1
|
O'Sullivan SJ, Buchanan DM, Batail JMV, Williams NR. Should rTMS be considered a first-line treatment for major depressive episodes in adults? Clin Neurophysiol 2024; 165:76-87. [PMID: 38968909 DOI: 10.1016/j.clinph.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 07/07/2024]
Abstract
Treatment-resistant depression (TRD) is an epidemic with rising social, economic, and political costs. In a patient whose major depressive episode (MDE) persists through an adequate antidepressant trial, insurance companies often cover alternative treatments which may include repetitive transcranial magnetic stimulation (rTMS). RTMS is an FDA-cleared neuromodulation technique for TRD which is safe, efficacious, noninvasive, and well-tolerated. Recent developments in the optimization of rTMS algorithms and targeting have increased the efficacy of rTMS in treating depression, improved the clinical convenience of these treatments, and decreased the cost of a course of rTMS. In this opinion paper, we make a case for why conventional FDA-cleared rTMS should be considered as a first-line treatment for all adult MDEs. RTMS is compared to other first-line treatments including psychotherapy and SSRIs. These observations suggest that rTMS has similar efficacy, fewer side-effects, lower risk of serious adverse events, comparable compliance, the potential for more rapid relief, and cost-effectiveness. This suggestion, however, would be strengthened by further research with an emphasis on treatment-naive subjects in their first depressive episode, and trials directly contrasting rTMS with SSRIs or psychotherapy.
Collapse
Affiliation(s)
- Sean J O'Sullivan
- Department of Psychiatry and Behavioral Sciences, Dell School of Medicine, Austin, TX, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA. USA.
| | - Derrick M Buchanan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA. USA
| | - Jean-Marie V Batail
- Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Centre Hospitalier Guillaume Régnier, Rennes, France; Université de Rennes, Rennes, France
| | - Nolan R Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA. USA
| |
Collapse
|
2
|
Dalhuisen I, van Oostrom I, Spijker J, Wijnen B, van Exel E, van Mierlo H, de Waardt D, Arns M, Tendolkar I, van Eijndhoven P. rTMS as a Next Step in Antidepressant Nonresponders: A Randomized Comparison With Current Antidepressant Treatment Approaches. Am J Psychiatry 2024; 181:806-814. [PMID: 39108161 DOI: 10.1176/appi.ajp.20230556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/02/2024]
Abstract
OBJECTIVE Although repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for depression, little is known about the comparative effectiveness of rTMS and other treatment options, such as antidepressants. In this multicenter randomized controlled trial, rTMS was compared with the next pharmacological treatment step in patients with treatment-resistant depression. METHODS Patients with unipolar nonpsychotic depression (N=89) with an inadequate response to at least two treatment trials were randomized to treatment with rTMS or to a switch of antidepressants, both in combination with psychotherapy. Treatment duration was 8 weeks and consisted of either 25 high-frequency rTMS sessions to the left dorsolateral prefrontal cortex or a switch of antidepressant medication following the Dutch treatment algorithm. The primary outcome was change in depression severity based on the Hamilton Depression Rating Scale (HAM-D). Secondary outcomes were response and remission rates as well as change in symptom dimensions (anhedonia, anxiety, sleep, rumination, and cognitive reactivity). Finally, expectations regarding treatment were assessed. RESULTS rTMS resulted in a significantly larger reduction in depressive symptoms than medication, which was also reflected in higher response (37.5% vs. 14.6%) and remission (27.1% vs. 4.9%) rates. A larger decrease in symptoms of anxiety and anhedonia was observed after rTMS compared with a switch in antidepressants, and no difference from the medication group was seen for symptom reductions in rumination, cognitive reactivity, and sleep disorders. Expectations regarding treatment correlated with changes in HAM-D scores. CONCLUSIONS In a sample of patients with moderately treatment-resistant depression, rTMS was more effective in reducing depressive symptoms than a switch of antidepressant medication. In addition, the findings suggest that the choice of treatment may be guided by specific symptom dimensions.
Collapse
Affiliation(s)
- Iris Dalhuisen
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Iris van Oostrom
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Jan Spijker
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Ben Wijnen
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Eric van Exel
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Hans van Mierlo
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Dieuwertje de Waardt
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Martijn Arns
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, and Donders Institute for Brain, Cognition, and Behavior, Centre for Medical Neuroscience, Nijmegen, the Netherlands (Dalhuisen, Tendolkar, van Eijndhoven); Neurocare Clinics, Nijmegen, the Netherlands (van Oostrom); Depression Expertise Centre, Pro Persona Mental Health Care, and Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands (Spijker); Center for Economic Evaluation, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands (Wijnen); GGZ inGeest Specialized Mental Health Care, and Department of Psychiatry, Amsterdam University Medical Center, Amsterdam (van Exel); Department of Psychiatry and Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, the Netherlands (van Mierlo); Department of Psychiatry, Elisabeth-TweeSteden Ziekenhuis Hospital, Tilburg, the Netherlands (de Waardt); Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands (Arns); Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands (Arns)
| |
Collapse
|
3
|
Bastiaens J, Brown N, Bermudes RA, Juusola JL, Bravata DM, Marton TF. Utilization and outcomes of transcranial magnetic stimulation and usual care for MDD in a large group psychiatric practice. BMC Psychiatry 2024; 24:497. [PMID: 38982458 PMCID: PMC11234753 DOI: 10.1186/s12888-024-05928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/23/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND General psychiatrists' practice standards vary regarding when to implement transcranial magnetic stimulation (TMS) for care of patients with major depressive disorder (MDD). Furthermore, few studies have examined real-world utilization and clinical outcomes of TMS. This study analyzed data from a large, multi-site psychiatric practice to evaluate utilization and outcomes of TMS as well as usual care (UC) for patients with MDD. METHODS Depression outcomes for TMS and UC among adult patients at a multi-site psychiatric group practice were examined in this retrospective cohort analysis. Patients with a primary diagnosis of MDD, PHQ-9 ≥ 10, and a visit in November 2020 with 6-month follow-up were included and categorized into the TMS or UC cohorts. RESULTS Of 1,011 patients with qualifying PHQ-9 at the baseline visit, 9% (89) received a full course of TMS, and 583 patients receiving UC met study inclusion criteria (339 patients were excluded due to lacking a 6-month follow-up visit or receiving esketamine during the study period). The TMS cohort had higher baseline PHQ-9 than UC (17.9 vs. 15.5, p < .001) and had failed more medication trials (≥ 4 vs. 3.1, p < .001). Mean PHQ-9 decreased by 5.7 points (SD = 6.7, p < .001) in the TMS cohort and by 4.2 points (SD = 6.4, p < .001) in the UC cohort over the study period. Among patients who had failed four or more antidepressant medications, PHQ-9 decreased by 5.8 points in the TMS cohort (SD = 6.7, p < .001) and by 3.2 points in the UC cohort (SD = 6.3, p < .001). CONCLUSIONS TMS utilization was low, despite TMS showing significant real-world clinical benefits. Future research should examine and address barriers to wider adoption of TMS into routine patient care for patients with treatment-resistant MDD. Wider adoption including routine use of TMS in less treatment-resistant patients will allow statistical comparisons of outcomes between TMS and UC populations that are difficult to do when TMS is underutilized.
Collapse
Affiliation(s)
- Jesse Bastiaens
- Mindful Health Solutions, 360 Post St #500, San Francisco, CA, 94108, USA
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Natalie Brown
- Mindful Health Solutions, 360 Post St #500, San Francisco, CA, 94108, USA
| | - Richard A Bermudes
- Mindful Health Solutions, 360 Post St #500, San Francisco, CA, 94108, USA
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | | | - Dena M Bravata
- Mindful Health Solutions, 360 Post St #500, San Francisco, CA, 94108, USA
- Center for Primary Care & Outcomes Research, Stanford University, Palo Alto, CA, USA
| | - Tobias F Marton
- Mindful Health Solutions, 360 Post St #500, San Francisco, CA, 94108, USA.
- Department of Psychiatry, University of California, San Francisco, CA, USA.
| |
Collapse
|
4
|
Slejko JF, Mattingly TJ, Wilson A, Xie R, Chapman RH, Amill-Rosario A, dosReis S. Patient-Informed Value Elements in Cost-Effectiveness Analyses of Major Depressive Disorder Treatment: A Literature Review and Synthesis. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2024:S1098-3015(24)02404-5. [PMID: 38852668 DOI: 10.1016/j.jval.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVES Prior work identified 6 key value elements (attributes of treatment and desired outcomes) for individuals living with major depressive disorder (MDD) in managing their condition: mode of treatment, time to treatment helpfulness, MDD relief, quality of work, interaction with others, and affordability. The objective of our study was to identify whether previous cost-effectiveness analyses (CEAs) for MDD treatment addressed any of these value elements. A secondary objective was to identify whether any study engaged patients, family members, and caregivers in the model development process. METHODS We conducted a systematic literature review to identify published model-based CEAs. We compared the elements of the published studies with the MDD patient value elements elicited in prior work to identify gaps and areas for future research. RESULTS Of 86 published CEAs, we found that 7 included patient out-of-pocket costs, and 32 included measures of productivity, which were both priorities for individuals with MDD. We found that only 2 studies elicited measures from patients for their model, and 2 studies engaged patients in the modeling process. CONCLUSIONS Published CEA models for MDD treatment do not regularly include value elements that are a priority for this patient population nor do they include patients in their modeling process. Flexible models that can accommodate elements consistent with patient experience are needed, and a multistakeholder engagement approach would help accomplish this.
