1
|
Udugampolage NS, Frolova S, Taurino J, Pini A, Martelli F, Voellenkle C. Coding and Non-Coding Transcriptomic Landscape of Aortic Complications in Marfan Syndrome. Int J Mol Sci 2024; 25:7367. [PMID: 39000474 PMCID: PMC11242319 DOI: 10.3390/ijms25137367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Marfan syndrome (MFS) is a rare congenital disorder of the connective tissue, leading to thoracic aortic aneurysms (TAA) and dissection, among other complications. Currently, the most efficient strategy to prevent life-threatening dissection is preventive surgery. Periodic imaging applying complex techniques is required to monitor TAA progression and to guide the timing of surgical intervention. Thus, there is an acute demand for non-invasive biomarkers for diagnosis and prognosis, as well as for innovative therapeutic targets of MFS. Unraveling the intricate pathomolecular mechanisms underlying the syndrome is vital to address these needs. High-throughput platforms are particularly well-suited for this purpose, as they enable the integration of different datasets, such as transcriptomic and epigenetic profiles. In this narrative review, we summarize relevant studies investigating changes in both the coding and non-coding transcriptome and epigenome in MFS-induced TAA. The collective findings highlight the implicated pathways, such as TGF-β signaling, extracellular matrix structure, inflammation, and mitochondrial dysfunction. Potential candidates as biomarkers, such as miR-200c, as well as therapeutic targets emerged, like Tfam, associated with mitochondrial respiration, or miR-632, stimulating endothelial-to-mesenchymal transition. While these discoveries are promising, rigorous and extensive validation in large patient cohorts is indispensable to confirm their clinical relevance and therapeutic potential.
Collapse
Affiliation(s)
| | - Svetlana Frolova
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, 20097 Milan, Italy; (S.F.); (C.V.)
- Department of Biosciences, University of Milan, 20122 Milan, Italy
| | - Jacopo Taurino
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy; (N.S.U.); (J.T.); (A.P.)
| | - Alessandro Pini
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy; (N.S.U.); (J.T.); (A.P.)
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, 20097 Milan, Italy; (S.F.); (C.V.)
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, 20097 Milan, Italy; (S.F.); (C.V.)
| |
Collapse
|
2
|
Xin Y, Zhang Z, Lv S, Xu S, Liu A, Li H, Li P, Han H, Liu Y. Elucidating VSMC phenotypic transition mechanisms to bridge insights into cardiovascular disease implications. Front Cardiovasc Med 2024; 11:1400780. [PMID: 38803664 PMCID: PMC11128571 DOI: 10.3389/fcvm.2024.1400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, despite advances in understanding cardiovascular health. Significant barriers still exist in effectively preventing and managing these diseases. Vascular smooth muscle cells (VSMCs) are crucial for maintaining vascular integrity and can switch between contractile and synthetic functions in response to stimuli such as hypoxia and inflammation. These transformations play a pivotal role in the progression of cardiovascular diseases, facilitating vascular modifications and disease advancement. This article synthesizes the current understanding of the mechanisms and signaling pathways regulating VSMC phenotypic transitions, highlighting their potential as therapeutic targets in cardiovascular disease interventions.
Collapse
Affiliation(s)
- Yuning Xin
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zipei Zhang
- Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Shan Lv
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Shan Xu
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Aidong Liu
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Li
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Pengfei Li
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Huize Han
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yinghui Liu
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Lau C, Muthu ML, Siddiqui IF, Li L, Reinhardt DP. High-Fat Diet Has a Protective Sex-Dependent Effect on Aortic Aneurysm Severity in a Marfan Syndrome Mouse Model. Can J Cardiol 2023; 39:1553-1567. [PMID: 37482239 DOI: 10.1016/j.cjca.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Marfan syndrome (MFS) is a genetic disorder caused by mutations in fibrillin-1 and is characterized by thoracic aortic aneurysms and other complications. Previous studies revealed sexual dimorphisms in formation of aortic aneurysm in patients with MFS. The current study aimed to investigate the combined role of a high-fat diet (HFD) and biological sex in aortic disease using the mgR/mgR MFS mouse model. METHODS Male and female mgR/mgR mice, as well as wild-type (WT) littermate mice, were fed a control diet (CD [10% fat]) or HFD (60% fat) from 4 to 12 weeks of age. Key aortic disease parameters analyzed included the diameter of the aortic wall; elastic fibre fragmentation; proteoglycan content; mRNA levels of Mmp12, Col1a1, Col3a1, and Fbn1; and fibrillin-1 deposition in the aortic wall. RESULTS HFD-fed female mgR/mgR mice had significantly reduced aortic diameters (35%), elastic fibre fragmentation (56%), pathologically enhanced proteoglycans (45%), and expression of Mmp12 (64%), Col1a1 (41%), and Col3a1 (43%) compared with male mgR/mgR mice on HFD. Fibrillin-1 deposition and Fbn1 mRNA levels were unaffected. The data reveal a protective effect of HFD in female mice. In contrast, CD did not exert any protective effects. CONCLUSIONS This study demonstrates a specific sexual dimorphism in MFS mice, with HFD exerting an explicit protective effect on severity of aortic disease in female mice. These preclinical data may be useful for developing nutritional recommendations for individuals with MFS in the longer term.
Collapse
Affiliation(s)
- Cori Lau
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Muthu L Muthu
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Iram Fatima Siddiqui
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Ling Li
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
4
|
Rega S, Farina F, Bouhuis S, de Donato S, Chiesa M, Poggio P, Cavallotti L, Bonalumi G, Giambuzzi I, Pompilio G, Perrucci GL. Multi-omics in thoracic aortic aneurysm: the complex road to the simplification. Cell Biosci 2023; 13:131. [PMID: 37475058 DOI: 10.1186/s13578-023-01080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is a serious condition that affects the aorta, characterized by the dilation of its first segment. The causes of TAA (e.g., age, hypertension, genetic syndromes) are heterogeneous and contribute to the weakening of the aortic wall. This complexity makes treating this life-threatening aortopathy challenging, as there are currently no etiological therapy available, and pharmacological strategies, aimed at avoiding surgical aortic replacement, are merely palliative. Recent studies on novel therapies for TAA have focused on identifying biological targets and etiological mechanisms of the disease by using advanced -omics techniques, including epigenomics, transcriptomics, proteomics, and metabolomics approaches. METHODS This review presents the latest findings from -omics approaches and underscores the importance of integrating multi-omics data to gain more comprehensive understanding of TAA. RESULTS Literature suggests that the alterations in TAA mediators frequently involve members of pro-fibrotic process (i.e., TGF-β signaling pathways) or proteins associated with cell/extracellular structures (e.g., aggrecans). Further analyses often reported the importance in TAA of processes as inflammation (PCR, CD3, leukotriene compounds), oxidative stress (chromatin OXPHOS, fatty acids), mitochondrial respiration and glycolysis/gluconeogenesis (e.g., PPARs and HIF1a). Of note, more recent metabolomics studies added novel molecular markers to the list of TAA-specific detrimental mediators (proteoglycans). CONCLUSION It is increasingly clear that integrating data from different -omics branches, along with clinical data, is essential as well as complicated both to reveal hidden relevant information and to address complex diseases such as TAA. Importantly, recent progresses in metabolomics highlighted novel potential and unprecedented marks in TAA diagnosis and therapy.
Collapse
Affiliation(s)
- Sara Rega
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Floriana Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Silvia Bouhuis
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Silvia de Donato
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Mattia Chiesa
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico Di Milano, Milan, Italy
| | - Paolo Poggio
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Laura Cavallotti
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giorgia Bonalumi
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Ilaria Giambuzzi
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Gianluca L Perrucci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy.
| |
Collapse
|
5
|
Jiang H, Jiang Y, Qu Y, Lv J, Zeng H. sGC agonist BAY1021189 promotes thoracic aortic dissection formation by accelerating vascular smooth muscle cell phenotype switch. Eur J Pharmacol 2023:175789. [PMID: 37244376 DOI: 10.1016/j.ejphar.2023.175789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Thoracic aortic dissection (TAD) is common but lethal cardiovascular disease with high mortality. This study aimed to expound whether and how sGC-PRKG1 signaling pathway might promote the formation of TAD. Our work identified two modules with high relevance to TAD using WGCNA method. Combined with previous studies, we focused on the participation of endothelial NOS (eNOS) in the progression of TAD. Through immunohistochemistry, immunofluorescence and western blot we verified that eNOS expression was elevated in the tissues of patients and mice with aortic dissection, and the phosphorylation Ser1177 of eNOS was activated. In a BAPN-induced TAD mouse model, sGC-PRKG1 signaling pathway promotes TAD formation by inducing vascular smooth muscle cells (VSMCs) phenotype transition, which was demonstrated as a decrease in markers of the contractile phenotype of VSMCs such as αSMA, SM22α, and Calponin. These results were also verified by experiments in vitro. To explore the further mechanism, we conducted immunohistochemistry, western blot and quantitative RT-PCR (qPCR), the results of which indicated that sGC-PRKG1 signaling pathway was activated when TAD occurred. In conclusion, our current study revealed that sGC-PRKG1 signaling pathway could promote TAD formation by accelerating VSMCs phenotype switch.
