1
|
Cai H, Huang J, Wang W, Lin W, Ahmed W, Lu D, Quan J, Chen L. Characteristics of Parthenogenetic Stem Cells and Their Potential Treatment Strategy for Central Nervous System Diseases. Neuropsychiatr Dis Treat 2025; 21:213-227. [PMID: 39926116 PMCID: PMC11804250 DOI: 10.2147/ndt.s497758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025] Open
Abstract
Stem cells hold significant promise in treating neurological illnesses, such as stroke, spinal cord injury and neurodegenerative diseases. The origins and characteristics of human parthenogenetic stem cells might lead to a new research area in treating nervous system diseases. The current clinical studies in the field of traumatic brain injury and neurodegenerative diseases are reviewed. Some variables that influence common stem cells' survival, proliferation, and therapeutic efficacy will be mentioned in this paper because they may play an important role in studying parthenogenetic stem cells.
Collapse
Affiliation(s)
- Hengsen Cai
- Department of Neurosurgery, The second People’s Hospital of Pingnan, Pingnan, Guangxi, People’s Republic of China
| | - Jiajun Huang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510310, People’s Republic of China
| | - Wei Wang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510310, People’s Republic of China
| | - Wentong Lin
- Department of Orthopaedics, Chaozhou Hospital of Traditional Chinese Medicine, Chaozhou, Guangdong, People’s Republic of China
| | - Waqas Ahmed
- Department of Neurology, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| | - Deng Lu
- Department of Neurosurgery, The second People’s Hospital of Pingnan, Pingnan, Guangxi, People’s Republic of China
| | - Jiewei Quan
- Department of Neurosurgery, The second People’s Hospital of Pingnan, Pingnan, Guangxi, People’s Republic of China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510310, People’s Republic of China
| |
Collapse
|
2
|
Capuzzo AM, Piccolantonio G, Negri A, Bontempi P, Lacavalla MA, Malatesta M, Scambi I, Mariotti R, Lüdtke-Buzug K, Corsi M, Marzola P. Comparison between USPIOs and SPIOs for Multimodal Imaging of Extracellular Vesicles Extracted from Adipose Tissue-Derived Adult Stem Cells. Int J Mol Sci 2024; 25:9701. [PMID: 39273647 PMCID: PMC11395141 DOI: 10.3390/ijms25179701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Adipose tissue-derived adult stem (ADAS) cells and extracellular vesicle (EV) therapy offer promising avenues for treating neurodegenerative diseases due to their accessibility and potential for autologous cell transplantation. However, the clinical application of ADAS cells or EVs is limited by the challenge of precisely identifying them in specific regions of interest. This study compares two superparamagnetic iron oxide nanoparticles, differing mainly in size, to determine their efficacy for allowing non-invasive ADAS tracking via MRI/MPI and indirect labeling of EVs. We compared a USPIO (about 5 nm) with an SPIO (Resovist®, about 70 nm). A physicochemical characterization of nanoparticles was conducted using DLS, TEM, MRI, and MPI. ADAS cells were labeled with the two nanoparticles, and their viability was assessed via MTT assay. MRI detected labeled cells, while TEM and Prussian Blue staining were employed to confirm cell uptake. The results revealed that Resovist® exhibited higher transversal relaxivity value than USPIO and, consequently, allows for detection with higher sensitivity by MRI. A 200 µgFe/mL concentration was identified as optimal for ADAS labeling. MPI detected only Resovist®. The findings suggest that Resovist® may offer enhanced detection of ADAS cells and EVs, making it suitable for multimodal imaging. Preliminary results obtained by extracting EVs from ADAS cells labeled with Resovist® indicate that EVs retain the nanoparticles, paving the way to an efficient and multimodal detection of EVs.