Collapse
Affiliation(s)
- Julia F Slejko
- Patient-Driven Values in Healthcare Evaluation (PAVE) Center, Department of Practice, Sciences and Health Outcomes Research, University of Maryland School of Pharmacy, Baltimore, MD, USA.
| | - T Joseph Mattingly
- Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, UT, USA
| | - Alexandra Wilson
- Patient-Driven Values in Healthcare Evaluation (PAVE) Center, Department of Practice, Sciences and Health Outcomes Research, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Richard Xie
- Innovation and Value Initiative, Alexandria, VA, USA
| | | | - Alejandro Amill-Rosario
- Patient-Driven Values in Healthcare Evaluation (PAVE) Center, Department of Practice, Sciences and Health Outcomes Research, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Susan dosReis
- Patient-Driven Values in Healthcare Evaluation (PAVE) Center, Department of Practice, Sciences and Health Outcomes Research, University of Maryland School of Pharmacy, Baltimore, MD, USA
| |
Collapse
|
5
|
Kabotyanski KE, Najera RA, Banks GP, Sharma H, Provenza NR, Hayden BY, Mathew SJ, Sheth SA. Cost-effectiveness and threshold analysis of deep brain stimulation vs. treatment-as-usual for treatment-resistant depression. Transl Psychiatry 2024; 14:243. [PMID: 38849334 PMCID: PMC11161481 DOI: 10.1038/s41398-024-02951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Treatment-resistant depression (TRD) affects approximately 2.8 million people in the U.S. with estimated annual healthcare costs of $43.8 billion. Deep brain stimulation (DBS) is currently an investigational intervention for TRD. We used a decision-analytic model to compare cost-effectiveness of DBS to treatment-as-usual (TAU) for TRD. Because this therapy is not FDA approved or in common use, our goal was to establish an effectiveness threshold that trials would need to demonstrate for this therapy to be cost-effective. Remission and complication rates were determined from review of relevant studies. We used published utility scores to reflect quality of life after treatment. Medicare reimbursement rates and health economics data were used to approximate costs. We performed Monte Carlo (MC) simulations and probabilistic sensitivity analyses to estimate incremental cost-effectiveness ratios (ICER; USD/quality-adjusted life year [QALY]) at a 5-year time horizon. Cost-effectiveness was defined using willingness-to-pay (WTP) thresholds of $100,000/QALY and $50,000/QALY for moderate and definitive cost-effectiveness, respectively. We included 274 patients across 16 studies from 2009-2021 who underwent DBS for TRD and had ≥12 months follow-up in our model inputs. From a healthcare sector perspective, DBS using non-rechargeable devices (DBS-pc) would require 55% and 85% remission, while DBS using rechargeable devices (DBS-rc) would require 11% and 19% remission for moderate and definitive cost-effectiveness, respectively. From a societal perspective, DBS-pc would require 35% and 46% remission, while DBS-rc would require 8% and 10% remission for moderate and definitive cost-effectiveness, respectively. DBS-pc will unlikely be cost-effective at any time horizon without transformative improvements in battery longevity. If remission rates ≥8-19% are achieved, DBS-rc will likely be more cost-effective than TAU for TRD, with further increasing cost-effectiveness beyond 5 years.
Collapse
Affiliation(s)
| | - Ricardo A Najera
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Garrett P Banks
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Himanshu Sharma
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Y Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Sanjay J Mathew
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Salabat D, Pourebrahimi A, Mayeli M, Cattarinussi G. The Therapeutic Role of Intermittent Theta Burst Stimulation in Schizophrenia: A Systematic Review and Meta-analysis. J ECT 2024; 40:78-87. [PMID: 38277616 DOI: 10.1097/yct.0000000000000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
ABSTRACT Schizophrenia affects approximately 1% of the population worldwide. Multifactorial reasons, ranging from drug resistance to adverse effects of medications, have necessitated exploring further therapeutic options. Intermittent theta burst stimulation (iTBS) is a novel high-frequency form of transcranial magnetic stimulation, a safe procedure with minor adverse effects with faster and longer-lasting poststimulation effects with a potential role in treating symptoms; however, the exact target brain regions and symptoms are still controversial. Therefore, we aimed to systematically investigate the current literature regarding the therapeutic utilities of iTBS using Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. Twelve studies were included among which 9 found iTBS effective to some degree. These studies targeted the dorsolateral prefrontal cortex and the midline cerebellum. We performed a random-effects meta-analysis on studies that compared the effects of iTBS on schizophrenia symptoms measured by the Positive and Negative Syndrome Scale (PANSS) to sham treatment. Our results showed no significant difference between iTBS and sham in PANSS positive and negative scores, but a trend-level difference in PANSS general scores ( k = 6, P = 0.07), and a significant difference in PANSS total scores ( k = 6, P = 0.03). Analysis of the studies targeting the dorsolateral prefrontal cortex showed improvement in PANSS negative scores ( k = 5, standardized mean difference = -0.83, P = 0.049), but not in PANSS positive scores. Moderators (intensity, pulse, quality, sessions) did not affect the results. However, considering the small number of studies included in this meta-analysis, future works are required to further explore the effects of these factors and also find optimum target regions for positive symptoms.
Collapse
|
7
|
Noda Y, Miyashita C, Komatsu Y, Kito S, Mimura M. Cost-effectiveness analysis comparing repetitive transcranial magnetic stimulation therapy with antidepressant treatment in patients with treatment-resistant depression in Japan. Psychiatry Res 2023; 330:115573. [PMID: 37939593 DOI: 10.1016/j.psychres.2023.115573] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 08/06/2023] [Indexed: 11/10/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) for patients with treatment-resistant depression (TRD) became covered by the National Health Insurance (NHI) in Japan since 2019. Although the evidence of rTMS for TRD is well established, the cost-effectiveness of rTMS versus antidepressants has not been thoroughly analyzed in Japan. Thus, we aimed to evaluate the cost-effectiveness of rTMS for TRD under the NHI system using a microsimulation model to compare the direct costs and quality-adjusted life years (QALYs). Model inputs of clinical parameters and the utility were derived from published literature. Cost parameters were estimated from the Japanese Claim Database. The robustness of the analyses was evaluated with sensitivity analysis and scenario analysis. The analysis estimated that rTMS increased effectiveness by 0.101QALYs and total cost by ¥94,370 ($689) compared with antidepressant medications. As a result, the incremental cost-effectiveness ratio (ICER) of rTMS was estimated to be ¥935,984 ($6,832)/QALY. In the sensitivity and scenario analyses, ICER did not exceed ¥5 million ($36,496)/QALY as the reference value of the Japanese public cost-effectiveness evaluation system. rTMS therapy for TRD can be a cost-effective treatment strategy compared to antidepressant medication under the NHI system in Japan.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Chiaki Miyashita
- Department of Medical Science, Teijin Pharma Limited, Tokyo, Japan
| | - Yoko Komatsu
- Department of Medical Science, Teijin Pharma Limited, Tokyo, Japan
| | - Shinsuke Kito
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
8
|
Citrenbaum C, Corlier J, Ngo D, Vince-Cruz N, Wilson A, Wilke SA, Krantz D, Tadayonnejad R, Ginder N, Levitt J, Lee JH, Leuchter MK, Strouse TB, Corse A, Vyas P, Leuchter AF. Pretreatment pupillary reactivity is associated with differential early response to 10 Hz and intermittent theta-burst repetitive transcranial magnetic stimulation (rTMS) treatment of major depressive disorder (MDD). Brain Stimul 2023; 16:1566-1571. [PMID: 37863389 DOI: 10.1016/j.brs.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Repetitive Transcranial Magnetic Stimulation (rTMS) is an effective treatment for Major Depressive Disorder (MDD). Two common rTMS protocols, 10 Hz and intermittent theta burst stimulation (iTBS), have comparable rates of efficacy in groups of patients. Recent evidence suggests that some individuals may be more likely to benefit from one form of stimulation than the other. The pretreatment pupillary light reflex (PLR) is significantly associated with response to a full course of rTMS using heterogeneous stimulation protocols. OBJECTIVE To test whether the relationship between pretreatment PLR and early symptom improvement differed between subjects treated with iTBS or 10 Hz stimulation. METHODS PLR was measured in 52 subjects who received solely 10 Hz (n = 35) or iTBS (n = 17) to left dorsolateral prefrontal cortex (DLPFC) for the first ten sessions of their treatment course. Primary outcome measure was the percent change of Inventory of Depressive Symptomatology - Self Report (IDS-SR) from session 1 to session 10. RESULTS There was a positive association between normalized maximum constriction velocity (nMCV) and early improvement in subjects receiving 10 Hz stimulation (R = 0.48, p = 0.004) and a negative association in subjects receiving iTBS (R = -0.52, p = 0.03). ANOVA revealed a significant interaction between nMCV and the type of initial stimulation (p = 0.001). Among subjects with low nMCV, those initially treated with iTBS showed 2.6 times greater improvement after 10 sessions (p = 0.01) than subjects initially receiving 10 Hz stimulation. CONCLUSION nMCV may detect physiologic differences between those likely to benefit from 10 Hz or iTBS treatment. Future studies should examine whether PLR could guide prospective treatment selection.
Collapse
Affiliation(s)
- Cole Citrenbaum
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Juliana Corlier
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Doan Ngo
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Nikita Vince-Cruz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Andrew Wilson
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA; NOAA National Centers for Environmental Information (NCEI), Boulder, CO, USA
| | - Scott A Wilke
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - David Krantz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Reza Tadayonnejad
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA; Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Nathaniel Ginder
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Jennifer Levitt
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - John H Lee
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Michael K Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Thomas B Strouse
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Andrew Corse
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Pooja Vyas
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Andrew F Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA.
| |
Collapse
|
9
|
Citrenbaum C, Corlier J, Ngo D, Vince-Cruz N, Wilson A, Wilke S, Krantz D, Tadayonnejad R, Ginder N, Levitt J, Lee JH, Strouse T, Corse A, Vyas P, Leuchter AF. Pretreatment pupillary reactivity is associated with outcome of Repetitive Transcranial Magnetic Stimulation (rTMS) treatment of Major Depressive Disorder (MDD). J Affect Disord 2023; 339:412-417. [PMID: 37437737 DOI: 10.1016/j.jad.2023.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Pre-treatment biomarkers for outcome of repetitive Transcranial Magnetic Stimulation (rTMS) treatment of Major Depressive Disorder (MDD) have proven elusive. One promising family of biomarkers involves the autonomic nervous system (ANS), which is dysregulated in individuals with MDD. METHODS We examined the relationship between the pre-treatment pupillary light reflex (PLR) and rTMS outcome in 51 MDD patients. Outcome was measured as the percent change in the 30-item Inventory of Depressive Symptomatology Self Rated (IDS-SR) score from baseline to treatment 30. RESULTS Patients showed significant improvement with rTMS treatment. There was a significant correlation between baseline pupillary Constriction Amplitude (CA) and clinical improvement over the treatment course (R = 0.41, p = 0.003). LIMITATIONS We examined a limited number of subjects who received heterogeneous treatment protocols. Almost all patients in the study received psychotropic medications concomitant with rTMS treatment. CONCLUSION PLR measured before treatment may be a predictive biomarker for clinical improvement from rTMS in subjects with MDD.
Collapse
Affiliation(s)
- Cole Citrenbaum
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Juliana Corlier
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Doan Ngo
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Nikita Vince-Cruz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Andrew Wilson
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Scott Wilke
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - David Krantz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Reza Tadayonnejad
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA; Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Nathaniel Ginder
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Jennifer Levitt
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - John H Lee
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Thomas Strouse
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Andrew Corse
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | | | - Andrew F Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA.
| |
Collapse
|
10
|
Tang VM, Goud R, Zawertailo L, Selby P, Coroiu A, Sloan ME, Chenoweth MJA, Buchman D, Ibrahim C, Blumberger DM, Foll BL. Repetitive transcranial magnetic stimulation for smoking cessation: Next steps for translation and implementation into clinical practice. Psychiatry Res 2023; 326:115340. [PMID: 37454610 DOI: 10.1016/j.psychres.2023.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Tobacco smoking is a significant determinant of preventable morbidity and mortality worldwide. It is now possible to modulate the activity of the neurocircuitry associated with nicotine dependence using repetitive Transcranial Magnetic Stimulation (rTMS), a non-invasive neurostimulation approach, which has recently demonstrated efficacy in clinical trials and received regulatory approval in the US and Canada. However there remains a paucity of replication studies and real-world patient effectiveness data as access to this intervention is extremely limited. There are a number of unique challenges related to the delivery of rTMS that need to be addressed prior to widespread adoption and implementation of this treatment modality for smoking cessation. In this paper, we review the accessibility, scientific, technological, economical, and social challenges that remain before this treatment can be translated into clinical practice. By addressing these remaining barriers and scientific challenges with rTMS for smoking cessation and delineating implementation strategies, we can greatly reduce the burden of tobacco-related disease worldwide.
