1
|
Hall JA, Brockman JA, Brejda JJ, Jewell DE. Metabolomic Changes Associated with AGXT2 Genotype Variants and Stone Formation in a Colony of Cats. Genes (Basel) 2024; 15:1264. [PMID: 39457388 PMCID: PMC11507365 DOI: 10.3390/genes15101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVE The objective of this study was to assess serum chemistries and metabolomic parameters in cats with genetic variants of the alanine-glyoxylate aminotransferase 2 (AGXT2) gene to determine abnormalities associated with urolith formation and better understand effective approaches for the treatment of cats with uroliths. METHODS AGXT2 genotypes of 445 cats in the colony at Hill's Pet Nutrition, Inc. (Topeka, KS, USA) were assessed in a genome-wide association study. Additionally, the serum chemistries and metabolic profiles of each cat were determined, along with their lifetime history of stone incidence. Factor analysis was used as a data-reduction method for metabolites in order to perform statistical hypothesis testing and to select significant metabolites from the more than 600 serum metabolites identified. RESULTS Of the 82 cats forming stones in the colony (18.4%), the majority were calcium oxalate. Results showed that approximately one third of the cats with the AA variant of the AGXT2 gene have stones, that chronic kidney disease (CKD) is more common in cats with stones, and that having stones results in a shorter lifespan. A discriminant variable selection process was performed to determine the complete blood count, serum biochemistries, and serum metabolomic factors that best discriminated among the three genotypes (AA, AG, GG) and between cats forming stones and non-stone formers. Several of the highly ranked discriminating factors included metabolites related to decreased aminotransferase activity in cats with the AA variant of the AGXT2 gene. Another factor that ranked highly for discriminating between stone formers and non-stone formers contained lipid metabolites, consisting of multiple sphingomyelin species and cholesterol. CONCLUSIONS These findings support the results of feeding studies in cats, whereby CKD cats fed food supplemented with betaine and prebiotics have experienced an increase in total body mass, reduced uremic toxins, and altered sphingomyelin concentrations.
Collapse
Affiliation(s)
- Jean A. Hall
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Jeffrey A. Brockman
- Science & Technology Center, Hill′s Pet Nutrition, Inc., Topeka, KS 66617, USA;
| | - John J. Brejda
- Alpha Statistical Consulting, Inc., Lincoln, NE 68502, USA;
| | - Dennis E. Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
2
|
Burron S, Richards T, Krebs G, Trevizan L, Rankovic A, Hartwig S, Pearson W, Ma DWL, Shoveller AK. The balance of n-6 and n-3 fatty acids in canine, feline, and equine nutrition: exploring sources and the significance of alpha-linolenic acid. J Anim Sci 2024; 102:skae143. [PMID: 38776363 PMCID: PMC11161904 DOI: 10.1093/jas/skae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024] Open
Abstract
Both n-6 and n-3 fatty acids (FA) have numerous significant physiological roles for mammals. The interplay between these families of FA is of interest in companion animal nutrition due to the influence of the n-6:n-3 FA ratio on the modulation of the inflammatory response in disease management and treatment. As both human and animal diets have shifted to greater consumption of vegetable oils rich in n-6 FA, the supplementation of n-3 FA to canine, feline, and equine diets has been advocated for. Although fish oils are commonly added to supply the long-chain n-3 FA eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), a heavy reliance on this ingredient by the human, pet food, and equine supplement industries is not environmentally sustainable. Instead, sustainable sourcing of plant-based oils rich in n-3 α-linolenic acid (ALA), such as flaxseed and camelina oils, emerges as a viable option to support an optimal n-6:n-3 FA ratio. Moreover, ALA may offer health benefits that extend beyond its role as a precursor for endogenous EPA and DHA production. The following review underlines the metabolism and recommendations of n-6 and n-3 FA for dogs, cats, and horses and the ratio between them in promoting optimal health and inflammation management. Additionally, insights into both marine and plant-based n-3 FA sources will be discussed, along with the commercial practicality of using plant oils rich in ALA for the provision of n-3 FA to companion animals.
