food intake in rodents by regulating gut hormone secretion in addition to their potent glucose-lowering effects; however, detailed mechanisms of feeding suppression are still unknown. In the present study, we characterized T-3601386, a novel compound with potent full agonistic activity for GPR40, by using in vitro Ca2+ mobilization assay in Chinese hamster ovary (CHO) cells expressing FFAR1 and in vivo hormone secretion assay. We also evaluated feeding suppression and weight loss after the administration of T-3601386 and investigated the involvement of the vagal nerve in these effects. T-3601386, but not a partial agonist fasiglifam, increased intracellular Ca2+ levels in CHO cells with low FFAR1 expression, and single dosing of T-3601386 in diet-induced obese (DIO) rats elevated plasma incretin levels, suggesting full agonistic properties of T-3601386 against GPR40. Multiple doses of T-3601386, but not fasiglifam, in DIO rats showed dose-dependent weight loss accompanied by feeding suppression and durable glucagon-like peptide-1 elevation, all of which were completely abolished in Ffar1-/- mice. Immunohistochemical analysis in the nuclei of the solitary tract demonstrated that T-3601386 increased the number of c-Fos positive cells, which also disappeared in Ffar1-/- mice. Surgical vagotomy and drug-induced deafferentation counteracted the feeding suppression and weight loss induced by the administration of T-3601386. These results suggest that T-3601386 exerts incretin release and weight loss in a GPR40-dependent manner, and that afferent vagal nerves are important for the feeding suppression induced by GPR40 full agonism. Our novel findings raise the possibility that GPR40 full agonist can induce periphery-derived weight reduction, which may provide benefits such as less adverse effects in central nervous system compared to centrally-acting anti-obesity drugs.
Collapse
|
13
|
Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free Fatty Acid Receptors in Health and Disease. Physiol Rev 2019; 100:171-210. [PMID: 31487233 DOI: 10.1152/physrev.00041.2018] [Citation(s) in RCA: 488] [Impact Index Per Article: 97.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fatty acids are metabolized and synthesized as energy substrates during biological responses. Long- and medium-chain fatty acids derived mainly from dietary triglycerides, and short-chain fatty acids (SCFAs) produced by gut microbial fermentation of the otherwise indigestible dietary fiber, constitute the major sources of free fatty acids (FFAs) in the metabolic network. Recently, increasing evidence indicates that FFAs serve not only as energy sources but also as natural ligands for a group of orphan G protein-coupled receptors (GPCRs) termed free fatty acid receptors (FFARs), essentially intertwining metabolism and immunity in multiple ways, such as via inflammation regulation and secretion of peptide hormones. To date, several FFARs that are activated by the FFAs of various chain lengths have been identified and characterized. In particular, FFAR1 (GPR40) and FFAR4 (GPR120) are activated by long-chain saturated and unsaturated fatty acids, while FFAR3 (GPR41) and FFAR2 (GPR43) are activated by SCFAs, mainly acetate, butyrate, and propionate. In this review, we discuss the recent reports on the key physiological functions of the FFAR-mediated signaling transduction pathways in the regulation of metabolism and immune responses. We also attempt to reveal future research opportunities for developing therapeutics for metabolic and immune disorders.