Collapse
Affiliation(s)
- Victor M Tang
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes St, Toronto, ON, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Temerty Faculty of Medicine, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada; Centre for Addiction and Mental Health, Institute of Mental Health Policy Research, Canada; Centre for Addiction and Mental Health, Temerty Centre for Therapeutic Brain Intervention, Canada.
| | - Rachel Goud
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes St, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Temerty Faculty of Medicine, Canada
| | - Laurie Zawertailo
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes St, Toronto, ON, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada; Centre for Addiction and Mental Health, Institute of Mental Health Policy Research, Canada; Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Peter Selby
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes St, Toronto, ON, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Temerty Faculty of Medicine, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada; Centre for Addiction and Mental Health, Institute of Mental Health Policy Research, Canada; Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Canada; Dalla Lana School of Public Health, University of Toronto, Canada
| | - Adina Coroiu
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes St, Toronto, ON, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada
| | - Matthew E Sloan
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes St, Toronto, ON, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Temerty Faculty of Medicine, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada; Centre for Addiction and Mental Health, Institute of Mental Health Policy Research, Canada; Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Meghan Jo-Ann Chenoweth
- Department of Psychiatry, University of Toronto, Temerty Faculty of Medicine, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada; Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Daniel Buchman
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada; Dalla Lana School of Public Health, University of Toronto, Canada
| | - Christine Ibrahim
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes St, Toronto, ON, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Temerty Faculty of Medicine, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada; Centre for Addiction and Mental Health, Temerty Centre for Therapeutic Brain Intervention, Canada
| | - Bernard Le Foll
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes St, Toronto, ON, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Temerty Faculty of Medicine, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada; Centre for Addiction and Mental Health, Institute of Mental Health Policy Research, Canada; Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Canada; Dalla Lana School of Public Health, University of Toronto, Canada; Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada; Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada
| |
Collapse
|
11
|
Boscutti A, Murphy N, Cho R, Selvaraj S. Noninvasive Brain Stimulation Techniques for Treatment-Resistant Depression: Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation. Psychiatr Clin North Am 2023; 46:307-329. [PMID: 37149347 DOI: 10.1016/j.psc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transcranial magnetic stimulation is a safe, effective, and well-tolerated intervention for depression; it is currently approved for treatment-resistant depression. This article summarizes the mechanism of action, evidence of clinical efficacy, and the clinical aspects of this intervention, including patient evaluation, stimulation parameters selection, and safety considerations. Transcranial direct current stimulation is another neuromodulation treatment for depression; although promising, the technique is not currently approved for clinical use in the United States. The final section outlines the open challenges and future directions of the field.
Collapse
Affiliation(s)
- Andrea Boscutti
- Louis. A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nicholas Murphy
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA; The Menninger Clinic, Houston, TX, USA
| | - Raymond Cho
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA; The Menninger Clinic, Houston, TX, USA
| | - Sudhakar Selvaraj
- Louis. A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
12
|
Jose L, Martins LB, Cordeiro TM, Lee K, Diaz AP, Ahn H, Teixeira AL. Non-Invasive Neuromodulation Methods to Alleviate Symptoms of Huntington's Disease: A Systematic Review of the Literature. J Clin Med 2023; 12:2002. [PMID: 36902788 PMCID: PMC10004225 DOI: 10.3390/jcm12052002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Huntington's disease (HD) is a progressive and debilitating neurodegenerative disease. There is growing evidence for non-invasive neuromodulation tools as therapeutic strategies in neurodegenerative diseases. This systematic review aims to investigate the effectiveness of noninvasive neuromodulation in HD-associated motor, cognitive, and behavioral symptoms. A comprehensive literature search was conducted in Ovid MEDLINE, Cochrane Central Register of Clinical Trials, Embase, and PsycINFO from inception to 13 July 2021. Case reports, case series, and clinical trials were included while screening/diagnostic tests involving non-invasive neuromodulation, review papers, experimental studies on animal models, other systematic reviews, and meta-analyses were excluded. We have identified 19 studies in the literature investigating the use of ECT, TMS, and tDCS in the treatment of HD. Quality assessments were performed using Joanna Briggs Institute's (JBI's) critical appraisal tools. Eighteen studies showed improvement of HD symptoms, but the results were very heterogeneous considering different intervention techniques and protocols, and domains of symptoms. The most noticeable improvement involved depression and psychosis after ECT protocols. The impact on cognitive and motor symptoms is more controversial. Further investigations are required to determine the therapeutic role of distinct neuromodulation techniques for HD-related symptoms.
Collapse
Affiliation(s)
- Lijin Jose
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX 77054, USA
| | - Lais Bhering Martins
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX 77054, USA
| | - Thiago M. Cordeiro
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX 77054, USA
| | - Keya Lee
- Texas Medical Center Library, Houston, TX 77030, USA
| | - Alexandre Paim Diaz
- Center for the Study and Prevention of Suicide, Department of Psychiatry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hyochol Ahn
- College of Nursing, Florida State University, Tallahassee, FL 32306, USA
| | - Antonio L. Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX 77054, USA
| |
Collapse
|
13
|
Revisiting the Rotational Field TMS Method for Neurostimulation. J Clin Med 2023; 12:jcm12030983. [PMID: 36769630 PMCID: PMC9917411 DOI: 10.3390/jcm12030983] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique that has shown high efficacy in the treatment of major depressive disorder (MDD) and is increasingly utilized for various neuropsychiatric disorders. However, conventional TMS is limited to activating only a small fraction of neurons that have components parallel to the induced electric field. This likely contributes to the significant variability observed in clinical outcomes. A novel method termed rotational field TMS (rfTMS or TMS 360°) enables the activation of a greater number of neurons by reducing the sensitivity to orientation. Recruitment of a larger number of neurons offers the potential to enhance efficacy and reduce variability in the treatment of clinical indications for which neuronal recruitment and organization may play a significant role, such as MDD and stroke. The potential of the method remains to be validated in clinical trials. Here, we revisit and describe in detail the rfTMS method, its principles, mode of operation, effects on the brain, and potential benefits for clinical TMS.
Collapse
|
14
|
Li F, Jörg F, Li X, Feenstra T. A Promising Approach to Optimizing Sequential Treatment Decisions for Depression: Markov Decision Process. PHARMACOECONOMICS 2022; 40:1015-1032. [PMID: 36100825 PMCID: PMC9550715 DOI: 10.1007/s40273-022-01185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
The most appropriate next step in depression treatment after the initial treatment fails is unclear. This study explores the suitability of the Markov decision process for optimizing sequential treatment decisions for depression. We conducted a formal comparison of a Markov decision process approach and mainstream state-transition models as used in health economic decision analysis to clarify differences in the model structure. We performed two reviews: the first to identify existing applications of the Markov decision process in the field of healthcare and the second to identify existing health economic models for depression. We then illustrated the application of a Markov decision process by reformulating an existing health economic model. This provided input for discussing the suitability of a Markov decision process for solving sequential treatment decisions in depression. The Markov decision process and state-transition models differed in terms of flexibility in modeling actions and rewards. In all, 23 applications of a Markov decision process within the context of somatic disease were included, 16 of which concerned sequential treatment decisions. Most existing health economic models relating to depression have a state-transition structure. The example application replicated the health economic model and enabled additional capacity to make dynamic comparisons of more interventions over time than was possible with traditional state-transition models. Markov decision processes have been successfully applied to address sequential treatment-decision problems, although the results have been published mostly in economics journals that are not related to healthcare. One advantage of a Markov decision process compared with state-transition models is that it allows extended action space: the possibility of making dynamic comparisons of different treatments over time. Within the context of depression, although existing state-transition models are too basic to evaluate sequential treatment decisions, the assumptions of a Markov decision process could be satisfied. The Markov decision process could therefore serve as a powerful model for optimizing sequential treatment in depression. This would require a sufficiently elaborate state-transition model at the cohort or patient level.
Collapse
Affiliation(s)
- Fang Li
- University of Groningen, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Frederike Jörg
- University of Groningen, University Medical Center Groningen, University Center Psychiatry, Rob Giel Research Center, Interdisciplinary Centre for Psychopathology and Emotion Regulation, Groningen, The Netherlands
- Research Department, GGZ Friesland, Leeuwarden, The Netherlands
| | - Xinyu Li
- University of Groningen, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Talitha Feenstra
- University of Groningen, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Center for Nutrition, Prevention and Health Services Research, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
15
|
Early augmentation by using neuromodulation in psychiatric disorder: a kaleidoscopic view. CNS Spectr 2022; 27:530-532. [PMID: 33632361 DOI: 10.1017/s1092852921000237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Early augmentation is a relatively newer concept in the management of psychiatric disorders. In managing psychiatric disorders, augmentation strategies are commonly used after failed attempts of optimization of a dose of the medications and then switching to another medication. Neuromodulation methods are recommended by traditional treatment recommendations as augmenting strategies (mostly) in managing treatment-resistant/refractory cases of psychiatric disorders. Late in the process of therapy, several of these techniques are applied to the patient. However, using different neuromodulation techniques, early augmentation of the ongoing pharmacological or psychological treatment may be achieved, resulting in early symptom reduction or remission and early return to work by resuming functionality. The length of the symptomatic cycle may be shortened by early augmentation. There are several potential challenges to adopting an early augmentation strategy in clinical practice. This article discusses the concept and evidence of early augmentation strategy in managing psychiatric disorder by using neuromodulation technique and potential challenges before it.
Collapse
|
16
|
Fitzgerald PB, Gill S, Breakspear M, Kulkarni J, Chen L, Pridmore S, Purushothaman S, Galletly C, Clarke P, Ng F, Hussain S, Chamoli S, Csizmadia T, Tolan P, Cocchi L, Ibrahim Oam S, Shankar K, Sarma S, Lau M, Loo C, Yadav T, Hoy KE. Revisiting the effectiveness of repetitive transcranial magnetic stimulation treatment in depression, again. Aust N Z J Psychiatry 2022; 56:905-909. [PMID: 34969310 DOI: 10.1177/00048674211068788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Following on from the publication of the Royal Australian and New Zealand Journal of Psychiatry Mood Disorder Clinical Practice Guidelines (2020) and criticisms of how these aberrantly addressed repetitive transcranial magnetic stimulation treatment of depression, questions have continued to be raised in the journal about this treatment by a small group of authors, whose views we contend do not reflect the broad acceptance of this treatment nationally and internationally. In fact, the evidence supporting the use of repetitive transcranial magnetic stimulation treatment in depression is unambiguous and substantial, consisting of an extensive series of clinical trials supported by multiple meta-analyses, network meta-analysis and umbrella reviews. Importantly, the use of repetitive transcranial magnetic stimulation treatment in depression has also been subject to a series of health economic analyses. These indicate that repetitive transcranial magnetic stimulation is a cost-effective therapy and have been used in some jurisdictions, including Australia, in support of public funding. An argument has been made that offering repetitive transcranial magnetic stimulation treatment may delay potentially effective pharmacotherapy. In fact, there is considerably greater danger of the opposite happening. Repetitive transcranial magnetic stimulation is as, if not more effective, than antidepressant medication after two unsuccessful medication trials and should be a consideration for all patients under these circumstances where available. There is no meaningful ongoing debate about the use of repetitive transcranial magnetic stimulation treatment in depression - it is a safe, effective and cost-effective treatment.