Collapse
Affiliation(s)
- Scarlett Burron
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Taylor Richards
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Giovane Krebs
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - Luciano Trevizan
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - Alexandra Rankovic
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Samantha Hartwig
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Wendy Pearson
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| |
Collapse
|
3
|
Morris EM, McGrath AP, Brejda J, Jewell DE. Relative supersaturation values distinguish between feline urinary and non-urinary foods and align with expected urine analytes contributions to uroliths. Front Vet Sci 2023; 10:1167840. [PMID: 37601750 PMCID: PMC10436620 DOI: 10.3389/fvets.2023.1167840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Uroliths are concretions formed in the urinary tract. These can be problematic in humans and companion animals such as cats. Magnesium ammonium phosphate (struvite) and calcium oxalate (CaOx) are the most common forms of uroliths. The relative supersaturation (RSS) is a relative risk index of crystal formation. Here, an updated program for calculating RSS, EQUIL-HL21, was used to detect differences in RSS values when cats were fed foods formulated for urinary and non-urinary conditions. In addition, the contributions of urinary analytes to RSS values were examined via regression analyses. Methods Historical data from feeding trials including foods indicated for use in urinary or non-urinary conditions were analyzed for nutrient composition and urinary parameters. RSS was calculated by EQUIL-HL21. The relationship between RSS values calculated by EQUIL-HL21 and urinary analytes was examined by regression models, which were selected by R2 and stepwise methods. Results Cats that consumed urinary foods had significantly greater levels of urinary sodium and chloride compared with those that consumed non-urinary foods, consistent with the greater amounts of sodium and chloride in the urinary foods. Those that consumed non-urinary foods had higher urine pH, ammonium, potassium, phosphorus, magnesium, oxalate, citrate, and sulfate. Struvite RSS value and number of urinary crystals were significantly lower in cats fed the urinary foods. Mean CaOx RSS values were similar in both foods, though the number of CaOx crystals were significantly higher in cats that consumed non-urinary foods. A model predicting the natural log of struvite RSS values indicated that these values would increase with increasing urine pH, ammonium, chloride, calcium, phosphorus, and magnesium, and would decrease with increasing urine citrate and sulfate. CaOx RSS was predicted to increase as urinary chloride, calcium, and oxalates increased, and would decrease as urine pH, sodium, phosphorus, citrate, and sulfate increased. Discussion These analyses demonstrate that the EQUIL-HL21 program can accurately detect expected differences between foods formulated for urinary and non-urinary indications. Regression models showed the eight urinary analytes that, respectively, contribute to the predicted RSS values for struvite and CaOx.
Collapse
Affiliation(s)
| | | | - John Brejda
- Alpha Statistical Consulting, Inc., Lincoln, NE, United States
| | - Dennis E. Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
4
|
Anthony RM, Davidson S, MacLeay JM, Brejda J, Werness P, Jewell DE. Comparison of two software programs used to determine the relative supersaturation of urine ions. Front Vet Sci 2023; 10:1146945. [PMID: 37332737 PMCID: PMC10274322 DOI: 10.3389/fvets.2023.1146945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/11/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Relative supersaturation (RSS) values for urine crystals are a measure of the risk of urinary stone formation and have been shown to be lowered in foods shown to aid in the management of urolithiasis. In order to calculate RSS in pets, computer programs have been developed to calculate RSS and aid in the understanding of stone formation in veterinary medicine. However, some older programs have not been updated for use in animals, and the specific coefficients used are not publically available. One of the first RSS programs was developed in BASIC computer language and published in 1985 which was called EQUIL2. The EQUIL2 program was updated to a compiled version compatible with a PC platform. However, the formulas could not be read or altered. Methods This study evaluates a new program with known coefficients to the original EQUIL2 program. The RSS values of the two programs were compared through a t-test, calculating the r2 from correlation analysis, Lin's concordance correlation coefficient, and by a Bland-Altman analysis of outputs from the two programs using urine samples from healthy dogs and cats. Results and Discussion Our results show that for both magnesium ammonium phosphate (struvite) and calcium oxalate, the RSS values of the original program could be calculated from the new programs RSS values. Although the actual RSS values were different (as might be expected through the use of the updated coefficients and different thermodynamic stability constants in the calculations) the results were highly correlated, finding elevations and reductions in RSS proportionally in the same urine samples. The current work creates a foundation for using the modernized program to calculate RSS and provides a shared method for understanding the risk of struvite and calcium oxalate stone formation.