Collapse
Affiliation(s)
- Arnaud M Capuzzo
- Department of Diagnostics and Public Health, University of Verona, Strada le Grazie, 8, 37134 Verona, Italy
| | - Giusi Piccolantonio
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie, 15, 37134 Verona, Italy
| | - Alessandro Negri
- Department of Diagnostics and Public Health, University of Verona, Strada le Grazie, 8, 37134 Verona, Italy
| | - Pietro Bontempi
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie, 15, 37134 Verona, Italy
| | - Maria A Lacavalla
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie, 15, 37134 Verona, Italy
- Department of Chemical Science, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Manuela Malatesta
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Ilaria Scambi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Raffaella Mariotti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Kerstin Lüdtke-Buzug
- Institute of Medical Engineering, University of Luebeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, 23562 Lübeck, Germany
| | - Mauro Corsi
- Evotec Consultant, Via A. Fleming 4, 37135 Verona, Italy
| | - Pasquina Marzola
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie, 15, 37134 Verona, Italy
| |
Collapse
|
3
|
Cherkashova E, Namestnikova D, Leonov G, Gubskiy I, Sukhinich K, Melnikov P, Chekhonin V, Yarygin K, Goldshtein D, Salikhova D. Comparative study of the efficacy of intra-arterial and intravenous transplantation of human induced pluripotent stem cells-derived neural progenitor cells in experimental stroke. PeerJ 2023; 11:e16358. [PMID: 38025691 PMCID: PMC10640846 DOI: 10.7717/peerj.16358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Background Cell therapy using neural progenitor cells (NPCs) is a promising approach for ischemic stroke treatment according to the results of multiple preclinical studies in animal stroke models. In the vast majority of conducted animal studies, the therapeutic efficacy of NPCs was estimated after intracerebral transplantation, while the information of the effectiveness of systemic administration is limited. Nowadays, several clinical trials aimed to estimate the safety and efficacy of NPCs transplantation in stroke patients were also conducted. In these studies, NPCs were transplanted intracerebrally in the subacute/chronic phase of stroke. The results of clinical trials confirmed the safety of the approach, however, the degree of functional improvement (the primary efficacy endpoint) was not sufficient in the majority of the studies. Therefore, more studies are needed in order to investigate the optimal transplantation parameters, especially the timing of cell transplantation after the stroke onset. This study aimed to evaluate the therapeutic effects of intra-arterial (IA) and intravenous (IV) administration of NPCs derived from induced pluripotent stem cells (iNPCs) in the acute phase of experimental stroke in rats. Induced pluripotent stem cells were chosen as the source of NPCs as this technology is perspective, has no ethical concerns and provides the access to personalized medicine. Methods Human iNPCs were transplanted IA or IV into male Wistar rats 24 h after the middle cerebral artery occlusion stroke modeling. Therapeutic efficacy was monitored for 14 days and evaluated in comparison with the cell transplantation-free control group. Additionally, cell distribution in the brain was assessed. Results The obtained results show that both routes of systemic transplantation (IV and IA) significantly reduced the mortality and improved the neurological deficit of experimental animals compared to the control group. At the same time, according to the MRI data, only IA administration led to faster and prominent reduction of the stroke volume. After IA administration, iNPCs transiently trapped in the brain and were not detected on day 7 after the transplantation. In case of IV injection, transplanted cells were not visualized in the brain. The obtained data demonstrated that the systemic transplantation of human iNPCs in the acute phase of ischemic stroke can be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Elvira Cherkashova
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russian Federation
| | - Daria Namestnikova
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russian Federation
| | - Georgiy Leonov
- Orekhovich Research Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Ilya Gubskiy
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russian Federation
| | - Kirill Sukhinich
- Orekhovich Research Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel Melnikov
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Vladimir Chekhonin
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Konstantin Yarygin
- Orekhovich Research Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | | | - Diana Salikhova
- Institute of Molecular and Cellular Medicine, Medical Institute, RUDN University, Moscow, Russian Federation
| |
Collapse
|
4
|
He XY, Zhou YR, Mu T, Liao YF, Jiang L, Qin Y, Cai JH. Magnetic resonance imaging focused on the ferritin heavy chain 1 reporter gene detects neuronal differentiation in stem cells. Neural Regen Res 2023; 18:1563-1569. [PMID: 36571363 PMCID: PMC10075097 DOI: 10.4103/1673-5374.358608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The neuronal differentiation of mesenchymal stem cells offers a new strategy for the treatment of neurological disorders. Thus, there is a need to identify a noninvasive and sensitive in vivo imaging approach for real-time monitoring of transplanted stem cells. Our previous study confirmed that magnetic resonance imaging, with a focus on the ferritin heavy chain 1 reporter gene, could track the proliferation and differentiation of bone marrow mesenchymal stem cells that had been transduced with lentivirus carrying the ferritin heavy chain 1 reporter gene. However, we could not determine whether or when bone marrow mesenchymal stem cells had undergone neuronal differentiation based on changes in the magnetic resonance imaging signal. To solve this problem, we identified a neuron-specific enolase that can be differentially expressed before and after neuronal differentiation in stem cells. In this study, we successfully constructed a lentivirus carrying the neuron-specific enolase promoter and expressing the ferritin heavy chain 1 reporter gene; we used this lentivirus to transduce bone marrow mesenchymal stem cells. Cellular and animal studies showed that the neuron-specific enolase promoter effectively drove the expression of ferritin heavy chain 1 after neuronal differentiation of bone marrow mesenchymal stem cells; this led to intracellular accumulation of iron and corresponding changes in the magnetic resonance imaging signal. In summary, we established an innovative magnetic resonance imaging approach focused on the induction of reporter gene expression by a neuron-specific promoter. This imaging method can be used to noninvasively and sensitively detect neuronal differentiation in stem cells, which may be useful in stem cell-based therapies.