Collapse
Affiliation(s)
- Hongcheng Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yue Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China.
| |
Collapse
|
6
|
Jadli AS, Ballasy NN, Gomes KP, Mackay CDA, Meechem M, Wijesuriya TM, Belke D, Thompson J, Fedak PWM, Patel VB. Attenuation of Smooth Muscle Cell Phenotypic Switching by Angiotensin 1-7 Protects against Thoracic Aortic Aneurysm. Int J Mol Sci 2022; 23:ijms232415566. [PMID: 36555207 PMCID: PMC9779869 DOI: 10.3390/ijms232415566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) involves extracellular matrix (ECM) remodeling of the aortic wall, leading to reduced biomechanical support with risk of aortic dissection and rupture. Activation of the renin-angiotensin system, and resultant angiotensin (Ang) II synthesis, is critically involved in the onset and progression of TAA. The current study investigated the effects of angiotensin (Ang) 1-7 on a murine model of TAA. Male 8-10-week-old ApoEKO mice were infused with Ang II (1.44 mg/kg/day) and treated with Ang 1-7 (0.576 mg/kg/day). ApoEKO mice developed advanced TAA in response to four weeks of Ang II infusion. Echocardiographic and histological analyses demonstrated increased aortic dilatation, excessive structural remodelling, perivascular fibrosis, and inflammation in the thoracic aorta. Ang 1-7 infusion led to attenuation of pathological phenotypic alterations associated with Ang II-induced TAA. Smooth muscle cells (SMCs) isolated from adult murine thoracic aorta exhibited excessive mitochondrial fission, oxidative stress, and hyperproliferation in response to Ang II. Treatment with Ang 1-7 resulted in inhibition of mitochondrial fragmentation, ROS generation, and hyperproliferation. Gene expression profiling used for characterization of the contractile and synthetic phenotypes of thoracic aortic SMCs revealed preservation of the contractile phenotype with Ang 1-7 treatment. In conclusion, Ang 1-7 prevented Ang II-induced vascular remodeling and the development of TAA. Enhancing Ang 1-7 actions may provide a novel therapeutic strategy to prevent or delay the progression of TAA.
Collapse
Affiliation(s)
- Anshul S. Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Noura N. Ballasy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Karina P. Gomes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Cameron D. A. Mackay
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Megan Meechem
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tishani Methsala Wijesuriya
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Darrell Belke
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jennifer Thompson
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Paul W. M. Fedak
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Vaibhav B. Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence: or ; Tel.: +1-(403)-220-3446
| |
Collapse
|
7
|
Volpini X, Natali L, Brugo MB, de la Cruz-Thea B, Baigorri RE, Cerbán FM, Fozzatti L, Motran CC, Musri MM. Trypanosoma cruzi Infection Promotes Vascular Remodeling and Coexpression of α-Smooth Muscle Actin and Macrophage Markers in Cells of the Aorta. ACS Infect Dis 2022; 8:2271-2290. [PMID: 36083791 DOI: 10.1021/acsinfecdis.2c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chagas disease is an emerging global health problem; however, it remains neglected. Increased aortic stiffness (IAS), a predictor of cardiovascular events, has recently been reported in asymptomatic chronic Chagas patients. After vascular injury, smooth muscle cells (SMCs) can undergo alterations associated with phenotypic switch and transdifferentiation, promoting vascular remodeling and IAS. By studying different mouse aortic segments, we tested the hypothesis that Trypanosoma cruzi infection promotes vascular remodeling. Interestingly, the thoracic aorta was the most affected by the infection. Decreased expression of SMC markers and increased expression of proliferative markers were observed in the arteries of acutely infected mice. In acutely and chronically infected mice, we observed cells coexpressing SMC and macrophage (Mo) markers in the media and adventitia layers of the aorta, indicating that T. cruzi might induce cellular processes associated with SMC transdifferentiation into Mo-like cells or vice versa. In the adventitia, the Mo cell functional polarization was associated with an M2-like CD206+arginase-1+ phenotype despite the T. cruzi presence in the tissue. Only Mo-like cells in inflammatory foci were CD206+iNOS+. In addition to the disorganization of elastic fibers, we found thickening of the aortic layers during the acute and chronic phases of the disease. Our findings indicate that T. cruzi infection induces a vascular remodeling with SMC dedifferentiation and increased cell populations coexpressing α-SMA and Mo markers that could be associated with IAS promotion. These data highlight the importance of studying large vessel homeostasis in Chagas disease.
Collapse
Affiliation(s)
- Ximena Volpini
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra. Consejo Nacional de Investigaciones Científicas y Tecnicas. Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Friuli 2434. Colinas de Velez Sarfield, Córdoba, PC X5016NST, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Lautaro Natali
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra. Consejo Nacional de Investigaciones Científicas y Tecnicas. Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Friuli 2434. Colinas de Velez Sarfield, Córdoba, PC X5016NST, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Maria Belén Brugo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Benjamin de la Cruz-Thea
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra. Consejo Nacional de Investigaciones Científicas y Tecnicas. Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Friuli 2434. Colinas de Velez Sarfield, Córdoba, PC X5016NST, Argentina
| | - Ruth Eliana Baigorri
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Fabio Marcelo Cerbán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Laura Fozzatti
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Claudia Cristina Motran
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Melina Mara Musri
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra. Consejo Nacional de Investigaciones Científicas y Tecnicas. Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Friuli 2434. Colinas de Velez Sarfield, Córdoba, PC X5016NST, Argentina.,Departamento de Fisiología, Facultad de Ciencias Exactas Físicas y Naturales. Universidad Nacional de Córdoba (FCEFyN-UNC). Av. Velez Sarfield 299, Centro, Córdoba, PC X5000JJC, Argentina
| |
Collapse
|
8
|
Luperchio TR, Kozel BA. Extending the spectrum in aortopathy: stenosis to aneurysm. Curr Opin Genet Dev 2022; 76:101962. [DOI: 10.1016/j.gde.2022.101962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 11/03/2022]
|
9
|
Pharmacologic modulation of intracellular Na
+
concentration with ranolazine impacts inflammatory response in humans and mice. Proc Natl Acad Sci U S A 2022; 119:e2207020119. [PMID: 35858345 PMCID: PMC9303949 DOI: 10.1073/pnas.2207020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammation is a key process accompanying cardiovascular disease. Reducing inflammation is therefore an important therapeutic option. We provide evidence, that Na+ and Ca2+ modulation regulate the inflammatory response. Reducing intracellular Na+ pharmacologically using the drug ranolazine reduced the influx of Ca2+ during inflammation and thereby reduced the cellular production of inflammatory mediators. Similarly, reduction of extracellular Na+ and knockdown of a Na+–Ca2+ exchanger led to reduced inflammation. Our in vitro finding translated to in vivo experiments as ranolazine treatment led to reduced atherosclerotic plaque growth, increased plaque stability, and diminished inflammation in a mouse model. Finally, we were able to observe the antiinflammatory effect of Na+ modulation in human patients, demonstrating that inflammation was reduced after treatment with ranolazine. Changes in Ca2+ influx during proinflammatory stimulation modulates cellular responses, including the subsequent activation of inflammation. Whereas the involvement of Ca2+ has been widely acknowledged, little is known about the role of Na+. Ranolazine, a piperazine derivative and established antianginal drug, is known to reduce intracellular Na+ as well as Ca2+ levels. In stable coronary artery disease patients (n = 51) we observed reduced levels of high-sensitive C-reactive protein (CRP) 3 mo after the start of ranolazine treatment (n = 25) as compared to the control group. Furthermore, we found that in 3,808 acute coronary syndrome patients of the MERLIN‐TIMI 36 trial, individuals treated with ranolazine (1,934 patients) showed reduced CRP values compared to placebo-treated patients. The antiinflammatory effects of sodium modulation were further confirmed in an atherosclerotic mouse model. LDL−/− mice on a high-fat diet were treated with ranolazine, resulting in a reduced atherosclerotic plaque burden, increased plaque stability, and reduced activation of the immune system. Pharmacological Na+ inhibition by ranolazine led to reduced express of adhesion molecules and proinflammatory cytokines and reduced adhesion of leukocytes to activated endothelium both in vitro and in vivo. We demonstrate that functional Na+ shuttling is required for a full cellular response to inflammation and that inhibition of Na+ influx results in an attenuated inflammatory reaction. In conclusion, we demonstrate that inhibition of Na+–Ca2+ exchange during inflammation reduces the inflammatory response in human endothelial cells in vitro, in a mouse atherosclerotic disease model, and in human patients.