Collapse
Affiliation(s)
| | | | | | - John Brejda
- Alpha Statistical Consulting, Lincoln, NE, United States
| | - Peter Werness
- Consultant for Hill’s Pet Nutrition, Inc, Topeka, KS, United States
| | - Dennis E. Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
5
|
Liu Q, Tang J, Chen Z, Wei L, Chen J, Xie Z. Polyunsaturated fatty acids ameliorate renal stone-induced renal tubular damage via miR-93-5p/Pknox1 axis. Nutrition 2023; 105:111863. [PMID: 36356379 DOI: 10.1016/j.nut.2022.111863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/28/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Polyunsaturated fatty acids (PUFAs) can decrease the risk of calcium oxalate stone formation, which accounts for 80% of all renal stones. This study aimed to investigate the protective mechanisms of PUFAs against renal stones. METHODS Urine samples of patients with renal stones and biopsy tissue samples from patients with nephrocalcinosis were tested for miR-93-5p expression. A renal stone mouse model was established with intraperitoneal injection of glyoxylic acid, during which mice were treated with PUFAs and/or an miR-93-5p inhibitor adenovirus. Periodic acid-Schiff staining, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling staining, oil red O staining, triacylglycerol assay, and colorimetry testing were performed to assess glycogen deposition, apoptosis, lipid accumulation, blood urea nitrogen, and serum creatinine levels, respectively. Renal proximal tubular epithelial cells (human kidney 2 [HK-2]) were subjected to gain- and loss-of-function assays before calcium-oxalate monohydrate (COM) induction and PUFA treatment. Cell counting kit 8, flow cytometry, and lactate dehydrogenase activity assays were used to examine cell viability, apoptosis, and damage. A luciferase reporter gene assay verified the interaction between miR-93-5p and Pknox1, and miR-93-5p and Pknox1 levels were assessed using a reverse transcription-quantitative polymerase chain reaction and Western blot analysis. RESULTS miR-93-5p was downregulated in clinical samples with renal stones and negatively targeted Pknox1. PUFAs increased miR-93-5p expression and reduced apoptosis, glycogen deposition, and lipid accumulation in mice with renal stones, which were annulled by miR-93-5p downregulation. PUFAs increased proliferation and diminished apoptosis, lipid accumulation, and lactate dehydrogenase activity in COM-induced HK-2 cells, which were negated by miR-93-5p inhibition. Pknox1 overexpression reversed the effect of miR-93-5p upregulation on COM-induced HK-2 cells. CONCLUSIONS PUFAs repressed renal stone-induced renal tubular damage via the miR-93-5p/Pknox1 axis.
Collapse
Affiliation(s)
- Qin Liu
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Jun Tang
- Department of Emergency, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Zhong Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Lanji Wei
- Health Management Center, The Affiliated Nanhua Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Jianying Chen
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (Mawangdui Hospital), Changsha, Hunan, China
| | - Zhijuan Xie
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China.