Collapse
Affiliation(s)
- Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Atsuhiko Ichimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Ryuji Ohue-Kitano
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Miki Igarashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| |
Collapse
|
14
|
Ueno H, Ito R, Abe SI, Ookawara M, Miyashita H, Ogino H, Miyamoto Y, Yoshihara T, Kobayashi A, Tsujihata Y, Takeuchi K, Watanabe M, Yamada Y, Maekawa T, Nishigaki N, Moritoh Y. SCO-267, a GPR40 Full Agonist, Improves Glycemic and Body Weight Control in Rat Models of Diabetes and Obesity. J Pharmacol Exp Ther 2019; 370:172-181. [DOI: 10.1124/jpet.118.255885] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
|
15
|
Huang H, Meegalla SK, Lanter JC, Winters MP, Zhao S, Littrell J, Qi J, Rady B, Lee PS, Liu J, Martin T, Lam WW, Xu F, Lim HK, Wilde T, Silva J, Otieno M, Pocai A, Player MR. Discovery of a GPR40 Superagonist: The Impact of Aryl Propionic Acid α-Fluorination. ACS Med Chem Lett 2019; 10:16-21. [PMID: 30655940 PMCID: PMC6331191 DOI: 10.1021/acsmedchemlett.8b00444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
GPR40 is a G-protein-coupled receptor which mediates fatty acid-induced glucose-stimulated insulin secretion from pancreatic beta cells and incretion release from enteroendocrine cells of the small intestine. GPR40 full agonists exhibit superior glucose lowering compared to partial agonists in preclinical species due to increased insulin and GLP-1 secretion, with the added benefit of promoting weight loss. In our search for potent GPR40 full agonists, we discovered a superagonist which displayed excellent in vitro potency and superior efficacy in the Gαs-mediated signaling pathway. Most synthetic GPR40 agonists have a carboxylic acid headgroup, which may cause idiosyncratic toxicities, including drug-induced-liver-injury (DILI). With a methyl group and a fluorine atom substituted at the α-C of the carboxylic acid group, 19 is not only highly efficacious in lowering glucose and body weight in rodent models but also has a low DILI risk due to its stable acylglucuronide metabolite.
Collapse
Affiliation(s)
- Hui Huang
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Sanath K. Meegalla
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - James C. Lanter
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Michael P. Winters
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Shuyuan Zhao
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - James Littrell
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Jenson Qi
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Brian Rady
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Paul S. Lee
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Jianying Liu
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Tonya Martin
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Wing W. Lam
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Fran Xu
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Heng Keang Lim
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Thomas Wilde
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Jose Silva
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Monicah Otieno
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Alessandro Pocai
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| | - Mark R. Player
- Departments
of Medicinal Chemistry, Cardiovascular & Metabolism in Vitro Biology, Cardiovascular &
Metabolism in Vivo Pharmacology, andPreclinical Drug Safety, Janssen Research & Development, Welsh and McKean Roads,Spring House, Pennsylvania 19477-0776, United States
| |
Collapse
|
16
|
Chen HY, Plummer CW, Xiao D, Chobanian HR, DeMong D, Miller M, Trujillo ME, Kirkland M, Kosinski D, Mane J, Pachanski M, Cheewatrakoolpong B, Di Salvo J, Thomas-Fowlkes B, Souza S, Tatosian DA, Chen Q, Hafey MJ, Houle R, Nolting AF, Orr R, Ehrhart J, Weinglass AB, Tschirret-Guth R, Howard AD, Colletti SL. Structure-Activity Relationship of Novel and Selective Biaryl-Chroman GPR40 AgoPAMs. ACS Med Chem Lett 2018; 9:685-690. [PMID: 30034601 DOI: 10.1021/acsmedchemlett.8b00149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022] Open
Abstract
A series of biaryl chromans exhibiting potent and selective agonism for the GPR40 receptor with positive allosteric modulation of endogenous ligands (AgoPAM) were discovered as potential therapeutics for the treatment of type II diabetes. Optimization of physicochemical properties through modification of the pendant aryl rings resulted in the identification of compound AP5, which possesses an improved metabolic profile while demonstrating sustained glucose lowering.
Collapse
|
17
|
Paternoster S, Falasca M. Dissecting the Physiology and Pathophysiology of Glucagon-Like Peptide-1. Front Endocrinol (Lausanne) 2018; 9:584. [PMID: 30364192 PMCID: PMC6193070 DOI: 10.3389/fendo.2018.00584] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022] Open
Abstract
An aging world population exposed to a sedentary life style is currently plagued by chronic metabolic diseases, such as type-2 diabetes, that are spreading worldwide at an unprecedented rate. One of the most promising pharmacological approaches for the management of type 2 diabetes takes advantage of the peptide hormone glucagon-like peptide-1 (GLP-1) under the form of protease resistant mimetics, and DPP-IV inhibitors. Despite the improved quality of life, long-term treatments with these new classes of drugs are riddled with serious and life-threatening side-effects, with no overall cure of the disease. New evidence is shedding more light over the complex physiology of GLP-1 in health and metabolic diseases. Herein, we discuss the most recent advancements in the biology of gut receptors known to induce the secretion of GLP-1, to bridge the multiple gaps into our understanding of its physiology and pathology.
Collapse
|