Collapse
|
10
|
Impact of Notch3 Activation on Aortic Aneurysm Development in Marfan Syndrome. J Immunol Res 2022; 2022:7538649. [PMID: 35211631 PMCID: PMC8863478 DOI: 10.1155/2022/7538649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background. The leading cause of mortality in patients with Marfan syndrome (MFS) is thoracic aortic aneurysm and dissection. Notch signaling is essential for vessel morphogenesis and function. However, the role of Notch signaling in aortic pathology and aortic smooth muscle cell (SMC) differentiation in Marfan syndrome (MFS) is not completely understood. Methods. RNA-sequencing on ascending aortic tissue from a mouse model of MFS, Fbn1mgR/mgR, and wild-type controls was performed. Notch 3 expression and activation in aortic tissue were confirmed with real-time RT-PCR, immunohistochemistry, and Western blot. Fbn1mgR/mgR and wild-type mice were treated with a γ-secretase inhibitor, DAPT, to block Notch activation. Aortic aneurysms and rupture were evaluated with connective tissue staining, ultrasound, and life table analysis. Results. The murine RNA-sequencing data were validated with mouse and human MFS aortic tissue, demonstrating elevated Notch3 activation in MFS. Data further revealed that upregulation and activation of Notch3 were concomitant with increased expression of SMC contractile markers. Inhibiting Notch3 activation with DAPT attenuated aortic enlargement and improved survival of Fbn1mgR/mgR mice. DAPT treatment reduced elastin fiber fragmentation in the aorta and reversed the differentiation of SMCs. Conclusions. Our data demonstrated that matrix abnormalities in the aorta of MFS are associated with increased Notch3 activation. Enhanced Notch3 activation in MFS contributed to aortic aneurysm formation in MFS. This might be mediated by inducing a contractile phenotypic change of SMC. Our results suggest that inhibiting Notch3 activation may provide a strategy to prevent and treat aortic aneurysms in MFS.
Collapse
|
11
|
Yap C, Mieremet A, de Vries CJ, Micha D, de Waard V. Six Shades of Vascular Smooth Muscle Cells Illuminated by KLF4 (Krüppel-Like Factor 4). Arterioscler Thromb Vasc Biol 2021; 41:2693-2707. [PMID: 34470477 PMCID: PMC8545254 DOI: 10.1161/atvbaha.121.316600] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022]
Abstract
Multiple layers of vascular smooth muscle cells (vSMCs) are present in blood vessels forming the media of the vessel wall. vSMCs provide a vessel wall structure, enabling it to contract and relax, thus modulating blood flow. They also play a crucial role in the development of vascular diseases, such as atherosclerosis and aortic aneurysm formation. vSMCs display a remarkable high degree of plasticity. At present, the number of different vSMC phenotypes has only partially been characterized. By mapping vSMC phenotypes in detail and identifying triggers for phenotype switching, the relevance of the different phenotypes in vascular disease may be identified. Up until recently, vSMCs were classified as either contractile or dedifferentiated (ie, synthetic). However, single-cell RNA sequencing studies revealed such dedifferentiated arterial vSMCs to be highly diverse. Currently, no consensus exist about the number of vSMC phenotypes. Therefore, we reviewed the data from relevant single-cell RNA sequencing studies, and classified a total of 6 vSMC phenotypes. The central dedifferentiated vSMC type that we classified is the mesenchymal-like phenotype. Mesenchymal-like vSMCs subsequently seem to differentiate into fibroblast-like, macrophage-like, osteogenic-like, and adipocyte-like vSMCs, which contribute differentially to vascular disease. This phenotype switching between vSMCs requires the transcription factor KLF4 (Kruppel-like factor 4). Here, we performed an integrated analysis of the data about the recently identified vSMC phenotypes, their associated gene expression profiles, and previous vSMC knowledge to better understand the role of vSMC phenotype transitions in vascular pathology.
Collapse
Affiliation(s)
- Carmen Yap
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Location Academic Medical Center, The Netherlands (C.Y., A.M., C.J.M.d.V., V.d.W.)
| | - Arnout Mieremet
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Location Academic Medical Center, The Netherlands (C.Y., A.M., C.J.M.d.V., V.d.W.)
| | - Carlie J.M. de Vries
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Location Academic Medical Center, The Netherlands (C.Y., A.M., C.J.M.d.V., V.d.W.)
| | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VU University Medical Center, Amsterdam, The Netherlands (D.M.)
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Location Academic Medical Center, The Netherlands (C.Y., A.M., C.J.M.d.V., V.d.W.)
| |
Collapse
|
12
|
Arce C, Rodríguez-Rovira I, De Rycke K, Durán K, Campuzano V, Fabregat I, Jiménez-Altayó F, Berraondo P, Egea G. Anti-TGFβ (Transforming Growth Factor β) Therapy With Betaglycan-Derived P144 Peptide Gene Delivery Prevents the Formation of Aortic Aneurysm in a Mouse Model of Marfan Syndrome. Arterioscler Thromb Vasc Biol 2021; 41:e440-e452. [PMID: 34162229 DOI: 10.1161/atvbaha.121.316496] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective We investigated the effect of a potent TGFβ (transforming growth factor β) inhibitor peptide (P144) from the betaglycan/TGFβ receptor III on aortic aneurysm development in a Marfan syndrome mouse model. Approach and Results We used a chimeric gene encoding the P144 peptide linked to apolipoprotein A-I via a flexible linker expressed by a hepatotropic adeno-associated vector. Two experimental approaches were performed: (1) a preventive treatment where the vector was injected before the onset of the aortic aneurysm (aged 4 weeks) and followed-up for 4 and 20 weeks and (2) a palliative treatment where the vector was injected once the aneurysm was formed (8 weeks old) and followed-up for 16 weeks. We evaluated the aortic root diameter by echocardiography, the aortic wall architecture and TGFβ signaling downstream effector expression of pSMAD2 and pERK1/2 by immunohistomorphometry, and Tgfβ1 and Tgfβ2 mRNA expression levels by real-time polymerase chain reaction. Marfan syndrome mice subjected to the preventive approach showed no aortic dilation in contrast to untreated Marfan syndrome mice, which at the same end point age already presented the aneurysm. In contrast, the palliative treatment with P144 did not halt aneurysm progression. In all cases, P144 improved elastic fiber morphology and normalized pERK1/2-mediated TGFβ signaling. Unlike the palliative treatment, the preventive treatment reduced Tgfβ1 and Tgfβ2 mRNA levels. Conclusions P144 prevents the onset of aortic aneurysm but not its progression. Results indicate the importance of reducing the excess of active TGFβ signaling during the early stages of aortic disease progression.
Collapse
Affiliation(s)
- Cristina Arce
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain (C.A., I.R.-R., K.D.R., V.C., G.E.)
| | - Isaac Rodríguez-Rovira
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain (C.A., I.R.-R., K.D.R., V.C., G.E.)
| | - Karo De Rycke
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain (C.A., I.R.-R., K.D.R., V.C., G.E.)
| | - Karina Durán
- Department of Cardiology, Hospital Clínic y Provincial de Barcelona, Spain (K.D.)
| | - Victoria Campuzano
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain (C.A., I.R.-R., K.D.R., V.C., G.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain (V.C.)
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and Centro de Investigación Biomédica en Red de Enfermedades Hepático-Digestivas (CIBEREHD), ISCIII, Spain (I.F.)
| | - Francesc Jiménez-Altayó
- Department of Therapeutic Pharmacology and Toxicology, School of Medicine, Neuroscience Institute, Autonomous University of Barcelona, Bellaterra, Spain (F.J.-A.)
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, CIMA University of Navarra, Pamplona, Spain (P.B.)
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain (P.B.)
| | - Gustavo Egea
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain (C.A., I.R.-R., K.D.R., V.C., G.E.)
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (G.E.)
| |
Collapse
|
13
|
Deleeuw V, De Clercq A, De Backer J, Sips P. An Overview of Investigational and Experimental Drug Treatment Strategies for Marfan Syndrome. J Exp Pharmacol 2021; 13:755-779. [PMID: 34408505 PMCID: PMC8366784 DOI: 10.2147/jep.s265271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Marfan syndrome (MFS) is a heritable connective tissue disorder caused by pathogenic variants in the gene coding for the extracellular matrix protein fibrillin-1. While the disease affects multiple organ systems, the most life-threatening manifestations are aortic aneurysms leading to dissection and rupture. Other cardiovascular complications, including mitral valve prolapse, primary cardiomyopathy, and arrhythmia, also occur more frequently in patients with MFS. The standard medical care relies on cardiovascular imaging at regular intervals, along with pharmacological treatment with β-adrenergic receptor blockers aimed at reducing the aortic growth rate. When aortic dilatation reaches a threshold associated with increased risk of dissection, prophylactic surgical aortic replacement is performed. Although current clinical management has significantly improved the life expectancy of patients with MFS, no cure is available and fatal complications still occur, underscoring the need for new treatment options. In recent years, preclinical studies have identified a number of potentially promising therapeutic targets. Nevertheless, the translation of these results into clinical practice has remained challenging. In this review, we present an overview of the currently available knowledge regarding the underlying pathophysiological processes associated with MFS cardiovascular pathology. We then summarize the treatment options that have been developed based on this knowledge and are currently in different stages of preclinical or clinical development, provide a critical review of the limitations of current studies and highlight potential opportunities for future research.