| |
Collapse
|
6
|
Dietary Betaine Interacts with Very Long Chain n-3 Polyunsaturated Fatty Acids to Influence Fat Metabolism and Circulating Single Carbon Status in the Cat. Animals (Basel) 2022; 12:ani12202837. [PMID: 36290222 PMCID: PMC9597741 DOI: 10.3390/ani12202837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The domestic cat can metabolize and thrive on a range of intakes of different dietary polyunsaturated fatty acids (PUFA). However, changes in the intake of PUFA have relatively unknown effects on concentrations of other fatty acids and metabolites. Similarly, the effect of increasing dietary betaine (which is a single carbon donor) on circulating concentrations of metabolites and fatty acids is relatively unreported. As might be expected, increasing intake of specific dietary fatty acids resulted in an increased concentration of that fatty acid and moieties containing that fatty acid. Dietary betaine increased concentration of many compounds associated with single carbon metabolism (e.g., dimethyl glycine, sarcosine, methionine) and many PUFA such as the n-6 PUFA linoleic acid (LA) and arachidonic acid (ARA) and the n-3 fatty acids α-linolenic acid (αLA), and docosahexaenoic acid (DHA). Dietary betaine interacted with the addition of dietary fish oil to dampen diet-induced increase of ARA while potentiating the increase of circulating DHA occurring with increased DHA dietary intake. Dietary betaine and fish oil also combined to reduce the circulating concentration of the renal toxin 3-indoxyl sulfate, suggesting a positive effect on the gut microbiota. These data suggest a positive effect of a daily betaine intake which exceeds 60 mg per kg body weight. The data also support an added benefit of a combined EPA+DHA daily intake of greater than 26 mg/kg body weight as well as a daily intake of 75 mg/kg body weight of alpha linolenic acid. Abstract Six foods were used to evaluate the interaction of dietary betaine and n-3 PUFA in the cat. There was no ingredient added to the control food to specifically increase betaine or n-3 fatty acids. The experimental design was a 3 × 2 factorial (fatty acids were varied from the control food which had no added source of n-3 fatty acids, flax was included as a source of 18 carbon n-3, or menhaden fish oil as a source of EPA and DHA). Foods were then formulated using these three foods as a base with added betaine or without added betaine. Forty eight cats were used in this study. Equal numbers of cats were allotted by age and gender to each of the six dietary treatments. The cats were offered food amounts to maintain weight and consumed the food to which they were assigned for the length of the study (60 days). Metabolomics, selected circulating analytes and fatty acids were analyzed at the beginning and end of the feeding period. There was an increase in single carbon metabolites (betaine, dimethyl glycine, and methionine) with the consumption of dietary betaine. Betaine also increased the concentration of specific PUFA (ARA, αLA, DHA, and the sum of all circulating PUFA). The combination of dietary betaine and fish oil resulted in a reduction of circulating 3-indoxyl sulfate which suggests a renal benefit from their combined dietary presence.
Collapse
|
7
|
Panasevich MR, Daristotle L, Yamka RM, Frantz NZ. Dietary Ground Flaxseed Increases Serum Alpha-Linolenic Acid Concentrations in Adult Cats. Animals (Basel) 2022; 12:ani12192543. [PMID: 36230284 PMCID: PMC9558553 DOI: 10.3390/ani12192543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 02/07/2023] Open
Abstract
We evaluated effects of dietary ground flaxseed on fecal and serum alpha-linolenic acid (ALA) concentrations, nutrient digestibility, and stool quality in female and male adult cats (n = 20 (8 males, 12 females); 3.95 ± 1.49 years of age (mean ± SD); 3.88 ± 0.82 kg BW). We hypothesized that adding ground flaxseed would increase serum ALA compared with feeding no flax, without changing nutrient digestibility. Cats were fed as-is 2.6% added-flaxseed (flax, n = 10) or no-flax (control, n = 10) diets (2.66 vs. 0.78% ALA of total fatty acids; crude protein 35%, fat 20%, fiber 3% as-fed) twice daily to maintain body weight for 28 days. Fecal collections were conducted on days 23−27 for total-tract nutrient digestibility, stool quality (scale 1−5; 1 = watery diarrhea, 5 = hard, dry, crumbly) and long-chain fatty acid (LCFA) analyses. Blood was collected on days 0, 14, and 28 for serum LCFA and chemistry analysis. Digestibility and fecal data were analyzed by ANOVA (SAS v9.4, Cary, NC, USA) and a repeated measures ANOVA for serum ALA. Flax-fed cats, compared with control-fed, had greater (p < 0.05) serum ALA after 14 days (4.00 vs. 0.71 µg/mL) and 28 days (7.83 and 3.67 µg/mL). No differences were observed in stool quality, and dry matter, protein, fat, and ALA digestibility. However, metabolizable energy was greater in the flax vs. control diet (4.18 vs. 3.91 kcal/g; p < 0.05). Overall, these data demonstrate that ground flaxseed added to cat diets increases serum ALA within 14 days, with no detriments to nutrient digestibility. We conclude that flaxseed can be used as a bioavailable source of ALA in cat diets.