Collapse
Affiliation(s)
- Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare, Camberwell, VIC, Australia.,Department of Psychiatry, Monash University, Clayton, VIC, Australia
| | - Shane Gill
- The University of Adelaide, Adelaide, SA, Australia.,SAPBTC, Glenside Health Service, Glenside, SA, Australia.,Discipline of Psychiatry, The Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Michael Breakspear
- Discipline of Psychiatry, College of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Jayashri Kulkarni
- Department of Psychiatry, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Leo Chen
- Department of Psychiatry, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Mental and Addiction Health, Alfred Health, Melbourne, VIC, Australia
| | - Saxby Pridmore
- Saint Helens Private Hospital, Hobart, TAS, Australia.,Discipline of Psychiatry, University of Tasmania, Hobart, TAS, Australia
| | | | - Cherrie Galletly
- Discipline of Psychiatry, The Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, Adelaide, SA, Australia.,Northern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Patrick Clarke
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, Adelaide, SA, Australia
| | - Felicity Ng
- Discipline of Psychiatry, The Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, Adelaide, SA, Australia
| | - Salam Hussain
- Section for ECT and Neurostimulation, The Royal Australian and New Zealand College of Psychiatrists, Melbourne, VIC, Australia.,The University of Western Australia, Perth, WA, Australia.,Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | | | | | - Patrick Tolan
- Alfred Health/Peninsula Health, Melbourne, VIC, Australia
| | | | - Samir Ibrahim Oam
- TMS Northpark Private Hospital, Bundoora, VIC, Australia.,Wyndham Private Clinic, Werribee, VIC, Australia
| | - Kavitha Shankar
- TMS Clinics Australia, Sydney, NSW, Australia.,St John of God Pinelodge Clinic, Dandenong, VIC, Australia
| | - Shanthi Sarma
- Bond University, Robina, QLD, Australia.,Gold Coast Health, Southport, QLD, Australia
| | - Michael Lau
- TMS Clinics Australia, Sydney, NSW, Australia.,Monarch Mental Health Group, Sydney, NSW, Australia.,Hornsby Ku-Ring-Gai Adult Mental Health Unit, Hornsby, NSW, Australia
| | - Colleen Loo
- Black Dog Institute, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Tarun Yadav
- Hunter New England Drug and Alcohol Service, Newcastle, NSW, Australia.,Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Kate E Hoy
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare, Camberwell, VIC, Australia.,Department of Psychiatry, Monash University, Clayton, VIC, Australia
| |
Collapse
|
17
|
Zemplényi A, Józwiak-Hagymásy J, Kovács S, Erdősi D, Boncz I, Tényi T, Osváth P, Voros V. Repetitive transcranial magnetic stimulation may be a cost-effective alternative to antidepressant therapy after two treatment failures in patients with major depressive disorder. BMC Psychiatry 2022; 22:437. [PMID: 35764989 PMCID: PMC9238085 DOI: 10.1186/s12888-022-04078-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The cost-effectiveness of treatment strategies for patients with Major Depressive Disorder (MDD) who have not responded to two adequate treatments with antidepressants (TRD) are still unclear. The aim of this analysis was to evaluate the cost-effectiveness of add-on repetitive Transcranial Magnetic Stimulation (rTMS) compared with standard treatment. METHODS A Markov-model simulated clinical events over one year from the perspective of healthcare payer. Third- and fourth-line treatment pathways (augmentation, antidepressant switch or combination, and Electro-Convulsive Therapy (ECT)) were defined based on medical practice guidelines. Transition probabilities were derived from a recent meta-analysis and scientific publications. Resource utilization and cost estimates were based on the patient-level database of a large university hospital. RESULTS Incremental Quality-Adjusted Life Years (QALYs) and costs were 0.053 and 785 €, respectively, corresponding to an Incremental Cost-Effectiveness Ratio (ICER) of 14,670 € per QALY. The difference in cost between standard treatment and rTMS is explained by the rTMS sessions used in acute (€660) and maintenance (€57/month) treatments, partly offset by lower hospital costs due to higher remission rates in the rTMS arm. Key parameters driving the ICER were incremental utility of remission, unit cost of rTMS treatment and remission rate. At a threshold of €22,243 add-on rTMS is a cost-effective alternative to pharmacotherapy. Evidence on long-term effectiveness is not yet available, so results are estimated for a one-year period. CONCLUSION Not only does rTMS treatment have beneficial clinical effects compared with drug therapy in TRD, but it also appears to offer good value-for-money, especially in centres with larger numbers of patients where unit costs can be kept low.
Collapse
Affiliation(s)
- Antal Zemplényi
- Centre for Health Technology Assessment and Pharmacoeconomic Research, Faculty of Pharmacy, University of Pécs, Rákóczi street 2, Pécs, H-7623, Hungary.
| | - Judit Józwiak-Hagymásy
- grid.9679.10000 0001 0663 9479Centre for Health Technology Assessment and Pharmacoeconomic Research, Faculty of Pharmacy, University of Pécs, Rákóczi street 2, Pécs, H-7623 Hungary
| | - Sándor Kovács
- grid.9679.10000 0001 0663 9479Centre for Health Technology Assessment and Pharmacoeconomic Research, Faculty of Pharmacy, University of Pécs, Rákóczi street 2, Pécs, H-7623 Hungary
| | - Dalma Erdősi
- grid.9679.10000 0001 0663 9479Centre for Health Technology Assessment and Pharmacoeconomic Research, Faculty of Pharmacy, University of Pécs, Rákóczi street 2, Pécs, H-7623 Hungary
| | - Imre Boncz
- grid.9679.10000 0001 0663 9479Institute for Health Insurance, Faculty of Health Sciences, University of Pecs, Pécs, Hungary
| | - Tamás Tényi
- grid.9679.10000 0001 0663 9479Department of Psychiatry and Psychotherapy, Medical School, University of Pecs, Pecs, Hungary
| | - Péter Osváth
- grid.9679.10000 0001 0663 9479Department of Psychiatry and Psychotherapy, Medical School, University of Pecs, Pecs, Hungary
| | - Viktor Voros
- grid.9679.10000 0001 0663 9479Department of Psychiatry and Psychotherapy, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
18
|
Somaa FA, de Graaf TA, Sack AT. Transcranial Magnetic Stimulation in the Treatment of Neurological Diseases. Front Neurol 2022; 13:793253. [PMID: 35669870 PMCID: PMC9163300 DOI: 10.3389/fneur.2022.793253] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Transcranial Magnetic Stimulation (TMS) has widespread use in research and clinical application. For psychiatric applications, such as depression or OCD, repetitive TMS protocols (rTMS) are an established and globally applied treatment option. While promising, rTMS is not yet as common in treating neurological diseases, except for neurorehabilitation after (motor) stroke and neuropathic pain treatment. This may soon change. New clinical studies testing the potential of rTMS in various other neurological conditions appear at a rapid pace. This can prove challenging for both practitioners and clinical researchers. Although most of these neurological applications have not yet received the same level of scientific/empirical scrutiny as motor stroke and neuropathic pain, the results are encouraging, opening new doors for TMS in neurology. We here review the latest clinical evidence for rTMS in pioneering neurological applications including movement disorders, Alzheimer's disease/mild cognitive impairment, epilepsy, multiple sclerosis, and disorders of consciousness.
Collapse
Affiliation(s)
- Fahad A. Somaa
- Department of Occupational Therapy, Faculty of Medical Rehabilitation, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tom A. de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Center of Integrative Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Alexander T. Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Center of Integrative Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Brain + Nerve Centre, Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
19
|
Dalhuisen I, Smit F, Spijker J, van Oostrom I, van Exel E, van Mierlo H, de Waardt D, Arns M, Tendolkar I, van Eijndhoven P. rTMS combined with CBT as a next step in antidepressant non-responders: a study protocol for a randomized comparison with current antidepressant treatment approaches. BMC Psychiatry 2022; 22:88. [PMID: 35123427 PMCID: PMC8818163 DOI: 10.1186/s12888-022-03732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is one of the most common psychiatric disorders, however, current treatment options are insufficiently effective for about 35% of patients, resulting in treatment-resistant depression (TRD). Repetitive transcranial magnetic stimulation (rTMS) is a form of non-invasive neuromodulation that is effective in treating TRD. Not much is known about the comparative efficacy of rTMS and other treatments and their timing within the treatment algorithm, making it difficult for the treating physician to establish when rTMS is best offered as a treatment option. This study aims to investigate the (cost-)effectiveness of rTMS (in combination with cognitive behavioral therapy (CBT) and continued antidepressant medication), compared to the next step in the treatment algorithm. This will be done in a sample of patients with treatment resistant non-psychotic unipolar depression. METHODS In this pragmatic multicenter randomized controlled trial 132 patients with MDD are randomized to either rTMS or the next pharmacological step within the current treatment protocol (a switch to a tricyclic antidepressant or augmentation with lithium or a second-generation antipsychotic). Both groups also receive CBT. The trial consists of 8 weeks of unblinded treatment followed by follow-up of the cohort at four and 6 months. A subgroup of patients (n = 92) will have an extended follow-up at nine and 12 months to assess effect decay or retention. We expect that rTMS is more (cost-)effective than medication in reducing depressive symptoms in patients with TRD. We will also explore the effects of both treatments on symptoms associated with depression, e.g. anhedonia and rumination, as well as the effect of expectations regarding the treatments on its effectiveness. DISCUSSION The present trial aims to inform clinical decision making about whether rTMS should be considered as a treatment option in patients with TRD. The results may improve treatment outcomes in patients with TRD and may facilitate adoption of rTMS in the treatment algorithm for depression and its implementation in clinical practice. TRIAL REGISTRATION This trial is registered within the Netherlands Trial Register (code: NL7628 , date: March 29th 2019).
Collapse
Affiliation(s)
- Iris Dalhuisen
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands.