Collapse
Affiliation(s)
- Violette Deleeuw
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Adelbert De Clercq
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Julie De Backer
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, 9000, Belgium
| | - Patrick Sips
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
14
|
Aortic disease in Marfan syndrome is caused by overactivation of sGC-PRKG signaling by NO. Nat Commun 2021; 12:2628. [PMID: 33976159 PMCID: PMC8113458 DOI: 10.1038/s41467-021-22933-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Thoracic aortic aneurysm, as occurs in Marfan syndrome, is generally asymptomatic until dissection or rupture, requiring surgical intervention as the only available treatment. Here, we show that nitric oxide (NO) signaling dysregulates actin cytoskeleton dynamics in Marfan Syndrome smooth muscle cells and that NO-donors induce Marfan-like aortopathy in wild-type mice, indicating that a marked increase in NO suffices to induce aortopathy. Levels of nitrated proteins are higher in plasma from Marfan patients and mice and in aortic tissue from Marfan mice than in control samples, indicating elevated circulating and tissue NO. Soluble guanylate cyclase and cGMP-dependent protein kinase are both activated in Marfan patients and mice and in wild-type mice treated with NO-donors, as shown by increased plasma cGMP and pVASP-S239 staining in aortic tissue. Marfan aortopathy in mice is reverted by pharmacological inhibition of soluble guanylate cyclase and cGMP-dependent protein kinase and lentiviral-mediated Prkg1 silencing. These findings identify potential biomarkers for monitoring Marfan Syndrome in patients and urge evaluation of cGMP-dependent protein kinase and soluble guanylate cyclase as therapeutic targets. Aortic aneurysm and dissection, the major problem linked to Marfan syndrome (MFS), lacks effective pharmacological treatment. Here, the authors show that the NO pathway is overactivated in MFS and that inhibition of guanylate cyclase and cGMP-dependent protein kinase reverts MFS aortopathy in mice.
Collapse
|
15
|
Bruijn LE, van den Akker BEWM, van Rhijn CM, Hamming JF, Lindeman JHN. Extreme Diversity of the Human Vascular Mesenchymal Cell Landscape. J Am Heart Assoc 2020; 9:e017094. [PMID: 33190596 PMCID: PMC7763765 DOI: 10.1161/jaha.120.017094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Background Human mesenchymal cells are culprit factors in vascular (patho)physiology and are hallmarked by phenotypic and functional heterogeneity. At present, they are subdivided by classic umbrella terms, such as "fibroblasts," "myofibroblasts," "smooth muscle cells," "fibrocytes," "mesangial cells," and "pericytes." However, a discriminative marker-based subclassification has to date not been established. Methods and Results As a first effort toward a classification scheme, a systematic literature search was performed to identify the most commonly used phenotypical and functional protein markers for characterizing and classifying vascular mesenchymal cell subpopulation(s). We next applied immunohistochemistry and immunofluorescence to inventory the expression pattern of identified markers on human aorta specimens representing early, intermediate, and end stages of human atherosclerotic disease. Included markers comprise markers for mesenchymal lineage (vimentin, FSP-1 [fibroblast-specific protein-1]/S100A4, cluster of differentiation (CD) 90/thymocyte differentiation antigen 1, and FAP [fibroblast activation protein]), contractile/non-contractile phenotype (α-smooth muscle actin, smooth muscle myosin heavy chain, and nonmuscle myosin heavy chain), and auxiliary contractile markers (h1-Calponin, h-Caldesmon, Desmin, SM22α [smooth muscle protein 22α], non-muscle myosin heavy chain, smooth muscle myosin heavy chain, Smoothelin-B, α-Tropomyosin, and Telokin) or adhesion proteins (Paxillin and Vinculin). Vimentin classified as the most inclusive lineage marker. Subset markers did not separate along classic lines of smooth muscle cell, myofibroblast, or fibroblast, but showed clear temporal and spatial diversity. Strong indications were found for presence of stem cells/Endothelial-to-Mesenchymal cell Transition and fibrocytes in specific aspects of the human atherosclerotic process. Conclusions This systematic evaluation shows a highly diverse and dynamic landscape for the human vascular mesenchymal cell population that is not captured by the classic nomenclature. Our observations stress the need for a consensus multiparameter subclass designation along the lines of the cluster of differentiation classification for leucocytes.
Collapse
Affiliation(s)
- Laura E. Bruijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | | | - Connie M. van Rhijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jaap F. Hamming
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jan H. N. Lindeman
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
16
|
Iosef C, Pedroza AJ, Cui JZ, Dalal AR, Arakawa M, Tashima Y, Koyano TK, Burdon G, Churovich SMP, Orrick JO, Pariani M, Fischbein MP. Quantitative proteomics reveal lineage-specific protein profiles in iPSC-derived Marfan syndrome smooth muscle cells. Sci Rep 2020; 10:20392. [PMID: 33230159 PMCID: PMC7683538 DOI: 10.1038/s41598-020-77274-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022] Open
Abstract
Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the FBN1 gene that produces wide disease phenotypic variability. The lack of ample genotype-phenotype correlation hinders translational study development aimed at improving disease prognosis. In response to this need, an induced pluripotent stem cell (iPSC) disease model has been used to test patient-specific cells by a proteomic approach. This model has the potential to risk stratify patients to make clinical decisions, including timing for surgical treatment. The regional propensity for aneurysm formation in MFS may be related to distinct smooth muscle cell (SMC) embryologic lineages. Thus, peripheral blood mononuclear cell (PBMC)-derived induced pluripotent stem cells (iPSC) were differentiated into lateral mesoderm (LM, aortic root) and neural crest (NC, ascending aorta/transverse arch) SMC lineages to model MFS aortic pathology. Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) proteomic analysis by tandem mass spectrometry was applied to profile LM and NC iPSC SMCs from four MFS patients and two healthy controls. Analysis revealed 45 proteins with lineage-dependent expression in MFS patients, many of which were specific to diseased samples. Single protein-level data from both iPSC SMCs and primary MFS aortic root aneurysm tissue confirmed elevated integrin αV and reduced MRC2 in clinical disease specimens, validating the iPSC iTRAQ findings. Functionally, iPSC SMCs exhibited defective adhesion to a variety of extracellular matrix proteins, especially laminin-1 and fibronectin, suggesting altered cytoskeleton dynamics. This study defines the aortic embryologic origin-specific proteome in a validated iPSC SMC model to identify novel protein markers associated with MFS aneurysm phenotype. Translating iPSC findings into clinical aortic aneurysm tissue samples highlights the potential for iPSC-based methods to model MFS disease for mechanistic studies and therapeutic discovery in vitro.
Collapse
Affiliation(s)
- Cristiana Iosef
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Albert J Pedroza
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Jason Z Cui
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Alex R Dalal
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Mamoru Arakawa
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Yasushi Tashima
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Tiffany K Koyano
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Grayson Burdon
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Samantha M P Churovich
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Joshua O Orrick
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Mitchel Pariani
- Department of Pediatrics-Genetics, Stanford University, Stanford, CA, USA
| | - Michael P Fischbein
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA.
| |
Collapse
|
17
|
Specific miRNA and Gene Deregulation Characterize the Increased Angiogenic Remodeling of Thoracic Aneurysmatic Aortopathy in Marfan Syndrome. Int J Mol Sci 2020; 21:ijms21186886. [PMID: 32961817 PMCID: PMC7555983 DOI: 10.3390/ijms21186886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022] Open
Abstract
Marfan syndrome (MFS) is a connective tissue disease caused by mutations in the FBN1 gene, leading to alterations in the extracellular matrix microfibril assembly and the early formation of thoracic aorta aneurysms (TAAs). Non-genetic TAAs share many clinico-pathological aspects with MFS and deregulation of some microRNAs (miRNAs) has been demonstrated to be involved in the progression of TAA. In this study, 40 patients undergoing elective ascending aorta surgery were enrolled to compare TAA histomorphological features, miRNA profile and related target genes in order to find specific alterations that may explain the earlier and more severe clinical outcomes in MFS patients. Histomorphological, ultrastructural and in vitro studies were performed in order to compare aortic wall features of MFS and non-MFS TAA. MFS displayed greater glycosaminoglycan accumulation and loss/fragmentation of elastic fibers compared to non-MFS TAA. Immunohistochemistry revealed increased CD133+ angiogenic remodeling, greater MMP-2 expression, inflammation and smooth muscle cell (SMC) turnover in MFS TAA. Cultured SMCs from MFS confirmed higher turnover and α-smooth muscle actin expression compared with non-MFS TAA. Moreover, twenty-five miRNAs, including miR-26a, miR-29, miR-143 and miR-145, were found to be downregulated and only miR-632 was upregulated in MFS TAA in vivo. Bioinformatics analysis revealed that some deregulated miRNAs in MFS TAA are implicated in cell proliferation, extracellular matrix structure/function and TGFβ signaling. Finally, gene analysis showed 28 upregulated and seven downregulated genes in MFS TAA, some of them belonging to the CDH1/APC and CCNA2/TP53 signaling pathways. Specific miRNA and gene deregulation characterized the aortopathy of MFS and this was associated with increased angiogenic remodeling, likely favoring the early and more severe clinical outcomes, compared to non-MFS TAA. Our findings provide new insights concerning the pathogenetic mechanisms of MFS TAA; further investigation is needed to confirm if these newly identified specific deregulated miRNAs may represent potential therapeutic targets to counteract the rapid progression of MFS aortopathy.