Collapse
Affiliation(s)
| | | | - Ryan M. Yamka
- Luna Science & Nutrition LLC, Trumbull, CT 06611, USA
| | - Nolan Z. Frantz
- Blue Buffalo Co., Ltd., 11 River Rd., Wilton, CT 068797, USA
| |
Collapse
|
8
|
Jewell DE, Tavener SK, Hollar RL, Panickar KS. Metabolomic changes in cats with renal disease and calcium oxalate uroliths. Metabolomics 2022; 18:68. [PMID: 35962261 PMCID: PMC9374649 DOI: 10.1007/s11306-022-01925-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION There is a significant incidence of cats with renal disease (RD) and calcium oxalate (CaOx) kidney uroliths in domesticated cats. Foods which aid in the management of these diseases may be enhanced through understanding the underlying metabolomic changes. OBJECTIVE Assess the metabolomic profile with a view to identifying metabolomic targets which could aid in the management of renal disease and CaOx uroliths. METHOD This is a retrospective investigation of 42 cats: 19 healthy kidney controls, 11 with RD, and 12 that formed CaOx nephroliths. Cats were evaluated as adults (2 through 7 years) and at the end of life for plasma metabolomics, body composition, and markers of renal dysfunction. Kidney sections were assessed by Pizzolato stain at the end of life for detection of CaOx crystals. CaOx stone presence was also assessed by analysis of stones removed from the kidney at the end of life. RESULTS There were 791 metabolites identified with 91 having significant (p < 0.05, q < 0.1) changes between groups. Many changes in metabolite concentrations could be explained by the loss of renal function being most acute in the cats with RD while the cats with CaOx stones were intermediate between control and RD (e.g., urea, creatinine, pseudouridine, dimethylarginines). However, the concentrations of some metabolites differentiated RD from CaOx stone forming cats. These were either increased in the RD cats (e.g., cystathionine, dodecanedioate, 3-(3-amino-3-carboxypropyl) uridine, 5-methyl-2'-deoxycytidine) or comparatively increased in the CaOx stone forming cats (phenylpyruvate, 4-hydroxyphenylpyruvate, alpha-ketobutyrate, retinal). CONCLUSIONS The metabolomic changes show specific metabolites which respond generally to both renal diseases while the metabolomic profile still differentiates cats with RD and cats with CaOx uroliths.
Collapse
Affiliation(s)
- Dennis E Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, USA.