- Donders Institute for Brain Cognition and Behavior, Centre for Medical Neuroscience, Nijmegen, The Netherlands.
| | - Filip Smit
- Department of Clinical Psychology and Department of Epidemiology and Biostatistics, Amsterdam University Medical Centers, location VUmc, Amsterdam, The Netherlands
- Department of Mental Health and Prevention, Trimbos Institute - Netherlands Institute of Mental Health and Addiction, Utrecht, The Netherlands
| | - Jan Spijker
- Depression Expertise Centre, Pro Persona Mental Health Care, Nijmegen, The Netherlands
- Behavioral Science Institute, Radboud University, Nijmegen, The Netherlands
| | | | - Eric van Exel
- Department of Psychiatry, GGZ inGeest Specialized Mental Health Care, Amsterdam, Netherlands
| | - Hans van Mierlo
- Department of Psychiatry & Psychology, St. Antonius Hospital, Utrecht/Nieuwegein, The Netherlands
| | - Dieuwertje de Waardt
- Department of Psychiatry, ETZ Hospital (Elisabeth-TweeSteden Ziekenhuis), Tilburg, The Netherlands
| | - Martijn Arns
- Research Institute Brainclinics, Nijmegen, The Netherlands
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain Cognition and Behavior, Centre for Medical Neuroscience, Nijmegen, The Netherlands
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain Cognition and Behavior, Centre for Medical Neuroscience, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Repetitive Transcranial Magnetic Stimulation for People With Treatment-Resistant Depression: A Health Technology Assessment. ONTARIO HEALTH TECHNOLOGY ASSESSMENT SERIES 2021; 21:1-232. [PMID: 34055112 PMCID: PMC8129638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Major depression is one of the most diagnosed mental illnesses in Canada. Generally, people are treated successfully with antidepressants or psychotherapy, but some people do not respond to these treatments (called treatment-resistant depression [TRD]). Repetitive transcranial magnetic stimulation (rTMS) delivers magnetic pulses to stimulate the areas of the brain associated with mood regulation. Several modalities of rTMS exist (e.g., high frequency rTMS, intermittent theta burst stimulation [iTBS], deep transcranial magnetic stimulation). We conducted a health technology assessment of rTMS for people with TRD, which included an evaluation of effectiveness, safety, cost-effectiveness, the budget impact of publicly funding rTMS, and patient preferences and values. METHODS We performed a systematic literature search of the clinical evidence. We assessed the risk of bias of each included study using the Risk of Bias in Systematic Reviews (ROBIS) tool and Cochrane Risk of Bias for Randomized Controlled Trials and the quality of the body of evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria. We performed a systematic economic literature search and conducted a cost-utility analysis with a 3-year horizon from a public payer perspective. We also analyzed the 5-year budget impact of publicly funding rTMS for people with TRD in Ontario. To assess the potential value of rTMS, we spoke with people who have TRD. Seven rTMS modalities were considered: low-frequency (1 Hz) stimulation, high-frequency (10-20 Hz) stimulation, unilateral stimulation, bilateral stimulation, iTBS, continuous theta burst stimulation, and deep transcranial magnetic stimulation. RESULTS We included 58 primary studies, 9 systematic reviews, and 1 network meta-analysis in the clinical evidence review. Most rTMS modalities were more effective than sham treatment for all outcomes (GRADE: Moderate to High). All rTMS modalities were similar to one another in response and remission rates (GRADE: not reported) and were similar to electroconvulsive therapy (ECT) in response and remission rates (GRADE: Moderate). Moreover, in both the reference case and scenario analyses, two rTMS modalities (rTMS or iTBS), followed by ECT when patients did not respond to initial treatment, were less expensive and more effective than ECT alone. They were cost-effective compared with pharmacotherapy alone at a willingness-to-pay amount of $50,000 per quality-adjusted life-year (QALY). The annual budget impact of publicly funding rTMS would range from $9.3 million in year 1 to $15.76 million in year 5, for a total of $63.2 million over the next 5 years. People with TRD we spoke with reported that their experiences were generally favourable, and their attitudes toward rTMS were positive. Similarly, psychiatrists had positive attitudes toward and acceptance of rTMS. Our quantitative literature review on preferences revealed some gaps in psychiatrists' knowledge of rTMS, which could have been influenced by their level of training on rTMS. CONCLUSIONS Most rTMS modalities are likely more effective than sham rTMS on all outcomes. All rTMS modalities are similar to ECT and to one another in response and remission rates. Compared with ECT alone, two rTMS modalities (high-frequency rTMS and iTBS), followed by ECT when necessary in a stepped care pathway, were less costly and more effective for managing adults with TRD. These types of rTMS (high-frequency rTMS and iTBS) were cost-effective compared with pharmacotherapy alone at a willingness-to-pay amount of $50,000 per QALY. Publicly funding rTMS (high-frequency rTMS and iTBS) for the treatment of adults with TRD in Ontario over the next 5 years would add $63.2 million in total costs. People with TRD had positive experiences and attitudes toward rTMS.
Collapse
|
21
|
Klein F. Früherer Einsatz der tDCS zur Therapie der Depression. INFO NEUROLOGIE + PSYCHIATRIE 2021. [PMCID: PMC8117799 DOI: 10.1007/s15005-021-1970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Friederike Klein
- Wissenschaftliche Fachkommunikation, Dachauer Str. 21 a, 80335 München, Germany
| |
Collapse
|
22
|
Oberman LM, Hynd M, Nielson DM, Towbin KE, Lisanby SH, Stringaris A. Repetitive Transcranial Magnetic Stimulation for Adolescent Major Depressive Disorder: A Focus on Neurodevelopment. Front Psychiatry 2021; 12:642847. [PMID: 33927653 PMCID: PMC8076574 DOI: 10.3389/fpsyt.2021.642847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 12/31/2022] Open
Abstract
Adolescent depression is a potentially lethal condition and a leading cause of disability for this age group. There is an urgent need for novel efficacious treatments since half of adolescents with depression fail to respond to current therapies and up to 70% of those who respond will relapse within 5 years. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising treatment for major depressive disorder (MDD) in adults who do not respond to pharmacological or behavioral interventions. In contrast, rTMS has not demonstrated the same degree of efficacy in adolescent MDD. We argue that this is due, in part, to conceptual and methodological shortcomings in the existing literature. In our review, we first provide a neurodevelopmentally focused overview of adolescent depression. We then summarize the rTMS literature in adult and adolescent MDD focusing on both the putative mechanisms of action and neurodevelopmental factors that may influence efficacy in adolescents. We then identify limitations in the existing adolescent MDD rTMS literature and propose specific parameters and approaches that may be used to optimize efficacy in this uniquely vulnerable age group. Specifically, we suggest ways in which future studies reduce clinical and neural heterogeneity, optimize neuronavigation by drawing from functional brain imaging, apply current knowledge of rTMS parameters and neurodevelopment, and employ an experimental therapeutics platform to identify neural targets and biomarkers for response. We conclude that rTMS is worthy of further investigation. Furthermore, we suggest that following these recommendations in future studies will offer a more rigorous test of rTMS as an effective treatment for adolescent depression.
Collapse
|
23
|
Zhang Y, Wu W, Toll RT, Naparstek S, Maron-Katz A, Watts M, Gordon J, Jeong J, Astolfi L, Shpigel E, Longwell P, Sarhadi K, El-Said D, Li Y, Cooper C, Chin-Fatt C, Arns M, Goodkind MS, Trivedi MH, Marmar CR, Etkin A. Identification of psychiatric disorder subtypes from functional connectivity patterns in resting-state electroencephalography. Nat Biomed Eng 2021; 5:309-323. [PMID: 33077939 PMCID: PMC8053667 DOI: 10.1038/s41551-020-00614-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Abstract
The understanding and treatment of psychiatric disorders, which are known to be neurobiologically and clinically heterogeneous, could benefit from the data-driven identification of disease subtypes. Here, we report the identification of two clinically relevant subtypes of post-traumatic stress disorder (PTSD) and major depressive disorder (MDD) on the basis of robust and distinct functional connectivity patterns, prominently within the frontoparietal control network and the default mode network. We identified the disease subtypes by analysing, via unsupervised and supervised machine learning, the power-envelope-based connectivity of signals reconstructed from high-density resting-state electroencephalography in four datasets of patients with PTSD and MDD, and show that the subtypes are transferable across independent datasets recorded under different conditions. The subtype whose functional connectivity differed most from those of healthy controls was less responsive to psychotherapy treatment for PTSD and failed to respond to an antidepressant medication for MDD. By contrast, both subtypes responded equally well to two different forms of repetitive transcranial magnetic stimulation therapy for MDD. Our data-driven approach may constitute a generalizable solution for connectome-based diagnosis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Wei Wu
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
- Alto Neuroscience, Inc., Los Altos, CA, USA
| | - Russell T Toll
- Department of Psychiatry, Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sharon Naparstek
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Adi Maron-Katz
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Mallissa Watts
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Joseph Gordon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Alto Neuroscience, Inc., Los Altos, CA, USA
| | - Jisoo Jeong
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Laura Astolfi
- Department of Computer, Control and Management Engineering "Antonio Ruberti", University of Rome Sapienza, Rome, Italy
- IRCCF Fondazione Santa Lucia, Rome, Italy
| | - Emmanuel Shpigel
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Parker Longwell
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Kamron Sarhadi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Dawlat El-Said
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Yuanqing Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
- Pazhou Lab, Guangzhou, China
| | - Crystal Cooper
- Department of Psychiatry, Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Cherise Chin-Fatt
- Department of Psychiatry, Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Martijn Arns
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, The Netherlands
- neuroCare Group, Munich, Germany
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Location AMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Madhukar H Trivedi
- Department of Psychiatry, Center for Depression Research and Clinical Care, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charles R Marmar
- Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY, USA
- Center for Alcohol Use Disorder and PTSD, New York University Langone School of Medicine, New York, NY, USA
- Department of Psychiatry, New York University Langone School of Medicine, New York, NY, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Alto Neuroscience, Inc., Los Altos, CA, USA.
| |
Collapse
|
24
|
Application of transcranial magnetic stimulation for major depression: Coil design and neuroanatomical variability considerations. Eur Neuropsychopharmacol 2021; 45:73-88. [PMID: 31285123 DOI: 10.1016/j.euroneuro.2019.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 04/22/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
High-frequency repeated transcranial magnetic stimulation (rTMS) as a treatment for major depressive disorder (MDD) has received FDA clearance for both the figure-of-8 coil (figure-8 coil) and the H1 coil. The FDA-cleared MDD protocols for both coils include high frequency (10-18 Hz) stimulation targeting the dorsolateral prefrontal cortex (dlPFC) at an intensity that is 120% of the right-hand resting motor threshold. Despite these similar parameters, the two coils generate distinct electrical fields (e-fields) which result in differences in the cortical stimulation they produce. Due to the differences in coil designs, the H1 coil induces a stimulation e-field that is broader and deeper than the one induced by the figure-8 coil. In this paper we review theoretical and clinical implications of these differences between the two coils and compare evidence of their safety and efficacy in treating MDD. We present the design principles of the coils, the challenges of identifying, finding, and stimulating the optimal brain target of each individual (both from functional and connectivity perspectives), and the possible implication of stimulating outside that target. There is only one study that performed a direct comparison between clinical effectiveness of the two coils, using the standard FDA-approved protocols in MDD patients. This study indicated clinical superiority of the H1 coil but did not measure long-term effects. Post-marketing data suggest that both coils have a similar safety profile in clinical practice, whereas effect size comparisons of the two respective FDA pivotal trials suggests that the H1 coil may have an advantage in efficacy. We conclude that further head-to-head experiments are needed, especially ones that will compare long-term effects and usage of similar temporal stimulation parameters and similar number of pulses.