Collapse
|
18
|
Pedroza AJ, Tashima Y, Shad R, Cheng P, Wirka R, Churovich S, Nakamura K, Yokoyama N, Cui JZ, Iosef C, Hiesinger W, Quertermous T, Fischbein MP. Single-Cell Transcriptomic Profiling of Vascular Smooth Muscle Cell Phenotype Modulation in Marfan Syndrome Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2020; 40:2195-2211. [PMID: 32698686 PMCID: PMC7484233 DOI: 10.1161/atvbaha.120.314670] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To delineate temporal and spatial dynamics of vascular smooth muscle cell (SMC) transcriptomic changes during aortic aneurysm development in Marfan syndrome (MFS). Approach and Results: We performed single-cell RNA sequencing to study aortic root/ascending aneurysm tissue from Fbn1C1041G/+ (MFS) mice and healthy controls, identifying all aortic cell types. A distinct cluster of transcriptomically modulated SMCs (modSMCs) was identified in adult Fbn1C1041G/+ mouse aortic aneurysm tissue only. Comparison with atherosclerotic aortic data (ApoE-/- mice) revealed similar patterns of SMC modulation but identified an MFS-specific gene signature, including plasminogen activator inhibitor-1 (Serpine1) and Kruppel-like factor 4 (Klf4). We identified 481 differentially expressed genes between modSMC and SMC subsets; functional annotation highlighted extracellular matrix modulation, collagen synthesis, adhesion, and proliferation. Pseudotime trajectory analysis of Fbn1C1041G/+ SMC/modSMC transcriptomes identified genes activated differentially throughout the course of phenotype modulation. While modSMCs were not present in young Fbn1C1041G/+ mouse aortas despite small aortic aneurysm, multiple early modSMCs marker genes were enriched, suggesting activation of phenotype modulation. modSMCs were not found in nondilated adult Fbn1C1041G/+ descending thoracic aortas. Single-cell RNA sequencing from human MFS aortic root aneurysm tissue confirmed analogous SMC modulation in clinical disease. Enhanced expression of TGF-β (transforming growth factor beta)-responsive genes correlated with SMC modulation in mouse and human data sets. CONCLUSIONS Dynamic SMC phenotype modulation promotes extracellular matrix substrate modulation and aortic aneurysm progression in MFS. We characterize the disease-specific signature of modSMCs and provide temporal, transcriptomic context to the current understanding of the role TGF-β plays in MFS aortopathy. Collectively, single-cell RNA sequencing implicates TGF-β signaling and Klf4 overexpression as potential upstream drivers of SMC modulation.
Collapse
Affiliation(s)
- Albert J. Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Yasushi Tashima
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Rohan Shad
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Paul Cheng
- Division of Cardiovascular Medicine, Stanford University School of Medicine. Stanford CA, USA
| | - Robert Wirka
- Division of Cardiovascular Medicine, Stanford University School of Medicine. Stanford CA, USA
| | - Samantha Churovich
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Ken Nakamura
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Nobu Yokoyama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Jason Z. Cui
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Cristiana Iosef
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University School of Medicine. Stanford CA, USA
| | - Michael P. Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| |
Collapse
|
19
|
Jespersen K, Liu Z, Li C, Harding P, Sestak K, Batra R, Stephenson CA, Foley RT, Greene H, Meisinger T, Baxter BT, Xiong W. Enhanced Notch3 signaling contributes to pulmonary emphysema in a Murine Model of Marfan syndrome. Sci Rep 2020; 10:10949. [PMID: 32616814 PMCID: PMC7331498 DOI: 10.1038/s41598-020-67941-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/03/2020] [Indexed: 11/09/2022] Open
Abstract
Marfan syndrome (MFS) is a heritable disorder of connective tissue, caused by mutations in the fibrillin-1 gene. Pulmonary functional abnormalities, such as emphysema and restrictive lung diseases, are frequently observed in patients with MFS. However, the pathogenesis and molecular mechanism of pulmonary involvement in MFS patients are underexplored. Notch signaling is essential for lung development and the airway epithelium regeneration and repair. Therefore, we investigated whether Notch3 signaling plays a role in pulmonary emphysema in MFS. By using a murine model of MFS, fibrillin-1 hypomorphic mgR mice, we found pulmonary emphysematous-appearing alveolar patterns in the lungs of mgR mice. The septation in terminal alveoli of lungs in mgR mice was reduced compared to wild type controls in the early lung development. These changes were associated with increased Notch3 activation. To confirm that the increased Notch3 signaling in mgR mice was responsible for structure alterations in the lungs, mice were treated with N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglucine t-butyl ester (DAPT), a γ-secretase inhibitor, which inhibits Notch signaling. DAPT treatment reduced lung cell apoptosis and attenuated pulmonary alteration in mice with MFS. This study indicates that Notch3 signaling contributes to pulmonary emphysema in mgR mice. Our results may have the potential to lead to novel strategies to prevent and treat pulmonary manifestations in patients with MFS.
Collapse
Affiliation(s)
- Kathryn Jespersen
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Zhibo Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Chenxin Li
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Paul Harding
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Kylie Sestak
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Rishi Batra
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Christopher A Stephenson
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Ryan T Foley
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Harrison Greene
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Trevor Meisinger
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - B Timothy Baxter
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA
| | - Wanfen Xiong
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-790, USA.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The incidence of aortic valve disease in inherited connective tissue disorders is well documented; however, recent studies have only begun to unravel the pathology behind this association. In this review, we aim to describe the etiology, clinical manifestations, management, and prognosis of aortic and aortic valvular disorders that co-exist in a variety of connective tissue diseases. An extensive literature review was performed in PubMed. Articles from 2008 to 2018 were included for review. Predetermined search terms used in PubMed include "aortic manifestation of connective tissue diseases" and "aortic valve disorders in rheumatologic disease." RECENT FINDINGS Manifestations of aortic valve disease in the context of connective tissue disorders include valvular stenosis, regurgitation, and/or thoracic aortic aneurysms. Both inherited and inflammatory connective tissue disorders contribute to aortic valve damage with increased susceptibility associated with specific gene variants. Anti-inflammatory and immunosuppressive therapies have demonstrated beneficial results in Marfan's syndrome, Behcet disease, rheumatoid arthritis, ankylosing spondylitis, and systemic sclerosis, often leading to remission. Yet, such therapy is less effective in other disorders compared to alternative treatments such as surgical intervention. Additionally, regular echocardiographic studies should be recommended to those suffering from these disorders, especially those at higher risk for cardiovascular involvement. Given the rates of relapse with immunosuppressants, even following aortic valve replacement, further studies are needed to determine if certain dosing and/or combinations of immunosuppressants could be given to those diagnosed with connective tissue diseases to prevent progression of aortic valve involvement.
Collapse
Affiliation(s)
- Bogna Grygiel-Górniak
- Department of Rheumatology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Mary-Tiffany Oduah
- Department of Rheumatology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Abdulbaril Olagunju
- Department of Rheumatology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Klokner
- Department of Rheumatology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
21
|
Fisch S, Bachner-Hinenzon N, Ertracht O, Guo L, Arad Y, Ben-Zvi D, Liao R, Schneiderman J. Localized Antileptin Therapy Prevents Aortic Root Dilatation and Preserves Left Ventricular Systolic Function in a Murine Model of Marfan Syndrome. J Am Heart Assoc 2020; 9:e014761. [PMID: 32378446 PMCID: PMC7660857 DOI: 10.1161/jaha.119.014761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Marfan syndrome (MFS) is a genetically transmitted connective tissue disorder characterized by aortic root dilatation, dissection, and rupture. Molecularly, MFS pathological features have been shown to be driven by increased angiotensin II in the aortic wall. Using an angiotensin II-driven aneurysm mouse model, we have recently demonstrated that local inhibition of leptin activity restricts aneurysm formation in the ascending and abdominal aorta. As we observed de novo leptin synthesis in the ascending aortic aneurysm wall of patients with MFS, we hypothesized that local counteracting of leptin activity in MFS may also prevent aortic cardiovascular complications in this context. Methods and Results Fbn1C1039G/+ mice underwent periaortic application of low-dose leptin antagonist at the aortic root. Treatment abolished medial degeneration and prevented increase in aortic root diameter (P<0.001). High levels of leptin, transforming growth factor β1, Phosphorylated Small mothers against decapentaplegic 2, and angiotensin-converting enzyme 1 observed in saline-treated MFS mice were downregulated in leptin antagonist-treated animals (P<0.01, P<0.05, P<0.001, and P<0.001, respectively). Leptin and angiotensin-converting enzyme 1 expression levels in left ventricular cardiomyocytes were also decreased (P<0.001) and coincided with prevention of left ventricular hypertrophy and aortic and mitral valve leaflet thickening (P<0.01 and P<0.05, respectively) and systolic function preservation. Conclusions Local, periaortic application of leptin antagonist prevented aortic root dilatation and left ventricular valve remodeling, preserving left ventricular systolic function in an MFS mouse model. Our results suggest that local inhibition of leptin may constitute a novel, stand-alone approach to prevent MFS aortic root aneurysms and potentially other similar angiotensin II-driven aortic pathological features.