| | - Selena K Tavener
- Science and Technology Center, Hill's Pet Nutrition®, Inc, Topeka, KS, 66617, USA
| | - Regina L Hollar
- Science and Technology Center, Hill's Pet Nutrition®, Inc, Topeka, KS, 66617, USA
| | - Kiran S Panickar
- Science and Technology Center, Hill's Pet Nutrition®, Inc, Topeka, KS, 66617, USA
| |
Collapse
|
9
|
Hall JA, Panickar KS, Brockman JA, Jewell DE. Cats with Genetic Variants of AGXT2 Respond Differently to a Dietary Intervention Known to Reduce the Risk of Calcium Oxalate Stone Formation. Genes (Basel) 2022; 13:791. [PMID: 35627178 PMCID: PMC9141165 DOI: 10.3390/genes13050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
This study was completed to evaluate a genotype-specific nutritional intervention for reducing the risk of calcium oxalate stone formation. Serum metabolomic profiles and genotypes of 445 cats in the colony at Hill’s Pet Nutrition, Inc (Topeka, KS, USA)were assessed in a genome-wide association study, and revealed an association between genetic variants of alanine-glyoxylate aminotransferase 2 (AGXT2) and 2-oxoarginine. The most significant single nucleotide polymorphisms (SNP) associated with 2-oxoarginine was at position chrA1:212069607, [G/A] (p < 3.687 × 10−17). This SNP explained approximately 15% of the variance in 2-oxoarginine concentrations. The distribution of genotype frequencies was 0.07 AA, 0.39 AG, and 0.54 GG, with a mean relative 2-oxoarginine concentration for each genotype of 0.45 AA, 0.92 AG, and 1.27 GG, indicating a subtractive effect of the minor allele (A). Serum concentrations of two AGXT2 substrates, symmetric/asymmetric dimethylarginines (SDMA/ADMA) and β-aminoisobutyrate (BAIB) were also strongly associated with SNP chrA1:212069607 (p < 1.43 × 10−12 and p < 2.30 × 10−14, respectively). These two AGXT2 substrates were increased with the minor allele (A), indicating that the variant of the AGXT2 gene results in decreased aminotransferase activity. Additionally, the lifetime history of stone incidence showed that cats with the AA variant of AGXT2 SNP had a 2.515× increased incidence of stones compared with cats having the GG variant (p = 0.019). In a subsequent study assessing AGXT2 genotypes, cats (n = 10 GG, 4 AG, 9 AA) were fed control or test food (containing betaine at 0.500%, and the botanicals green tea, fenugreek and tulsi at 0.25, 0.025, and 0.0015%, respectively) in a cross-over study design. Stone risk analysis was conducted on urine samples after feeding control or test food for 28 days each. A calcium oxalate titration test (COT) was performed to assess the amount of added Ox−2 (per L) required to initiate calcium oxalate crystal formation. Cats with the GG variant of the AGXT2 SNP required more added oxalate to initiate urine crystal formation after consuming test food compared with control food, indicating a decreased risk of oxalate crystal formation in GG cats. In addition, urine oxalate concentrations showed an overall effect of test food independent of genotype (p = 0.0009), which resulted in lower oxalate concentrations after consuming test food compared with control food. These data indicate that cats with the GG-specific variant of AGXT2 should benefit from a reduced risk of calcium oxalate stone formation after consuming a betaine and botanical dietary enhancement.
Collapse
Affiliation(s)
- Jean A. Hall
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Kiran S. Panickar
- Science & Technology Center, Hill′s Pet Nutrition, Inc., Topeka, KS 66617, USA; (K.S.P.); (J.A.B.)
| | - Jeffrey A. Brockman
- Science & Technology Center, Hill′s Pet Nutrition, Inc., Topeka, KS 66617, USA; (K.S.P.); (J.A.B.)