Collapse
Affiliation(s)
- Xiao-Ya He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yi-Rui Zhou
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tong Mu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing; Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi-Fan Liao
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics; Department of Nuclear Medicine, The Second Hospital of the Army Medical University, Chongqing, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Qin
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jin-Hua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
5
|
Namestnikova DD, Gubskiy IL, Cherkashova EA, Sukhinich KK, Melnikov PA, Gabashvili AN, Kurilo VV, Chekhonin VP, Gubsky LV, Yarygin KN. Therapeutic Efficacy and Migration of Mesenchymal Stem Cells after Intracerebral Transplantation in Rats with Experimental Ischemic Stroke. Bull Exp Biol Med 2023:10.1007/s10517-023-05822-1. [PMID: 37336809 DOI: 10.1007/s10517-023-05822-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 06/21/2023]
Abstract
We studied therapeutic efficacy and migration characteristics of mesenchymal stem cells isolated from the human placenta after their intracerebral (stereotactic) administration to rats with the experimental ischemic stroke. It was shown that cell therapy significantly improved animal survival rate and reduced the severity of neurological deficit. New data on the migration pathways of transplanted cells in the brain were obtained.
Collapse
Affiliation(s)
- D D Namestnikova
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I L Gubskiy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia.
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - E A Cherkashova
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K K Sukhinich
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - P A Melnikov
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A N Gabashvili
- National Research Technology University "MISiS", Moscow, Russia
| | - V V Kurilo
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Chekhonin
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L V Gubsky
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
6
|
Dynamic MRI of the Mesenchymal Stem Cells Distribution during Intravenous Transplantation in a Rat Model of Ischemic Stroke. Life (Basel) 2023; 13:life13020288. [PMID: 36836645 PMCID: PMC9962901 DOI: 10.3390/life13020288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Systemic transplantation of mesenchymal stem cells (MSCs) is a promising approach for the treatment of ischemia-associated disorders, including stroke. However, exact mechanisms underlying its beneficial effects are still debated. In this respect, studies of the transplanted cells distribution and homing are indispensable. We proposed an MRI protocol which allowed us to estimate the dynamic distribution of single superparamagnetic iron oxide labeled MSCs in live ischemic rat brain during intravenous transplantation after the transient middle cerebral artery occlusion. Additionally, we evaluated therapeutic efficacy of cell therapy in this rat stroke model. According to the dynamic MRI data, limited numbers of MSCs accumulated diffusely in the brain vessels starting at the 7th minute from the onset of infusion, reached its maximum by 29 min, and gradually eliminated from cerebral circulation during 24 h. Despite low numbers of cells entering brain blood flow and their short-term engraftment, MSCs transplantation induced long lasting improvement of the neurological deficit, but without acceleration of the stroke volume reduction compared to the control animals during 14 post-transplantation days. Taken together, these findings indicate that MSCs convey their positive action by triggering certain paracrine mechanisms or cell-cell interactions or invoking direct long-lasting effects on brain vessels.