Collapse
|
25
|
Cosmo C, Zandvakili A, Petrosino NJ, Berlow YA, Philip NS. Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Depression: Recent Critical Advances in Patient Care. CURRENT TREATMENT OPTIONS IN PSYCHIATRY 2021; 8:47-63. [PMID: 33723500 PMCID: PMC7946620 DOI: 10.1007/s40501-021-00238-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Transcranial magnetic stimulation (TMS) is an evidence-based treatment for pharmacoresistant major depressive disorder (MDD). In the last decade, the field has seen significant advances in the understanding and use of this new technology. This review aims to describe the large, randomized controlled studies leading to the modern use of rTMS for MDD. It also includes a special section briefly discussing the use of these technologies during the COVID-19 pandemic. RECENT FINDINGS Several new approaches and technologies are emerging in this field, including novel approaches to reduce treatment time and potentially yield new approaches to optimize and maximize clinical outcomes. Of these, theta burst TMS now has evidence indicating it is non-inferior to standard TMS and provides significant advantages in administration. Recent studies also indicate that neuroimaging and related approaches may be able to improve TMS targeting methods and potentially identify those patients most likely to respond to stimulation. SUMMARY While new data is promising, significant research remains to be done to individualize and optimize TMS procedures. Emerging new approaches, such as accelerated TMS and advanced targeting methods, require additional replication and demonstration of real-world clinical utility. Cautious administration of TMS during the pandemic is possible with careful attention to safety procedures.
Collapse
Affiliation(s)
- Camila Cosmo
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Healthcare System, 830 Chalkstone Ave, Providence, 02908 USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI USA
| | - Amin Zandvakili
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Healthcare System, 830 Chalkstone Ave, Providence, 02908 USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI USA
| | - Nicholas J. Petrosino
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Healthcare System, 830 Chalkstone Ave, Providence, 02908 USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI USA
| | - Yosef A. Berlow
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Healthcare System, 830 Chalkstone Ave, Providence, 02908 USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI USA
| | - Noah S. Philip
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Healthcare System, 830 Chalkstone Ave, Providence, 02908 USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI USA
| |
Collapse
|
26
|
Desai U, Kirson NY, Guglielmo A, Le HH, Spittle T, Tseng-Tham J, Shawi M, Sheehan JJ. Cost-per-remitter with esketamine nasal spray versus standard of care for treatment-resistant depression. J Comp Eff Res 2021; 10:393-407. [PMID: 33565893 DOI: 10.2217/cer-2020-0276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: Estimate the cost-per-remitter with esketamine nasal spray plus an oral antidepressant (ESK + oral AD) versus oral AD plus nasal placebo (oral AD + PBO) among patients with treatment-resistant depression. Patients & methods: An Excel-based model was developed to estimate the cost-per-remitter for ESK + oral AD versus oral AD + PBO over 52 weeks from multiple US payer perspectives. Clinical end points and cost inputs were derived from clinical trials and the literature, respectively. Results: Under the base-case scenario, the cost-per-remitter for ESK + oral AD and oral AD + PBO were as follows: Commercial: US$85,808 versus US$100,198; Medicaid: US$76,236 versus US$96,067; Veteran's Affairs: US$77,765 versus US$104,519; and Integrated Delivery Network: US$103,924 versus US$142,766. Conclusion: The findings suggest that ESK + oral AD is a cost-efficient alternative treatment for treatment-resistant depression compared with oral AD + PBO.
Collapse
Affiliation(s)
- Urvi Desai
- Analysis Group, Inc., Boston, MA 02199, USA
| | | | | | - Hoa H Le
- Janssen Scientific Affairs, Titusville, NJ 08560, USA
| | | | | | - May Shawi
- Janssen Scientific Affairs, Titusville, NJ 08560, USA
| | | |
Collapse
|
27
|
Wu W, Zhang Y, Jiang J, Lucas MV, Fonzo GA, Rolle CE, Cooper C, Chin-Fatt C, Krepel N, Cornelssen CA, Wright R, Toll RT, Trivedi HM, Monuszko K, Caudle TL, Sarhadi K, Jha MK, Trombello JM, Deckersbach T, Adams P, McGrath PJ, Weissman MM, Fava M, Pizzagalli DA, Arns M, Trivedi MH, Etkin A. An electroencephalographic signature predicts antidepressant response in major depression. Nat Biotechnol 2020; 38:439-447. [PMID: 32042166 PMCID: PMC7145761 DOI: 10.1038/s41587-019-0397-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
Antidepressants are widely prescribed, but their efficacy relative to placebo is modest, in part because the clinical diagnosis of major depression encompasses biologically heterogeneous conditions. Here, we sought to identify a neurobiological signature of response to antidepressant treatment as compared to placebo. We designed a latent-space machine-learning algorithm tailored for resting-state electroencephalography (EEG) and applied it to data from the largest imaging-coupled, placebo-controlled antidepressant study (n = 309). Symptom improvement was robustly predicted in a manner both specific for the antidepressant sertraline (versus placebo) and generalizable across different study sites and EEG equipment. This sertraline-predictive EEG signature generalized to two depression samples, wherein it reflected general antidepressant medication responsivity and related differentially to a repetitive transcranial magnetic stimulation treatment outcome. Furthermore, we found that the sertraline resting-state EEG signature indexed prefrontal neural responsivity, as measured by concurrent transcranial magnetic stimulation and EEG. Our findings advance the neurobiological understanding of antidepressant treatment through an EEG-tailored computational model and provide a clinical avenue for personalized treatment of depression.
Collapse
Affiliation(s)
- Wei Wu
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- Wu Tsai Neuroscience Institute Stanford University, Stanford, CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Yu Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- Wu Tsai Neuroscience Institute Stanford University, Stanford, CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Jing Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- Wu Tsai Neuroscience Institute Stanford University, Stanford, CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Molly V. Lucas
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- Wu Tsai Neuroscience Institute Stanford University, Stanford, CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Gregory A. Fonzo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- Wu Tsai Neuroscience Institute Stanford University, Stanford, CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Camarin E. Rolle
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- Wu Tsai Neuroscience Institute Stanford University, Stanford, CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Crystal Cooper
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Cherise Chin-Fatt
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Noralie Krepel
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, The Netherlands
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478
| | - Carena A. Cornelssen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- Wu Tsai Neuroscience Institute Stanford University, Stanford, CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Rachael Wright
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- Wu Tsai Neuroscience Institute Stanford University, Stanford, CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Russell T. Toll
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- Wu Tsai Neuroscience Institute Stanford University, Stanford, CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Hersh M. Trivedi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- Wu Tsai Neuroscience Institute Stanford University, Stanford, CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Karen Monuszko
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- Wu Tsai Neuroscience Institute Stanford University, Stanford, CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Trevor L. Caudle
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- Wu Tsai Neuroscience Institute Stanford University, Stanford, CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Kamron Sarhadi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- Wu Tsai Neuroscience Institute Stanford University, Stanford, CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Manish K. Jha
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Joseph M. Trombello
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Thilo Deckersbach
- New York State Psychiatric Institute & Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Phil Adams
- New York State Psychiatric Institute & Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Patrick J. McGrath
- New York State Psychiatric Institute & Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Myrna M. Weissman
- New York State Psychiatric Institute & Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Maurizio Fava
- New York State Psychiatric Institute & Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Diego A. Pizzagalli
- New York State Psychiatric Institute & Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Martijn Arns
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478
- Department of Experimental Psychology, Utrecht University, Utrecht, the Netherlands
- neuroCare Group Netherlands, Nijmegen, the Netherlands
| | - Madhukar H. Trivedi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- Wu Tsai Neuroscience Institute Stanford University, Stanford, CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| |
Collapse
|
28
|
Leung A, Shirvalkar P, Chen R, Kuluva J, Vaninetti M, Bermudes R, Poree L, Wassermann EM, Kopell B, Levy R. Transcranial Magnetic Stimulation for Pain, Headache, and Comorbid Depression: INS-NANS Expert Consensus Panel Review and Recommendation. Neuromodulation 2020; 23:267-290. [PMID: 32212288 DOI: 10.1111/ner.13094] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/27/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND While transcranial magnetic stimulation (TMS) has been studied for the treatment of psychiatric disorders, emerging evidence supports its use for pain and headache by stimulating either motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC). However, its clinical implementation is hindered due to a lack of consensus in the quality of clinical evidence and treatment recommendation/guideline(s). Thus, working collaboratively, this multinational multidisciplinary expert panel aims to: 1) assess and rate the existing outcome evidence of TMS in various pain/headache conditions; 2) provide TMS treatment recommendation/guidelines for the evaluated conditions and comorbid depression; and 3) assess the cost-effectiveness and technical issues relevant to the long-term clinical implementation of TMS for pain and headache. METHODS Seven task groups were formed under the guidance of a 5-member steering committee with four task groups assessing the utilization of TMS in the treatment of Neuropathic Pain (NP), Acute Pain, Primary Headache Disorders, and Posttraumatic Brain Injury related Headaches (PTBI-HA), and remaining three assessing the treatment for both pain and comorbid depression, and the cost-effectiveness and technological issues relevant to the treatment. RESULTS The panel rated the overall level of evidence and recommendability for clinical implementation of TMS as: 1) high and extremely/strongly for both NP and PTBI-HA respectively; 2) moderate for postoperative pain and migraine prevention, and recommendable for migraine prevention. While the use of TMS for treating both pain and depression in one setting is clinically and financially sound, more studies are required to fully assess the long-term benefit of the treatment for the two highly comorbid conditions, especially with neuronavigation. CONCLUSIONS After extensive literature review, the panel provided recommendations and treatment guidelines for TMS in managing neuropathic pain and headaches. In addition, the panel also recommended more outcome and cost-effectiveness studies to assess the feasibility of the long-term clinical implementation of the treatment.