Collapse
Affiliation(s)
- Sudeshna Fisch
- Cardiovascular Physiology Core Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA
| | | | - Offir Ertracht
- Eliachar Research Laboratory Galilee Medical Center Nahariya Israel
| | | | - Yhara Arad
- Department of Developmental Biology and Cancer Research Institute of Medical Research Israel-Canada Hebrew University of Jerusalem-Hadassah Medical School Jerusalem Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research Institute of Medical Research Israel-Canada Hebrew University of Jerusalem-Hadassah Medical School Jerusalem Israel
| | - Ronglih Liao
- Cardiovascular Physiology Core Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA.,Stanford University School of Medicine Cardiovascular Institute Stanford CA
| | - Jacob Schneiderman
- Department of Vascular Surgery Sheba Medical Center Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| |
Collapse
|
22
|
Bowen CJ, Calderón Giadrosic JF, Burger Z, Rykiel G, Davis EC, Helmers MR, Benke K, Gallo MacFarlane E, Dietz HC. Targetable cellular signaling events mediate vascular pathology in vascular Ehlers-Danlos syndrome. J Clin Invest 2020; 130:686-698. [PMID: 31639107 PMCID: PMC6994142 DOI: 10.1172/jci130730] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Vascular Ehlers-Danlos syndrome (vEDS) is an autosomal-dominant connective tissue disorder caused by heterozygous mutations in the COL3A1 gene, which encodes the pro-α 1 chain of collagen III. Loss of structural integrity of the extracellular matrix is believed to drive the signs and symptoms of this condition, including spontaneous arterial dissection and/or rupture, the major cause of mortality. We created 2 mouse models of vEDS that carry heterozygous mutations in Col3a1 that encode glycine substitutions analogous to those found in patients, and we showed that signaling abnormalities in the PLC/IP3/PKC/ERK pathway (phospholipase C/inositol 1,4,5-triphosphate/protein kinase C/extracellular signal-regulated kinase) are major mediators of vascular pathology. Treatment with pharmacologic inhibitors of ERK1/2 or PKCβ prevented death due to spontaneous aortic rupture. Additionally, we found that pregnancy- and puberty-associated accentuation of vascular risk, also seen in vEDS patients, was rescued by attenuation of oxytocin and androgen signaling, respectively. Taken together, our results provide evidence that targetable signaling abnormalities contribute to the pathogenesis of vEDS, highlighting unanticipated therapeutic opportunities.
Collapse
Affiliation(s)
- Caitlin J. Bowen
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | | - Zachary Burger
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Graham Rykiel
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elaine C. Davis
- Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Mark R. Helmers
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly Benke
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Elena Gallo MacFarlane
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harry C. Dietz
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
23
|
Pedroza AJ, Koyano T, Trojan J, Rubin A, Palmon I, Jaatinen K, Burdon G, Chang P, Tashima Y, Cui JZ, Berry G, Iosef C, Fischbein MP. Divergent effects of canonical and non-canonical TGF-β signalling on mixed contractile-synthetic smooth muscle cell phenotype in human Marfan syndrome aortic root aneurysms. J Cell Mol Med 2019; 24:2369-2383. [PMID: 31886938 PMCID: PMC7011150 DOI: 10.1111/jcmm.14921] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 01/27/2023] Open
Abstract
Aortic root aneurysm formation is a cardinal feature of Marfan syndrome (MFS) and likely TGF‐β driven via Smad (canonical) and ERK (non‐canonical) signalling. The current study assesses human MFS vascular smooth muscle cell (SMC) phenotype, focusing on individual contributions by Smad and ERK, with Notch3 signalling identified as a novel compensatory mechanism against TGF‐β‐driven pathology. Although significant ERK activation and mixed contractile gene expression patterns were observed by traditional analysis, this did not directly correlate with the anatomic site of the aneurysm. Smooth muscle cell phenotypic changes were TGF‐β‐dependent and opposed by ERK in vitro, implicating the canonical Smad pathway. Bulk SMC RNA sequencing after ERK inhibition showed that ERK modulates cell proliferation, apoptosis, inflammation, and Notch signalling via Notch3 in MFS. Reversing Notch3 overexpression with siRNA demonstrated that Notch3 promotes several protective remodelling pathways, including increased SMC proliferation, decreased apoptosis and reduced matrix metalloproteinase activity, in vitro. In conclusion, in human MFS aortic SMCs: (a) ERK activation is enhanced but not specific to the site of aneurysm formation; (b) ERK opposes TGF‐β‐dependent negative effects on SMC phenotype; (c) multiple distinct SMC subtypes contribute to a ‘mixed’ contractile‐synthetic phenotype in MFS aortic aneurysm; and (d) ERK drives Notch3 overexpression, a potential pathway for tissue remodelling in response to aneurysm formation.
Collapse
Affiliation(s)
- Albert J Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Tiffany Koyano
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Jeffrey Trojan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Adam Rubin
- Stanford University School of Medicine, Stanford, California
| | - Itai Palmon
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Kevin Jaatinen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Grayson Burdon
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Paul Chang
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Yasushi Tashima
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Jason Z Cui
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Gerry Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Cristiana Iosef
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael P Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
24
|
Miura K, Yamashita K. Mechanical Weakness of Thoracic Aorta Related to Aging or Dissection Predicted by Speed of Sound with Collagenase. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:3102-3115. [PMID: 31537389 DOI: 10.1016/j.ultrasmedbio.2019.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Scanning acoustic microscopy reveals information on histology and speed of sound (SOS) through tissues. Slower SOS corresponds to lower stiffness. The aim of the present study was to investigate whether SOS values reflect the degree of degeneration with aging or dissection and whether enzymatic digestion susceptibility is distinct. The SOSs of media other than the atheromatous areas of normal and surgical dissections were measured and compared using medial degeneration grade (MDG) scores. To evaluate the damage rate, SOS was assessed after collagenase digestion. SOS scores negatively correlated with aging and MDG scores. Dissected aortas had higher SOS and MDG scores without age correlation. Collagenase digestion was present in all aortas, but older aortas were more injured than younger aortas. Dissected aortas were more vulnerable to collagenase. Older and dissected aortas expressed specific extracellular matrix components to compensate for mechanical weakness. The present method can evaluate mechanical weakness corresponding to histology to investigate the cause of rupture.
Collapse
Affiliation(s)
- Katsutoshi Miura
- Department of Health Science, Pathology and Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Kanna Yamashita
- Department of Health Science, Pathology and Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
25
|
de Souza RB, Farinha-Arcieri LE, Catroxo MHB, Martins AMCRPDF, Tedesco RC, Alonso LG, Koh IHJ, Pereira LV. Association of thoracic spine deformity and cardiovascular disease in a mouse model for Marfan syndrome. PLoS One 2019; 14:e0224581. [PMID: 31725753 PMCID: PMC6855660 DOI: 10.1371/journal.pone.0224581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022] Open
Abstract
Aims Cardiovascular manifestations are a major cause of mortality in Marfan syndrome (MFS). Animal models that mimic the syndrome and its clinical variability are instrumental for understanding the genesis and risk factors for cardiovascular disease in MFS. This study used morphological and ultrastructural analysis to the understanding of the development of cardiovascular phenotypes of the the mgΔloxPneo model for MFS. Methods and results We studied 6-month-old female mice of the 129/Sv background, 6 wild type (WT) and 24 heterozygous animals from the mgΔloxPneo model. Descending thoracic aortic aneurysm and/or dissection (dTAAD) were identified in 75% of the MFS animals, defining two subgroups: MFS with (MFS+) and without (MFS-) dTAAD. Both subgroups showed increased fragmentation of elastic fibers, predominance of type I collagen surrounding the elastic fiber and fragmentation of interlaminar fibers when compared to WT. However, only MFS animals with spine tortuosity developed aortic aneurysm/dissection. The aorta of MFS+ animals were more tortuous compared to those of MFS- and WT mice, possibly causing perturbations of the luminal blood flow. This was evidenced by the detection of diminished aorta-blood flow in MFS+. Accordingly, only MFS+ animals presented a process of concentric cardiac hypertrophy and a significantly decreased ratio of left and right ventricle lumen area. Conclusions We show that mgΔloxPneo model mimics the vascular disease observed in MFS patients. Furthermore, the study indicates role of thoracic spine deformity in the development of aorta diseases. We suggest that degradation of support structures of the aortic wall; deficiency in the sustenance of the thoracic vertebrae; and their compression over the adjacent aorta resulting in disturbed blood flow is a triad of factors involved in the genesis of dissection/aneurysm of thoracic aorta.
Collapse
Affiliation(s)
| | | | | | | | - Roberto Carlos Tedesco
- Federal University of São Paulo, Department of Morphological and Genetics, São Paulo, SP, Brazil
| | - Luis Garcia Alonso
- Federal University of São Paulo, Department of Morphological and Genetics, São Paulo, SP, Brazil
| | - Ivan Hong Jun Koh
- Federal University of São Paulo, Department of Surgery, São Paulo, SP, Brazil
| | - Lygia V. Pereira
- University of São Paulo, Department of Genetics and Evolutionary Biology, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
26
|
Tingting T, Wenjing F, Qian Z, Hengquan W, Simin Z, Zhisheng J, Shunlin Q. The TGF-β pathway plays a key role in aortic aneurysms. Clin Chim Acta 2019; 501:222-228. [PMID: 31707165 DOI: 10.1016/j.cca.2019.10.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Aortic dissection and aortic aneurysms are currently among the most high-risk cardiovascular diseases due to their rapid onset and high mortality. Although aneurysm research has been extensive, the pathogenesis remains unknown. Studies have found that the TGF-β/Smad pathway and aneurysm formation appear linked. For example, the TGF-β signaling pathway was significantly activated in aneurysm development and aortic dissection. Aneurysms are not, however, mitigated following knockdown of TGF-β signaling pathway-related genes. Incidence and mortality rate of ruptured thoracic aneurysms increase with the down-regulation of the classical TGF-β signaling pathway. In this review, we summarize recent findings and evaluate the differential role of classical and non-classical TGF-β pathways on aortic aneurysm. It is postulated that the TGF-β signaling pathway is necessary to maintain vascular function, but over-activation will promote aneurysms whereas over-inhibition will lead to bypass pathway over-activation and promote aneurysm occurrence.