Collapse
|
7
|
Liu H, Sun R, Wang L, Chen X, Li G, Cheng Y, Zhai G, Bay BH, Yang F, Gu N, Guo Y, Fan H. Biocompatible Iron Oxide Nanoring-Labeled Mesenchymal Stem Cells: An Innovative Magnetothermal Approach for Cell Tracking and Targeted Stroke Therapy. ACS NANO 2022; 16:18806-18821. [PMID: 36278899 DOI: 10.1021/acsnano.2c07581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Labeling stem cells with magnetic nanoparticles is a promising technique for in vivo tracking and magnetic targeting of transplanted stem cells, which is critical for improving the therapeutic efficacy of cell therapy. However, conventional endocytic labeling with relatively poor labeling efficiency and a short labeling lifetime has hindered the implementation of these innovative enhancements in stem-cell-mediated regenerative medicine. Herein, we describe an advanced magnetothermal approach to label mesenchymal stem cells (MSCs) efficiently by local induction of heat-enhanced membrane permeability for magnetic resonance imaging (MRI) tracking and targeted therapy of stroke, where biocompatible γ-phase, ferrimagnetic vortex-domain iron oxide nanorings (γ-FVIOs) with superior magnetoresponsive properties were used as a tracer. This approach facilitates a safe and efficient labeling of γ-FVIOs as high as 150 pg of Fe per cell without affecting the MSCs proliferation and differentiation, which is 3.44-fold higher than that by endocytosis labeling. Such a high labeling efficiency not only enables the ultrasensitive magnetic resonance imaging (MRI) detection of sub-10 cells and long-term tracking of transplanted MSCs over 10 weeks but also endows transplanted MSCs with a magnetic manipulation ability in vivo. A proof-of-concept study using a rat stroke model showed that the labeled MSCs facilitated MRI tracking and magnetic targeting for efficient replacement therapy with a significantly reduced dosage of 5 × 104 transplanted cells. The findings in this study have demonstrated the great potential of the magnetothermal approach as an efficient labeling technique for future clinical usage.
Collapse
Affiliation(s)
- Hanrui Liu
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu610041, China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
| | - Ran Sun
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu610041, China
| | - Xiaoyong Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
| | - Galong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
- School of Medicine, Northwest University, Xi'an710069, China
| | - Yu Cheng
- Institute for Regenerative Medicine, The Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai200092, China
| | - Gaohong Zhai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, 117594, Singapore
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210009, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210009, China
| | - Yingkun Guo
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
- School of Medicine, Northwest University, Xi'an710069, China
| |
Collapse
|
8
|
Maiborodin IV, Maslov RV, Ryaguzov ME, Maiborodina VI, Lushnikova EL. Dissemination of Multipotent Stromal Cells in the Organism after Their Injection into Intact and Resected Liver in the Experiment. Bull Exp Biol Med 2022; 174:116-124. [PMID: 36437342 DOI: 10.1007/s10517-022-05659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/29/2022]
Abstract
The possibility of dissemination of bone marrow multipotent stromal cells stained with Vybrant CM-Dil after injection into an intact and resected liver was studied using luminescence microscopy. Labeled cells were found in the kidneys, spleen, lungs, axillary, mesenteric, and inguinal lymph nodes. We observed dissemination of multipotent stromal cells and their detritus throughout the body that occurred only after filtration in the lungs, where most cells underwent destruction. Perivascularly located macrophages in various organs can phagocytize multipotent stromal cells and their detritus from blood vessels. The content of objects labeled with Vybrant CM-Dil in distant organs was significantly lower after multipotent stromal cell injection into the resected liver, which was associated with the deposition of cells in the damaged area of the organ and their partial entry into the abdominal cavity.
Collapse
Affiliation(s)
- I V Maiborodin
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia.
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - R V Maslov
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - M E Ryaguzov
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V I Maiborodina
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - E L Lushnikova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
9
|
Dose-Dependent Effects of Intravenous Mesenchymal Stem Cell Transplantation in Rats with Acute Focal Cerebral Ischemia. Bull Exp Biol Med 2022; 173:514-518. [DOI: 10.1007/s10517-022-05573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/26/2022]
|
10
|
Peserico A, Di Berardino C, Russo V, Capacchietti G, Di Giacinto O, Canciello A, Camerano Spelta Rapini C, Barboni B. Nanotechnology-Assisted Cell Tracking. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1414. [PMID: 35564123 PMCID: PMC9103829 DOI: 10.3390/nano12091414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
The usefulness of nanoparticles (NPs) in the diagnostic and/or therapeutic sector is derived from their aptitude for navigating intra- and extracellular barriers successfully and to be spatiotemporally targeted. In this context, the optimization of NP delivery platforms is technologically related to the exploitation of the mechanisms involved in the NP-cell interaction. This review provides a detailed overview of the available technologies focusing on cell-NP interaction/detection by describing their applications in the fields of cancer and regenerative medicine. Specifically, a literature survey has been performed to analyze the key nanocarrier-impacting elements, such as NP typology and functionalization, the ability to tune cell interaction mechanisms under in vitro and in vivo conditions by framing, and at the same time, the imaging devices supporting NP delivery assessment, and consideration of their specificity and sensitivity. Although the large amount of literature information on the designs and applications of cell membrane-coated NPs has reached the extent at which it could be considered a mature branch of nanomedicine ready to be translated to the clinic, the technology applied to the biomimetic functionalization strategy of the design of NPs for directing cell labelling and intracellular retention appears less advanced. These approaches, if properly scaled up, will present diverse biomedical applications and make a positive impact on human health.