Collapse
Affiliation(s)
- Albert Leung
- Professor of Anesthesiology and Pain Medicine, Department of Anesthesiology, Center for Pain Medicine, University of California, San Diego, School of Medicine, La Jolla, CA, USA.,Director, Center for Pain and Headache Research, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Prasad Shirvalkar
- Assistant Professor, Departments of Anesthesiology (Pain Management), Neurology, and Neurosurgery, UCSF School of Medicine, USA
| | - Robert Chen
- Catherine Manson Chair in Movement Disorders, Professor of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada
| | - Joshua Kuluva
- Neurologist and Psychiatrist, TMS Health Solution, San Francisco, CA, USA
| | - Michael Vaninetti
- Assistant Clinical Professor, Anesthesiology and Pain Medicine, UCSD School of Medicine, La Jolla, CA, USA
| | - Richard Bermudes
- Chief Medical Officer, TMS Health Solutions, Assistant Clinical Professor- Volunteer, Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Lawrence Poree
- Professor of Anesthesiology, Director, Neuromodulation Service, Division of Pain Medicine, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Eric M Wassermann
- Director, Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Brian Kopell
- Professor of Neurosurgery, Mount Sinai Center for Neuromodulation, New York, NY, USA
| | - Robert Levy
- President of International Neuromodulation Society, Editor-in-Chief, Neuromodulation, Boca Raton, FL, USA
| | -
- See Appendix for Complete List of Task Group Members
| |
Collapse
|
29
|
Cardenas-Rojas A, Pacheco-Barrios K, Giannoni-Luza S, Rivera-Torrejon O, Fregni F. Noninvasive brain stimulation combined with exercise in chronic pain: a systematic review and meta-analysis. Expert Rev Neurother 2020; 20:401-412. [PMID: 32130037 DOI: 10.1080/14737175.2020.1738927] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: The use of noninvasive brain stimulation (NIBS) combined with exercise could produce synergistic effects on chronic pain conditions. This study aims to evaluate the efficacy and safety of NIBS combined with exercise to treat chronic pain as well as to describe the parameters used to date in this combination.Methods: The search was carried out in Medline, Central, Scopus, Embase, and Pedro until November 2019. Randomized clinical trials (RCTs) and quasi-experimental studies reporting the use of noninvasive brain stimulation and exercise on patients with chronic pain were selected and revised.Results: The authors included eight studies (RCTs), reporting eight comparisons (219 participants). Authors found a significant and homogeneous pain decrease (ES: -0.62, 95% CI:-0.89 to -0.34; I2 = 0.0%) in favor of the combined intervention compared to sham NIBS + exercise, predominantly by excitatory (anodal tDCS/rTMS) motor cortex stimulation. Regarding NIBS techniques, the pooled effect sizes were significant for both tDCS (ES: -0.59, 95% CI: -0.89 to -0.29, I2 = 0.0%) and rTMS (ES: -0.76, 95% CI: -1.41 to -0.11, I2 = 0.0%).Conclusions: This meta-analysis suggests a significant moderate to large effects of the NIBS and exercise combination in chronic pain. The authors discuss the potential theoretical framework for this synergistic effect.
Collapse
Affiliation(s)
- Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, USA
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, USA.,Unidad De Investigación Para La Generación Y Síntesis De Evidencias En Salud, Universidad San Ignacio De Loyola, Lima, Perú.,SYNAPSIS Mental Health and Neurology, Non-Profit Organization, Lima, Peru
| | - Stefano Giannoni-Luza
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, USA
| | | | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
30
|
Sauvaget A, Lagalice L, Schirr-Bonnans S, Volteau C, Péré M, Dert C, Rivalland A, Tessier F, Lepage A, Tostivint A, Deschamps T, Thomas-Ollivier V, Robin A, Pineau N, Cabelguen C, Bukowski N, Guitteny M, Beslot A, Simons L, Network H, Vanelle JM, D'Urso G, Bulteau S, Riche VP. Cost-utility analysis of transcranial direct current stimulation (tDCS) in non-treatment-resistant depression: the DISCO randomised controlled study protocol. BMJ Open 2020; 10:e033376. [PMID: 31937653 PMCID: PMC7045105 DOI: 10.1136/bmjopen-2019-033376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Depression is among the most widespread psychiatric disorders in France. Psychiatric disorders are associated with considerable social costs, amounting to €22.6 billion for treatment and psychotropic medication in 2011. Treatment as usual (TAU), mainly consisting of pharmacotherapy and psychotherapy, is effective for only a third of patients and in most cases fails to prevent treatment resistance and chronicity. Transcranial direct current stimulation (tDCS) consists in a non-invasive and painless application of low-intensity electric current to the cerebral cortex through the scalp. Having proved effective in depressed patients, it could be used in combination with TAU to great advantage. The objective is to compare, for the first time ever, the cost-utility of tDCS-TAU and of TAU alone for the treatment of a depressive episode that has been refractory to one or two drug treatments. METHODS AND ANALYSIS This paper, based on the DISCO study protocol, focuses on the design of a prospective, randomised, controlled, open-label multicentre economic study to be conducted in France. It will include 214 patients with unipolar or bipolar depression, assigning them to two parallel arms: group A (tDCS-TAU) and group B (TAU alone). The primary outcome is the incremental cost-effectiveness ratio, that is, the ratio of the difference in cost between each strategy to the difference in their effects. Their effects will be expressed as numbers of quality-adjusted life-years, determined through administration of the EuroQol Five-Dimension questionnaire over a 12-month period to patients (EQ-5D-5L). Expected benefits are the reduction of treatment resistance and suicidal ideation as well as social and professional costs of depression. Should depression-related costs fall significantly, tDCS might be considered an efficient treatment for depression. ETHICS AND DISSEMINATION This protocol has been approved by a French ethics committee, the CPP--Est IV (Comité de Protection des Personnes-Strasbourg). Data are to be published in peer-reviewed medical journals. TRIAL REGISTRATION NUMBER RCB 2018-A00474-51; NCT03758105.
Collapse
Affiliation(s)
- Anne Sauvaget
- CHU de Nantes, Addictology and Liaison Psychiatry Department, Hospital University of Nantes, Nantes, France
- Nantes Université, CHU Nantes,Movement, Interactions, Performance (MIP), EA 4334, University of Nantes, Nantes, France
| | - Lydie Lagalice
- CHU de Nantes, Addictology and Liaison Psychiatry Department, Hospital University of Nantes, Nantes, France
| | - Solène Schirr-Bonnans
- CHU de Nantes, Innovation Cell, Partnership and Innovation Department, Directorate of Medical Affairs and Research, University Hospital Centre Nantes, Nantes, France
| | - Christelle Volteau
- CHU de Nantes, Section of Methodology and Biostatistics, University Hospital Centre Nantes, Nantes, Pays de la Loire, France
| | - Morgane Péré
- CHU de Nantes, Section of Methodology and Biostatistics, University Hospital Centre Nantes, Nantes, Pays de la Loire, France
| | - Cécile Dert
- CHU de Nantes, Innovation Cell, Partnership and Innovation Department, Directorate of Medical Affairs and Research, University Hospital Centre Nantes, Nantes, France
| | - Annabelle Rivalland
- CHU de Nantes, Addictology and Liaison Psychiatry Department, Hospital University of Nantes, Nantes, France
| | - Fabienne Tessier
- CHU de Nantes, Addictology and Liaison Psychiatry Department, Hospital University of Nantes, Nantes, France
| | - Adeline Lepage
- CHU de Nantes, Addictology and Liaison Psychiatry Department, Hospital University of Nantes, Nantes, France
| | - Agathe Tostivint
- CHU de Nantes, Addictology and Liaison Psychiatry Department, Hospital University of Nantes, Nantes, France
| | - Thibault Deschamps
- Nantes Université, CHU Nantes,Movement, Interactions, Performance (MIP), EA 4334, University of Nantes, Nantes, France
| | - Véronique Thomas-Ollivier
- Nantes Université, CHU Nantes,Movement, Interactions, Performance (MIP), EA 4334, University of Nantes, Nantes, France
| | - Alison Robin
- Nantes Université, CHU Nantes,Movement, Interactions, Performance (MIP), EA 4334, University of Nantes, Nantes, France
| | - Noémie Pineau
- Nantes Université, CHU Nantes,Movement, Interactions, Performance (MIP), EA 4334, University of Nantes, Nantes, France
| | - Clémence Cabelguen
- CHU de Nantes, Addictology and Liaison Psychiatry Department, Hospital University of Nantes, Nantes, France
| | - Nicolas Bukowski
- CHU de Nantes, Addictology and Liaison Psychiatry Department, Hospital University of Nantes, Nantes, France
| | - Marie Guitteny
- CHU de Nantes, Addictology and Liaison Psychiatry Department, Hospital University of Nantes, Nantes, France
| | - Auxane Beslot
- CHU de Nantes, Addictology and Liaison Psychiatry Department, Hospital University of Nantes, Nantes, France
| | - Luc Simons
- CHU de Nantes, Addictology and Liaison Psychiatry Department, Hospital University of Nantes, Nantes, France
| | | | - Jean-Marie Vanelle
- CHU de Nantes, Addictology and Liaison Psychiatry Department, Hospital University of Nantes, Nantes, France
| | - Giordano D'Urso
- Department of Neurosciences, Reproductive Sciences, and Odontostomatology, University of Naples Federico II, Napoli, Campania, Italy
| | - Samuel Bulteau
- CHU de Nantes, Addictology and Liaison Psychiatry Department, Hospital University of Nantes, Nantes, France
- Inserm, SPHERE U1246, University of Nantes, Nantes, Pays de la Loire, France
| | - Valéry-Pierre Riche
- CHU de Nantes, Innovation Cell, Partnership and Innovation Department, Directorate of Medical Affairs and Research, University Hospital Centre Nantes, Nantes, France
| |
Collapse
|
31
|
Moisset X, Lanteri-Minet M, Fontaine D. Neurostimulation methods in the treatment of chronic pain. J Neural Transm (Vienna) 2019; 127:673-686. [PMID: 31637517 DOI: 10.1007/s00702-019-02092-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023]
Abstract
The goal of this narrative review was to give an up-to-date overview of the peripheral and central neurostimulation methods that can be used to treat chronic pain. Special focus has been given to three pain conditions: neuropathic pain, nociplastic pain and primary headaches. Both non-invasive and invasive techniques are briefly presented together with their pain relief potentials. For non-invasive stimulation techniques, data concerning transcutaneous electrical nerve stimulation (TENS), transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), remote electrical neuromodulation (REN) and vagus nerve stimulation (VNS) are provided. Concerning invasive stimulation techniques, occipital nerve stimulation (ONS), vagus nerve stimulation (VNS), epidural motor cortex stimulation (EMCS), spinal cord stimulation (SCS) and deep brain stimulation (DBS) are presented. The action mode of all these techniques is only partly understood but can be very different from one technique to the other. Patients' selection is still a challenge. Recent consensus-based guidelines for clinical practice are presented when available. The development of closed-loop devices could be of interest in the future, although the clinical benefit over open loop is not proven yet.