Collapse
Affiliation(s)
- Tang Tingting
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Fan Wenjing
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China; Emergency Department, The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zeng Qian
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Wan Hengquan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhao Simin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Jiang Zhisheng
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Qu Shunlin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
27
|
Nolasco P, Fernandes CG, Ribeiro-Silva JC, Oliveira PVS, Sacrini M, de Brito IV, De Bessa TC, Pereira LV, Tanaka LY, Alencar A, Laurindo FRM. Impaired vascular smooth muscle cell force-generating capacity and phenotypic deregulation in Marfan Syndrome mice. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165587. [PMID: 31678158 DOI: 10.1016/j.bbadis.2019.165587] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022]
Abstract
Mechanisms whereby fibrillin-1 mutations determine thoracic aorta aneurysms/dissections (TAAD) in Marfan Syndrome (MFS) are unclear. Most aortic aneurysms evolve from mechanosignaling deregulation, converging to impaired vascular smooth muscle cell (VSMC) force-generating capacity accompanied by synthetic phenotype switch. However, little is known on VSMC mechanoresponses in MFS pathophysiology. Here, we investigated traction force-generating capacity in aortic VSMC cultured from 3-month old mg∆lpn MFS mice, together with morpho-functional and proteomic data. Cultured MFS-VSMC depicted marked phenotype changes vs. wild-type (WT) VSMC, with overexpressed cell proliferation markers but either lower (calponin-1) or higher (SM alpha-actin and SM22) differentiation marker expression. In parallel, the increased cell area and its complex non-fusiform shape suggested possible transition towards a mesenchymal-like phenotype, confirmed through several markers (e.g. N-cadherin, Slug). MFS-VSMC proteomic profile diverged from that of WT-VSMC particularly regarding lower expression of actin cytoskeleton-regulatory proteins. Accordingly, MFS-VSMC displayed lower traction force-generating capacity and impaired contractile moment at physiological substrate stiffness, and markedly attenuated traction force responses to enhanced substrate rigidity. Such impaired mechanoresponses correlated with decreased number, altered morphology and delocalization of focal adhesions, as well as disorganized actin stress fiber network vs. WT-VSMC. In VSMC cultured from 6-month-old mice, phenotype changes were attenuated and both WT-VSMC and MFS-VSMC generated less traction force, presumably involving VSMC aging, but without evident senescence. In summary, MFS-VSMC display impaired force-generating capacity accompanying a mesenchymal-like phenotype switch connected to impaired cytoskeleton/focal adhesion organization. Thus, MFS-associated TAAD involves mechanoresponse impairment common to other TAAD types, but through distinct mechanisms.
Collapse
Affiliation(s)
- Patrícia Nolasco
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carolina Gonçalves Fernandes
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - João Carlos Ribeiro-Silva
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Percillia V S Oliveira
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Mariana Sacrini
- Laboratorio de Microrreologia e Fisiologia Molecular, Instituto de Física da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Isis Vasconcelos de Brito
- Laboratorio de Microrreologia e Fisiologia Molecular, Instituto de Física da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Tiphany Coralie De Bessa
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Lygia V Pereira
- Laboratorio de Genetica Molecular, Instituto de Biologia, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leonardo Y Tanaka
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Adriano Alencar
- Laboratorio de Microrreologia e Fisiologia Molecular, Instituto de Física da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Francisco Rafael Martins Laurindo
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
28
|
Cozijnsen L, Plomp AS, Post JG, Pals G, Bogunovic N, Yeung KK, Niessen HWM, Goumans MJTH, Barge-Schaapveld DQCM, Micha D. Pathogenic effect of a TGFBR1 mutation in a family with Loeys-Dietz syndrome. Mol Genet Genomic Med 2019; 7:e00943. [PMID: 31475485 PMCID: PMC6785444 DOI: 10.1002/mgg3.943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background Thoracic aortic aneurysms and dissections (TAAD) may have a heritable cause in up to 20% of cases. We aimed to investigate the pathogenic effect of a TGFBR1 mutation in relation to TAAD. Methods Co‐segregation analysis was performed followed by functional investigations, including myogenic transdifferentiation. Results The c.1043G>A TGFBR1 mutation was found in the index patient, in a deceased brother, and in five presymptomatic family members. Evidence for pathogenicity was found by the predicted damaging effect of this mutation and the co‐segregation in the family. Functional analysis with myogenic transdifferentiation of dermal fibroblasts to smooth muscle‐like cells, revealed increased myogenic differentiation in patient cells with the TGFBR1 mutation, shown by a higher expression of myogenic markers ACTA2, MYH11 and CNN1 compared to cells from healthy controls. Conclusion Our findings confirm the pathogenic effect of the TGFBR1 mutation in causing TAAD in Loeys–Dietz syndrome and show increased myogenic differentiation of patient fibroblasts.
Collapse
Affiliation(s)
- Luc Cozijnsen
- Department of Cardiology, Gelre Hospital, Apeldoorn, The Netherlands
| | - Astrid S Plomp
- Department of Clinical Genetics, Amsterdam University Medical Centre, AMC, Amsterdam, The Netherlands
| | - Jan G Post
- Department of Genetics, University Medical Centre, Utrecht, The Netherlands
| | - Gerard Pals
- Department of Clinical Genetics, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Natalija Bogunovic
- Department of Physiology, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Surgery, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Kak K Yeung
- Department of Physiology, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Surgery, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Hans W M Niessen
- Department of Pathology and Cardiac Surgery, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Marie-José T H Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Elastic fibers and biomechanics of the aorta: Insights from mouse studies. Matrix Biol 2019; 85-86:160-172. [PMID: 30880160 DOI: 10.1016/j.matbio.2019.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022]
Abstract
Elastic fibers are major components of the extracellular matrix (ECM) in the aorta and support a life-long cycling of stretch and recoil. Elastic fibers are formed from mid-gestation throughout early postnatal development and the synthesis is regulated at multiple steps, including coacervation, deposition, cross-linking, and assembly of insoluble elastin onto microfibril scaffolds. To date, more than 30 molecules have been shown to associate with elastic fibers and some of them play a critical role in the formation and maintenance of elastic fibers in vivo. Because the aorta is subjected to high pressure from the left ventricle, elasticity of the aorta provides the Windkessel effect and maintains stable blood flow to distal organs throughout the cardiac cycle. Disruption of elastic fibers due to congenital defects, inflammation, or aging dramatically reduces aortic elasticity and affects overall vessel mechanics. Another important component in the aorta is the vascular smooth muscle cells (SMCs). Elastic fibers and SMCs alternate to create a highly organized medial layer within the aortic wall. The physical connections between elastic fibers and SMCs form the elastin-contractile units and maintain cytoskeletal organization and proper responses of SMCs to mechanical strain. In this review, we revisit the components of elastic fibers and their roles in elastogenesis and how a loss of each component affects biomechanics of the aorta. Finally, we discuss the significance of elastin-contractile units in the maintenance of SMC function based on knowledge obtained from mouse models of human disease.
Collapse
|
30
|
van Andel MM, Groenink M, Zwinderman AH, Mulder BJM, de Waard V. The Potential Beneficial Effects of Resveratrol on Cardiovascular Complications in Marfan Syndrome Patients⁻Insights from Rodent-Based Animal Studies. Int J Mol Sci 2019; 20:E1122. [PMID: 30841577 PMCID: PMC6429290 DOI: 10.3390/ijms20051122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Marfan syndrome (MFS) patients are at risk for cardiovascular disease. In particular, for aortic aneurysm formation, which ultimately can result in a life-threatening aortic dissection or rupture. Over the years, research into a sufficient pharmacological treatment option against aortopathy has expanded, mostly due to the development of rodent disease models for aneurysm formation and dissections. Unfortunately, no optimal treatment strategy has yet been identified for MFS. The biologically-potent polyphenol resveratrol (RES), that occurs in nuts, plants, and the skin of grapes, was shown to have a positive effect on aortic repair in various rodent aneurysm models. RES demonstrated to affect aortic integrity and aortic dilatation. The beneficial processes relevant for MFS included the improvement of endothelial dysfunction, extracellular matrix degradation, and smooth muscle cell death. For the wide range of beneficial effects on these mechanisms, evidence was found for the following involved pathways; alleviating oxidative stress (change in eNOS/iNOS balance and decrease in NOX4), reducing protease activity to preserve the extracellular matrix (decrease in MMP2), and improving smooth muscle cell survival affecting aortic aging (changing the miR21/miR29 balance). Besides aortic features, MFS patients may also suffer from manifestations concerning the heart, such as mitral valve prolapse and left ventricular impairment, where evidence from rodent models shows that RES may aid in promoting cardiomyocyte survival directly (SIRT1 activation) or by reducing oxidative stress (increasing superoxide dismutase) and increasing autophagy (AMPK activation). This overview discusses recent RES studies in animal models of aortic aneurysm formation and heart failure, where different advantageous effects have been reported that may collectively improve the aortic and cardiac pathology in patients with MFS. Therefore, a clinical study with RES in MFS patients seems justified, to validate RES effectiveness, and to judge its suitability as potential new treatment strategy.