Collapse
Affiliation(s)
- Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.D.B.); (V.R.); (G.C.); (O.D.G.); (A.C.); (C.C.S.R.); (B.B.)
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical Principles and Applications in Nanomedicine. Cancers (Basel) 2022; 14:cancers14071626. [PMID: 35406399 PMCID: PMC8997011 DOI: 10.3390/cancers14071626] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Magnetic Resonance Imaging (MRI) is a consolidated imaging tool for the multiparametric assessment of tissues in various pathologies from degenerative and inflammatory diseases to cancer. In recent years, the continuous technological evolution of the equipment has led to the development of sequences that provide not only anatomical but also functional and metabolic information. In addition, there is a growing and emerging field of research in clinical applications using MRI to exploit the diagnostic and therapeutic capabilities of nanocompounds. This review illustrates the application of the most advanced magnetic resonance techniques in the field of nanomedicine. Abstract In the last decades, nanotechnology has been used in a wide range of biomedical applications, both diagnostic and therapeutic. In this scenario, imaging techniques represent a fundamental tool to obtain information about the properties of nanoconstructs and their interactions with the biological environment in preclinical and clinical settings. This paper reviews the state of the art of the application of magnetic resonance imaging in the field of nanomedicine, as well as the use of nanoparticles as diagnostic and therapeutic tools, especially in cancer, including the characteristics that hinder the use of nanoparticles in clinical practice.
Collapse
|
12
|
The Impact of Cerebral Perfusion on Mesenchymal Stem Cells Distribution after Intra-Arterial Transplantation: A Quantitative MR Study. Biomedicines 2022; 10:biomedicines10020353. [PMID: 35203560 PMCID: PMC8962387 DOI: 10.3390/biomedicines10020353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Intra-arterial (IA) mesenchymal stem cells (MSCs) transplantation providing targeted cell delivery to brain tissue is a promising approach to the treatment of neurological disorders, including stroke. Factors determining cell distribution after IA administration have not been fully elucidated. Their decoding may contribute to the improvement of a transplantation technique and facilitate translation of stroke cell therapy into clinical practice. The goal of this work was to quantitatively assess the impact of brain tissue perfusion on the distribution of IA transplanted MSCs in rat brains. We performed a selective MR-perfusion study with bolus IA injection of gadolinium-based contrast agent and subsequent IA transplantation of MSCs in intact rats and rats with experimental stroke and evaluated the correlation between different perfusion parameters and cell distribution estimated by susceptibility weighted imaging (SWI) immediately after cell transplantation. The obtained results revealed a certain correlation between the distribution of IA transplanted MSCs and brain perfusion in both intact rats and rats with experimental stroke with the coefficient of determination up to 30%. It can be concluded that the distribution of MSCs after IA injection can be partially predicted based on cerebral perfusion data, but other factors requiring further investigation also have a significant impact on the fate of transplanted cells.
Collapse
|
13
|
MRI-Based and Histologically Verified 3D Modeling of Spatial Distribution of Intra-Arterially Transplanted Cells in Rat Brain. Bull Exp Biol Med 2021; 171:517-522. [PMID: 34542769 DOI: 10.1007/s10517-021-05263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 10/20/2022]
Abstract
Visualization of transplanted stem cells in the brain is an important issue in the study of the mechanisms of their therapeutic action. MRI allowing visualization of single transplanted cells previously labeled with superparamagnetic iron oxide particles is among the most informative methods of non-invasive intravital imaging. Verification of MRI data using pathomorphological examination at the microscopic level helps to avoid errors in data interpretation. However, making serial sections of the whole brain and searching for transplanted cells under the microscope is laborious and time-consuming. We have developed a method for 3D modeling of the distribution of transplanted cells in the brain allowing navigating through various brain structures and identifying the areas of accumulation of transplanted cells, which significantly increases the efficiency and reduces the time of histological examination.