Collapse
Affiliation(s)
- X Moisset
- Service de Neurologie, Université Clermont-Auvergne, INSERM, Neuro-Dol, CHU Clermont-Ferrand, Clermont-Ferrand, France.
| | - M Lanteri-Minet
- Pain Department, CHU Nice, FHU InovPain Côte Azur University, Nice, France
- Université Clermont-Auvergne, INSERM, Neuro-Dol, Clermont-Ferrand, France
| | - D Fontaine
- Department of Neurosurgery, Université Côte Azur University, CHU de Nice, FHU InovPain, Nice, France
| |
Collapse
|
32
|
Rosenich E, Gill S, Clarke P, Paterson T, Hahn L, Galletly C. Does rTMS reduce depressive symptoms in young people who have not responded to antidepressants? Early Interv Psychiatry 2019; 13:1129-1135. [PMID: 30303308 DOI: 10.1111/eip.12743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/22/2018] [Accepted: 09/09/2018] [Indexed: 12/17/2022]
Abstract
AIM Depression is common in young people, and there is a need for safe, effective treatments. This study examined the efficacy of repetitive transcranial magnetic stimulation in a sample of young people aged 17 to 25 years. METHODS This retrospective study included 15 people aged 17 to 25 years referred by their private psychiatrists affiliated with Ramsay Health Care, South Australia Mental Health Services. All patients met Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria for treatment-resistant Major Depressive Disorder. Eleven patients received right unilateral treatment and four patients received bilateral treatment. Patients were assessed at baseline and after treatment. RESULTS There was a significant improvement on the Hamilton Rating Scale for Depression (t(14) = 4.71, P < 0.0001); Montgomery-Åsperg Depression Rating Scale (t(14) = 3.96, P < 0.01) and the Zung Self-Rating Depression Scale (t(14) = 4.13, P < 0.01). There was no difference in response by gender or age. The response rates in these young people did not differ significantly from those of adults aged 25 to 82 years. CONCLUSION This open label, naturalistic study suggests that repetitive transcranial magnetic stimulation is an effective treatment in young adults who have treatment-resistant depression. Randomized sham-controlled studies are needed to further investigate the efficacy of this treatment in this age group.
Collapse
Affiliation(s)
- Emily Rosenich
- International Centre for Allied Health Evidence, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Shane Gill
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, Adelaide, South Australia, Australia.,South Australian Psychiatry Training Committee, Central Adelaide Local Health Network-Mental Health Directorate, Adelaide, South Australia, Australia
| | - Patrick Clarke
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, Adelaide, South Australia, Australia
| | - Tom Paterson
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, Adelaide, South Australia, Australia
| | - Lisa Hahn
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, Adelaide, South Australia, Australia
| | - Cherrie Galletly
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, Adelaide, South Australia, Australia.,Northern Adelaide Local Health Network, Adelaide, South Australia, Australia
| |
Collapse
|
33
|
Fonzo GA, Etkin A, Zhang Y, Wu W, Cooper C, Chin-Fatt C, Jha MK, Trombello J, Deckersbach T, Adams P, McInnis M, McGrath PJ, Weissman MM, Fava M, Trivedi MH. Brain regulation of emotional conflict predicts antidepressant treatment response for depression. Nat Hum Behav 2019; 3:1319-1331. [PMID: 31548678 PMCID: PMC6908746 DOI: 10.1038/s41562-019-0732-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
Abstract
The efficacy of antidepressant treatment for depression is controversial due to the only modest superiority demonstrated over placebo. However, neurobiological heterogeneity within depression may limit overall antidepressant efficacy. We sought to identify a neurobiological phenotype responsive to antidepressant treatment by testing pretreatment brain activation during response to, and regulation of, emotional conflict as a moderator of the clinical benefit of the antidepressant sertraline versus placebo. Using neuroimaging data from a large randomized controlled trial, we found widespread moderation of clinical benefits by brain activity during regulation of emotional conflict, in which greater downregulation of conflict-responsive regions predicted better sertraline outcomes. Treatment-predictive machine learning using brain metrics outperformed a model trained on clinical and demographic variables. Our findings demonstrate that antidepressant response is predicted by brain activity underlying a key self-regulatory emotional capacity. Leveraging brain-based measures in psychiatry will forge a path toward better treatment personalization, refined mechanistic insights and improved outcomes.
Collapse
Affiliation(s)
- Gregory A Fonzo
- Department of Psychiatry, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA. .,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA. .,Sierra Pacific Mental Illness Research, Education and Clinical Center in the Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| | - Yu Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Sierra Pacific Mental Illness Research, Education and Clinical Center in the Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Wei Wu
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Sierra Pacific Mental Illness Research, Education and Clinical Center in the Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Crystal Cooper
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cherise Chin-Fatt
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Manish K Jha
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph Trombello
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thilo Deckersbach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Phil Adams
- New York State Psychiatric Institute and Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Melvin McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Patrick J McGrath
- New York State Psychiatric Institute and Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Myrna M Weissman
- New York State Psychiatric Institute and Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Madhukar H Trivedi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
34
|
Kiebs M, Hurlemann R, Mutz J. Repetitive transcranial magnetic stimulation in non-treatment-resistant depression. Br J Psychiatry 2019; 215:445-446. [PMID: 31014413 DOI: 10.1192/bjp.2019.75] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been investigated as treatment for major depressive episodes since the early 1990s. Using data from a recent meta-analysis, we show that most patients included in randomised trials display relatively high degrees of treatment resistance. This might have unfavourably biased the clinical reputation of rTMS.Declaration of interestsM.K. has received a lecture fee from Innomed Medizintechnik in 2017 and 2018.
Collapse
Affiliation(s)
- Maximilian Kiebs
- PhD Student,Division of Medical Psychology,Department of Psychiatry,University of Bonn Medical Center,Germany
| | - René Hurlemann
- Head, Division of Medical Psychology;and Vice Head,Department of Psychiatry,University of Bonn Medical Center,Germany
| | - Julian Mutz
- Doctoral Researcher,Social Genetic and Developmental Psychiatry Centre,Institute of Psychiatry, Psychology & Neuroscience, King's College London,UK
| |
Collapse
|
35
|
Trevizol AP, Blumberger DM. An Update on Repetitive Transcranial Magnetic Stimulation for the Treatment of Major Depressive Disorder. Clin Pharmacol Ther 2019; 106:747-762. [PMID: 31206624 DOI: 10.1002/cpt.1550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has emerged as an evidenced-based treatment for major depression that does not respond to standard first-line therapies. The majority of data support the use of high-frequency (10 Hz) treatment delivered to the left dorsolateral prefrontal cortex. Intermittent theta burst stimulation is a new emerging treatment that reduces the time required to deliver treatment and can increase capacity and access to this treatment. This review will comprehensively cover recent advancements in the field of rTMS for depression, including stimulation parameters and targets aimed at enhancing outcomes. In addition, efforts to use modern neuroscience tools to personalize this treatment and optimize outcomes will be reviewed.
Collapse
Affiliation(s)
- Alisson P Trevizol
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Temerty Centre for Therapeutic Brain Intervention, Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Bulteau S, Guirette C, Brunelin J, Poulet E, Trojak B, Richieri R, Szekely D, Bennabi D, Yrondi A, Rotharmel M, Bougerol T, Dall’Igna G, Attal J, Benadhira R, Bouaziz N, Bubrovszky M, Calvet B, Dollfus S, Foucher J, Galvao F, Gay A, Haesebaert F, Haffen E, Jalenques I, Januel D, Jardri R, Millet B, Nathou C, Nauczyciel C, Plaze M, Rachid F, Vanelle JM, Sauvaget A. Troubles de l’humeur : quand recourir à la stimulation magnétique transcrânienne ? Presse Med 2019; 48:625-646. [DOI: 10.1016/j.lpm.2019.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/30/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
|
37
|
Stilling JM, Monchi O, Amoozegar F, Debert CT. Transcranial Magnetic and Direct Current Stimulation (TMS/tDCS) for the Treatment of Headache: A Systematic Review. Headache 2019; 59:339-357. [DOI: 10.1111/head.13479] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Joan M. Stilling
- Clinical Neurosciences University of Calgary Calgary AB, Canada
- Cumming School of Medicine University of Calgary Calgary AB, Canada
- Hotchkiss Brain Institute Calgary AB, Canada
| | - Oury Monchi
- Clinical Neurosciences University of Calgary Calgary AB, Canada
- Cumming School of Medicine University of Calgary Calgary AB, Canada
- Hotchkiss Brain Institute Calgary AB, Canada
| | - Farnaz Amoozegar
- Clinical Neurosciences University of Calgary Calgary AB, Canada
- Cumming School of Medicine University of Calgary Calgary AB, Canada
- Hotchkiss Brain Institute Calgary AB, Canada
| | - Chantel T. Debert
- Clinical Neurosciences University of Calgary Calgary AB, Canada
- Cumming School of Medicine University of Calgary Calgary AB, Canada
- Hotchkiss Brain Institute Calgary AB, Canada
| |
Collapse
|
38
|
Voigt J, Carpenter L, Leuchter A. A systematic literature review of the clinical efficacy of repetitive transcranial magnetic stimulation (rTMS) in non-treatment resistant patients with major depressive disorder. BMC Psychiatry 2019; 19:13. [PMID: 30621636 PMCID: PMC6325728 DOI: 10.1186/s12888-018-1989-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The clinical efficacy of repetitive transcranial magnetic stimulation (rTMS) in treatment resistant patients (at least 4 medication trials) appears to be well accepted and forms the coverage policies and rTMS's use in many of the largest US payers. However, less is known about rTMS's use in patients who have undergone ≤1 failed medication trial. The purpose of this analysis was to determine the clinical efficacy of rTMS in patients after ≤1 medication trials. METHODS A systematic review of the literature was undertaken to identify all articles which addressed the use of rTMS in ≤1 medication trial. All types of study designs were included and assessed for quality and strength of evidence using: GRADE and CEBM. Searches of peer reviewed articles were undertaken for the year 2000 to the present. All languages were considered. Electronic databases were searched and included: PubMed and EBSCO. Evidence assessment websites were also searched and included: Cochrane, NICE, AHRQ, and ICER. Additionally, the clinical guidelines for specialty societies which use rTMS was searched. Hand searches of the reference sections of identified articles was also undertaken. RESULTS Electronic and other sources identified 165 after duplicates were removed. Twenty two articles were assessed for eligibility and ultimately 10 articles were included in the systematic review and graded. Six articles were graded high quality (CEBM/GRADE: 1c/B) demonstrating that the use of rTMS was clinically efficacious in patients after ≤1 medication trial. Four additional trials demonstrated a positive effect of rTMS in patients after ≤1 medication trial but were of a lower quality. CONCLUSION The use of rTMS in patients after ≤1 medication trial should be considered. US payers should consider revising their coverage policies to include the use of rTMS in these patients.
Collapse
Affiliation(s)
- Jeffrey Voigt
- Medical Device Consultants of Ridgewood, LLC, 99 Glenwood Rd, Ridgewood, NJ, 07450, USA.
| | - Linda Carpenter
- 0000 0004 1936 9094grid.40263.33Department of Psychiatry and Human Behavior, Brown Institute for Brain Science, Brown University, 700 Butler Dr, Providence, RI 02906 USA
| | - Andrew Leuchter
- 0000 0000 9632 6718grid.19006.3eUniversity of California Los Angeles (UCLA), Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, UCLA, 760 Westwood Plaza, Room 37-452, Los Angeles, CA 90095 USA
| |
Collapse
|