Collapse
Affiliation(s)
- Mitzi M van Andel
- Department of Cardiology, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Maarten Groenink
- Department of Cardiology, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Radiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Barbara J M Mulder
- Department of Cardiology, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC, Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Abstract
Current management of aortic aneurysms relies exclusively on prophylactic operative repair of larger aneurysms. Great potential exists for successful medical therapy that halts or reduces aneurysm progression and hence alleviates or postpones the need for surgical repair. Preclinical studies in the context of abdominal aortic aneurysm identified hundreds of candidate strategies for stabilization, and data from preoperative clinical intervention studies show that interventions in the pathways of the activated inflammatory and proteolytic cascades in enlarging abdominal aortic aneurysm are feasible. Similarly, the concept of pharmaceutical aorta stabilization in Marfan syndrome is supported by a wealth of promising studies in the murine models of Marfan syndrome-related aortapathy. Although some clinical studies report successful medical stabilization of growing aortic aneurysms and aortic root stabilization in Marfan syndrome, these claims are not consistently confirmed in larger and controlled studies. Consequently, no medical therapy can be recommended for the stabilization of aortic aneurysms. The discrepancy between preclinical successes and clinical trial failures implies shortcomings in the available models of aneurysm disease and perhaps incomplete understanding of the pathological processes involved in later stages of aortic aneurysm progression. Preclinical models more reflective of human pathophysiology, identification of biomarkers to predict severity of disease progression, and improved design of clinical trials may more rapidly advance the opportunities in this important field.
Collapse
Affiliation(s)
- Jan H. Lindeman
- Dept. Vascular Surgery, Leiden University Medical Center, The Netherlands
| | - Jon S. Matsumura
- Division of Vascular Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
32
|
Humphrey JD, Tellides G. Central artery stiffness and thoracic aortopathy. Am J Physiol Heart Circ Physiol 2019; 316:H169-H182. [PMID: 30412443 PMCID: PMC6880196 DOI: 10.1152/ajpheart.00205.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Abstract
Thoracic aortopathy, especially aneurysm, dissection, and rupture, is responsible for significant morbidity and mortality. Uncontrolled hypertension and aging are primary risk factors for such conditions, and they contribute to an increase in the mechanical stress on the wall and an increase in its structural vulnerability, respectively. Select genetic mutations also predispose to these lethal conditions, and the collection of known mutations suggests that dysfunctional mechanosensing and mechanoregulation of the extracellular matrix may contribute to pathogenesis and disease progression. In the absence of a well-accepted pharmacotherapy, nonsurgical treatments tend to focus on reducing the mechanical loading on the aorta, particularly via the use of antihypertensive medications and recommendations to avoid strenuous exercises such as weight lifting. In this brief review, we discuss the important effects of central artery stiffening on global hemodynamics and, in particular, on the increase in pulse pressure that acts on the proximal thoracic aorta. We consider Marfan syndrome as an illustrative aortopathy but discuss other conditions leading to thoracic aortic aneurysm and dissection. We highlight the importance of phenotyping the aorta biomechanically, not just clinically, and emphasize the utility of mouse models in elucidating molecular and mechanical mechanisms of disease. Notwithstanding the widely recognized role of central artery stiffening in driving end-organ disease, we suggest that there is similarly a need to consider its key role in thoracic aortopathy.
Collapse
Affiliation(s)
- J. D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - G. Tellides
- Department of Surgery, Yale University, New Haven, Connecticut
- Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| |
Collapse
|
33
|
Hadi T, Boytard L, Silvestro M, Alebrahim D, Jacob S, Feinstein J, Barone K, Spiro W, Hutchison S, Simon R, Rateri D, Pinet F, Fenyo D, Adelman M, Moore KJ, Eltzschig HK, Daugherty A, Ramkhelawon B. Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells. Nat Commun 2018; 9:5022. [PMID: 30479344 PMCID: PMC6258757 DOI: 10.1038/s41467-018-07495-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022] Open
Abstract
Abdominal aortic aneurysms (AAA) are characterized by extensive extracellular matrix (ECM) fragmentation and inflammation. However, the mechanisms by which these events are coupled thereby fueling focal vascular damage are undefined. Here we report through single-cell RNA-sequencing of diseased aorta that the neuronal guidance cue netrin-1 can act at the interface of macrophage-driven injury and ECM degradation. Netrin-1 expression peaks in human and murine aneurysmal macrophages. Targeted deletion of netrin-1 in macrophages protects mice from developing AAA. Through its receptor neogenin-1, netrin-1 induces a robust intracellular calcium flux necessary for the transcriptional regulation and persistent catalytic activation of matrix metalloproteinase-3 (MMP3) by vascular smooth muscle cells. Deficiency in MMP3 reduces ECM damage and the susceptibility of mice to develop AAA. Here, we establish netrin-1 as a major signal that mediates the dynamic crosstalk between inflammation and chronic erosion of the ECM in AAA. Abdominal aortic aneurysms (AAA) are characterized by extensive extracellular matrix degradation. Here Hadi et al. identify a netrin-1/neogenin-based crosstalk between macrophages and vascular smooth muscle cells (VSMCs), leading to the secretion of the matrix metalloproteinase MMP-3 by VSMCs and subsequent matrix degradation in AAA lesions.
Collapse
Affiliation(s)
- Tarik Hadi
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA
| | - Ludovic Boytard
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA
| | - Michele Silvestro
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA
| | - Dornazsadat Alebrahim
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA
| | - Samson Jacob
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Jordyn Feinstein
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA
| | - Krista Barone
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA
| | - Wes Spiro
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Susan Hutchison
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Russell Simon
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA
| | - Debra Rateri
- Department of Physiology and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Florence Pinet
- University of Lille, Inserm U1167, Institut Pasteur de Lille, 59019, Lille, France
| | - David Fenyo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Mark Adelman
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA
| | - Kathryn J Moore
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Alan Daugherty
- Department of Physiology and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Bhama Ramkhelawon
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA. .,Department of Cell Biology, New York University Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
34
|
Dale M, Fitzgerald MP, Liu Z, Meisinger T, Karpisek A, Purcell LN, Carson JS, Harding P, Lang H, Koutakis P, Suh M, Batra R, Mietus CJ, Casale G, Pipinos I, Baxter BT, Xiong W. Correction: Premature aortic smooth muscle cell differentiation contributes to matrix dysregulation in Marfan Syndrome. PLoS One 2018; 13:e0200985. [PMID: 30011334 PMCID: PMC6047826 DOI: 10.1371/journal.pone.0200985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Yu C, Jeremy RW. Angiotensin, transforming growth factor β and aortic dilatation in Marfan syndrome: Of mice and humans. IJC HEART & VASCULATURE 2018; 18:71-80. [PMID: 29876507 PMCID: PMC5988480 DOI: 10.1016/j.ijcha.2018.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 01/09/2023]
Abstract
Marfan syndrome is consequent upon mutations in FBN1, which encodes the extracellular matrix microfibrillar protein fibrillin-1. The phenotype is characterised by development of thoracic aortic aneurysm. Current understanding of the pathogenesis of aneurysms in Marfan syndrome focuses upon abnormal vascular smooth muscle cell signalling through the transforming growth factor beta (TGFβ) pathway. Angiotensin II (Ang II) can directly induce aortic dilatation and also influence TGFβ synthesis and signalling. It has been hypothesised that antagonism of Ang II signalling may protect against aortic dilatation in Marfan syndrome. Experimental studies have been supportive of this hypothesis, however results from multiple clinical trials are conflicting. This paper examines current knowledge about the interactions of Ang II and TGFβ signalling in the vasculature, and critically interprets the experimental and clinical findings against these signalling interactions.
Collapse
Affiliation(s)
- Christopher Yu
- Sydney Medical School, University of Sydney, Sydney 2006, Australia
| | | |
Collapse
|
36
|
Wagenseil JE. Bio-chemo-mechanics of thoracic aortic aneurysms. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 5:50-57. [PMID: 29911202 DOI: 10.1016/j.cobme.2018.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most thoracic aortic aneurysms (TAAs) occur in the ascending aorta. This review focuses on the unique bio-chemo-mechanical environment that makes the ascending aorta susceptible to TAA. The environment includes solid mechanics, fluid mechanics, cell phenotype, and extracellular matrix composition. Advances in solid mechanics include quantification of biaxial deformation and complex failure behavior of the TAA wall. Advances in fluid mechanics include imaging and modeling of hemodynamics that may lead to TAA formation. For cell phenotype, studies demonstrate changes in cell contractility that may serve to sense mechanical changes and transduce chemical signals. Studies on matrix defects highlight the multi-factorial nature of the disease. We conclude that future work should integrate the effects of bio-chemo-mechanical factors for improved TAA treatment.
Collapse
Affiliation(s)
- Jessica E Wagenseil
- Dept. of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO
| |
Collapse
|