Collapse
|
14
|
Andrzejewska A, Dabrowska S, Lukomska B, Janowski M. Mesenchymal Stem Cells for Neurological Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002944. [PMID: 33854883 PMCID: PMC8024997 DOI: 10.1002/advs.202002944] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/23/2020] [Indexed: 05/13/2023]
Abstract
Neurological disorders are becoming a growing burden as society ages, and there is a compelling need to address this spiraling problem. Stem cell-based regenerative medicine is becoming an increasingly attractive approach to designing therapies for such disorders. The unique characteristics of mesenchymal stem cells (MSCs) make them among the most sought after cell sources. Researchers have extensively studied the modulatory properties of MSCs and their engineering, labeling, and delivery methods to the brain. The first part of this review provides an overview of studies on the application of MSCs to various neurological diseases, including stroke, traumatic brain injury, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, Parkinson's disease, and other less frequently studied clinical entities. In the second part, stem cell delivery to the brain is focused. This fundamental but still understudied problem needs to be overcome to apply stem cells to brain diseases successfully. Here the value of cell engineering is also emphasized to facilitate MSC diapedesis, migration, and homing to brain areas affected by the disease to implement precision medicine paradigms into stem cell-based therapies.
Collapse
Affiliation(s)
- Anna Andrzejewska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Sylwia Dabrowska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Barbara Lukomska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Miroslaw Janowski
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
- Center for Advanced Imaging ResearchDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201‐1595USA
- Tumor Immunology and Immunotherapy ProgramUniversity of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201‐1595USA
| |
Collapse
|
15
|
Namestnikova DD, Gubskiy IL, Revkova VA, Sukhinich KK, Melnikov PA, Gabashvili AN, Cherkashova EA, Vishnevskiy DA, Kurilo VV, Burunova VV, Semkina AS, Abakumov MA, Gubsky LV, Chekhonin VP, Ahlfors JE, Baklaushev VP, Yarygin KN. Intra-Arterial Stem Cell Transplantation in Experimental Stroke in Rats: Real-Time MR Visualization of Transplanted Cells Starting With Their First Pass Through the Brain With Regard to the Therapeutic Action. Front Neurosci 2021; 15:641970. [PMID: 33737862 PMCID: PMC7960930 DOI: 10.3389/fnins.2021.641970] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cell therapy is an emerging approach to stroke treatment with a potential to limit brain damage and enhance its restoration after the acute phase of the disease. In this study we tested directly reprogrammed neural precursor cells (drNPC) derived from adult human bone marrow cells in the rat middle cerebral artery occlusion (MCAO) model of acute ischemic stroke using human placenta mesenchymal stem cells (pMSC) as a positive control with previously confirmed efficacy. Cells were infused into the ipsilateral (right) internal carotid artery of male Wistar rats 24 h after MCAO. The main goal of this work was to evaluate real-time distribution and subsequent homing of transplanted cells in the brain. This was achieved by performing intra-arterial infusion directly inside the MRI scanner and allowed transplanted cells tracing starting from their first pass through the brain vessels. Immediately after transplantation, cells were observed in the periphery of the infarct zone and in the brain stem, 15 min later small numbers of cells could be discovered deep in the infarct core and in the contralateral hemisphere, where drNPC were seen earlier and in greater numbers than pMSC. Transplanted cells in both groups could no longer be detected in the rat brain 48-72 h after infusion. Histological and histochemical analysis demonstrated that both the drNPC and pMSC were localized inside blood vessels in close contact with the vascular wall. No passage of labeled cells through the blood brain barrier was observed. Additionally, the therapeutic effects of drNPC and pMSC were compared. Both drNPC and pMSC induced substantial attenuation of neurological deficits evaluated at the 7th and 14th day after transplantation using the modified neurological severity score (mNSS). Some of the effects of drNPC and pMSC, such as the influence on the infarct volume and the survival rate of animals, differed. The results suggest a paracrine mechanism of the positive therapeutic effects of IA drNPC and pMSC infusion, potentially enhanced by the cell-cell interactions. Our data also indicate that the long-term homing of transplanted cells in the brain is not necessary for the brain's functional recovery.
Collapse
Affiliation(s)
- Daria D. Namestnikova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Ilya L. Gubskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Veronica A. Revkova
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Kirill K. Sukhinich
- Laboratory of Problems of Regeneration, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Pavel A. Melnikov
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Anna N. Gabashvili
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Elvira A. Cherkashova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Daniil A. Vishnevskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Victoria V. Kurilo
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Veronica V. Burunova
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Alevtina S. Semkina
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Maxim A. Abakumov
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Leonid V. Gubsky
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | | | - Vladimir P. Baklaushev
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
16
|
Sukhinich KK, Namestnikova DD, Gubskii IL, Gabashvili AN, Mel'nikov PA, Vitushev EY, Vishnevskii DA, Revkova VA, Solov'eva AA, Voitkovskaya KS, Vakhrushev IV, Burunova VV, Berdalin AB, Aleksandrova MA, Chekhonin VP, Gubskii LV, Yarygin KN. Distribution and Migration of Human Placental Mesenchymal Stromal Cells in the Brain of Healthy Rats after Stereotaxic or Intra-Arterial Transplantation. Bull Exp Biol Med 2020; 168:542-551. [PMID: 32157512 DOI: 10.1007/s10517-020-04750-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Human placenta mesenchymal stromal cells were injected to healthy rats either stereotaxically into the striatum or intra-arterially through the internal carotid artery. Some cells injected into the brain migrated along the corpus callosum both medially and laterally or concentrated around small blood vessels. A small fraction of MSC injected intra-arterially adhered to the endothelium and stayed inside blood vessels for up to 48 hours mostly in the basin of the middle cerebral artery. Neither stereotaxic, nor intra-arterial transplantation of mesenchymal stromal cells modulated the proliferation of neural stem cells in the subventricular zone of the brain, but stereotaxic transplantation suppressed activation of their proliferation in response to traumatization with the needle.
Collapse
Affiliation(s)
- K K Sukhinich
- N. K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| | - D D Namestnikova
- N. I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - I L Gubskii
- Federal Center of Cerebrovascular Pathology and Stroke, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A N Gabashvili
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - P A Mel'nikov
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E Ya Vitushev
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - D A Vishnevskii
- N. I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - V A Revkova
- Federal Research and Clinical Center, Federal Medical-Biological Agency, Moscow, Russia
| | - A A Solov'eva
- N. I. Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Cerebrovascular Pathology and Stroke, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K S Voitkovskaya
- N. I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - I V Vakhrushev
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - V V Burunova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - A B Berdalin
- Federal Center of Cerebrovascular Pathology and Stroke, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M A Aleksandrova
- N. K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - V P Chekhonin
- N. I. Pirogov Russian National Research Medical University, Moscow, Russia
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L V Gubskii
- N. I. Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Cerebrovascular Pathology and Stroke, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
17
|
Ali AAA, Shahror RA, Chen KY. Efficient Labeling Of Mesenchymal Stem Cells For High Sensitivity Long-Term MRI Monitoring In Live Mice Brains. Int J Nanomedicine 2020; 15:97-114. [PMID: 32021167 PMCID: PMC6955624 DOI: 10.2147/ijn.s211205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/08/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Regenerative medicine field is still lagging due to the lack of adequate knowledge regarding the homing of therapeutic cells towards disease sites, tracking of cells during treatment, and monitoring the biodistribution and fate of cells. Such necessities require labeling of cells with imaging agents that do not alter their biological characteristics, and development of suitable non-invasive imaging modalities. PURPOSE We aimed to develop, characterize, and standardize a facile labeling strategy for engineered mesenchymal stem cells without altering their viability, secretion of FGF21 protein (neuroprotective), and differentiation capabilities for non-invasive longitudinal MRI monitoring in live mice brains with high sensitivity. METHODS We compared the labeling efficiency of different commercial iron oxide nanoparticles towards our stem cells and determined the optimum labeling conditions using prussian blue staining, confocal microscopy, transmission electron microscopy, and flow cytometry. To investigate any change in biological characteristics of labeled cells, we tested their viability by WST-1 assay, expression of FGF21 by Western blot, and adipogenic and osteogenic differentiation capabilities. MRI contrast-enhancing properties of labeled cells were investigated in vitro using cell-agarose phantoms and in mice brains transplanted with the therapeutic stem cells. RESULTS We determined the nanoparticles that showed best labeling efficiency and least extracellular aggregation. We further optimized their labeling conditions (nanoparticles concentration and media supplementation) to achieve high cellular uptake and minimal extracellular aggregation of nanoparticles. Cell viability, expression of FGF21 protein, and differentiation capabilities were not impeded by nanoparticles labeling. Low number of labeled cells produced strong MRI signal decay in phantoms and in live mice brains which were visible for 4 weeks post transplantation. CONCLUSION We established a standardized magnetic nanoparticle labeling platform for stem cells that were monitored longitudinally with high sensitivity in mice brains using MRI for regenerative medicine applications.
Collapse
Affiliation(s)
- Ahmed Atef Ahmed Ali
- TMU Neuroscience Research Center – NeuroImage, College of Medicine, Taipei Medical University, Taipei110, Taiwan,Correspondence: Ahmed Atef Ahmed Ali Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei110, Taiwan ROCTel +886-2-2736-1661 ext 3215 Email
| | - Rami Ahmad Shahror
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei110, Taiwan,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei110, Taiwan
| | - Kai-Yun Chen
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei110, Taiwan,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei110, Taiwan
| |
Collapse
|
18
|
Dabrowska S, Andrzejewska A, Strzemecki D, Muraca M, Janowski M, Lukomska B. Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. J Neuroinflammation 2019; 16:216. [PMID: 31722731 PMCID: PMC6852925 DOI: 10.1186/s12974-019-1602-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Background Ischemic stroke is the major cause of long-term severe disability and death in aged population. Cell death in the infarcted region of the brain induces immune reaction leading to further progression of tissue damage. Immunomodulatory function of mesenchymal stem cells (MSCs) has been shown in multiple preclinical studies; however, it has not been successfully translated to a routine clinical practice due to logistical, economical, regulatory, and intellectual property obstacles. It has been recently demonstrated that therapeutic effect of intravenously administered MSCs can be recapitulated by extracellular vesicles (EVs) derived from them. However, in contrast to MSCs, EVs were not capable to decrease stroke-induced neuroinflammation. Therefore, the aim of the study was to investigate if intra-arterial delivery of MSC-derived EVs will have stronger impact on focal brain injury-induced neuroinflammation, which mimics ischemic stroke, and how it compares to MSCs. Methods The studies were performed in adult male Wistar rats with focal brain injury induced by injection of 1 μl of 50 nmol ouabain into the right hemisphere. Two days after brain insult, 5 × 105 human bone marrow MSCs (hBM-MSCs) labeled with Molday ION or 1.3 × 109 EVs stained with PKH26 were intra-arterially injected into the right hemisphere under real-time MRI guidance. At days 1, 3, and 7 post-transplantation, the rats were decapitated, the brains were removed, and the presence of donor cells or EVs was analyzed. The cellular immune response in host brain was evaluated immunohistochemically, and humoral factors were measured by multiplex immunoassay. Results hBM-MSCs and EVs transplanted intra-arterially were observed in the rat ipsilateral hemisphere, near the ischemic region. Immunohistochemical analysis of brain tissue showed that injection of hBM-MSCs or EVs leads to the decrease of cell activation by ischemic injury, i.e., astrocytes, microglia, and infiltrating leucocytes, including T cytotoxic cells. Furthermore, we observed significant decrease of pro-inflammatory cytokines and chemokines after hBM-MSC or EV infusion comparing with non-treated rats with focal brain injury. Conclusions Intra-arterially injected EVs attenuated neuroinflammation evoked by focal brain injury, which mimics ischemic stroke, and this effect was comparable to intra-arterial hBM-MSC transplantation. Thus, intra-arterial injection of EVs might be an attractive therapeutic approach, which obviates MSC-related obstacles.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Damian Strzemecki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Maurizio Muraca
- Department of Women's and Children's Health, University of Padua, Via Giustiniani 3, 35128, Padua, Italy
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland.
| |
Collapse
|
19
|
Namestnikova DD, Tairova RT, Sukhinich KK, Cherkashova EA, Gubskiy IL, Gubskiy LV, Yarygin KN. [Cell therapy for ischemic stroke. Stem cell types and results of pre-clinical trials]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:69-75. [PMID: 30499563 DOI: 10.17116/jnevro201811809269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The literature review addresses the use of stem cells (SC) in ischemic stroke (IS). Part 1 of the paper overviews the results of experimental animal studies. Characteristics of different SC types and results of their studies in experimental models of IS are presented in the first section, the second section considers pros and cons of the methods of SC injection.
Collapse
Affiliation(s)
- D D Namestnikova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - R T Tairova
- National Research Institute of Cerebrovascular Pathology and Stroke, Moscow, Russia
| | - K K Sukhinich
- Kol'tsov Institute of Development Biology, Moscow, Russia
| | - E A Cherkashova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I L Gubskiy
- National Research Institute of Cerebrovascular Pathology and Stroke, Moscow, Russia
| | - L V Gubskiy
- National Research Institute of Cerebrovascular Pathology and Stroke, Moscow, Russia
| | - K N Yarygin
- Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|