| | - Dennis E. Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
10
|
Increased Water Viscosity Enhances Water Intake and Reduces Risk of Calcium Oxalate Stone Formation in Cats. Animals (Basel) 2021; 11:ani11072110. [PMID: 34359236 PMCID: PMC8300425 DOI: 10.3390/ani11072110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study is to determine if water with increased viscosity results in increased water intake, thus lowering the risk of urolithiasis in cats. Twelve healthy adult cats were fed pre-trial standard dry maintenance food for 1 week and then randomized into two groups for the study phase. The cats continued to receive the same food but were provided either control (deionized) water or viscous (1% methylcellulose) water for two months and then switched to the other water type for two months in a cross-over study design with repeated measures. Complete blood counts, serum chemistry profiles, and urinalysis were performed at the initiation of the study and again at 1, 2, 3, and 4 months. Daily water consumption and energy intake for each cat were recorded. Body weights were assessed weekly. Cats consuming 1% methylcellulose water with increased viscosity had increased water intake (p < 0.001; 25% and 21% higher at 28 and 56 days, respectively). Increased consumption of water resulted in lower urine specific gravity (p = 0.04), serum creatinine (p = 0.02), and blood urea nitrogen (p = 0.002) concentrations (without changing serum albumin, glucose, and calcium concentrations or serum osmolality) and decreased urine calcium concentration (p = 0.01) compared with cats consuming control water. In addition, the increased water intake increased (p = 0.05) resistance to oxalate crystal formation.
Collapse
|
11
|
Dodd SAS, Grant C, Abood SK, Verbrugghe A. Case Report: Application and Limitations of a Plant-Based Diet Formulated for a Cat With Feline Lower Urinary Tract Disease. Front Vet Sci 2021; 8:658265. [PMID: 33898549 PMCID: PMC8062804 DOI: 10.3389/fvets.2021.658265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Abstract
A 2-year-old male castrated domestic shorthair cat was presented for recommendations for dietary management of chronic FLUTD using a strictly plant-based diet as per the stipulations of the cat's owner. The cat had a history of urethral obstruction of unknown etiology, persistent marked struvite crystalluria, and persistent inappropriate elimination. Commercial plant-based products meeting the nutritional recommendations for maintenance of adult cats with the lowest concentration of struvite precursors were identified, but the cat would not eat them. At the request of the client, a homemade plant-based diet was formulated with the intention of increasing water intake and promoting acidic, dilute urine. Urine concentration was able to be decreased somewhat and struvite crystalluria resolved, but the urine remained more alkaline than intended. The cat clinically improved and no further FLUTD episodes were reported by the client.
Collapse
Affiliation(s)
- Sarah A S Dodd
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Caitlin Grant
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah K Abood
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
12
|
Jewell DE, Panickar KS. Botanicals Reduce Circulating Concentrations of Cholesterol and Triglycerides and Work Synergistically With Arachidonic Acid to Reduce Inflammatory Cytokines in Cats. Front Vet Sci 2021; 8:620447. [PMID: 33614765 PMCID: PMC7889966 DOI: 10.3389/fvets.2021.620447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/12/2021] [Indexed: 12/27/2022] Open
Abstract
Forty Eight cats were used to measure the effects of feeding a traditional adult cat food supplemented with either arachidonic acid (ARA), a botanical mix (botanicals) or both on circulating biochemical parameters and inflammatory cytokines. The cats were healthy adults (mean age, 3.0; range, 1.3-6.4 years). The adult cats were fed one of four foods (n = 12 per group) for 84 days (dietary changes reported as fed): a traditional adult cat food (control, 0.05% ARA no added botanicals), or control food supplemented with arachidonic acid from chicken liver (0.13% ARA when supplemented), control food supplemented with botanicals (green tea 0.5%, fenugreek 0.05%, and tulsi 0.003%), and control plus ARA (0.13% as fed) with botanicals (green tea 0.5%, fenugreek 0.05%, and tulsi 0.003%). Response variables were compared between treatments: initially, and at 84 days (end of study). The measurements were standard complete blood counts and chemistries as well as circulating cytokines. Botanical inclusion reduced (P < 0.05) circulating cholesterol and triglycerides while arachidonic acid increased (P < 0.05) their concentrations. The pro-inflammatory cytokines MCP-1, TNFα, SDF-1, Flt3L, IL-8, IL-12p40, IL-13, and IL-18 were all reduced (P < 0.05) in cats after consuming the ARA + botanicals food for 84 days with little change after consuming the other foods. Therefore, this combination of ARA and botanicals may be of value in reducing inflammation.
Collapse
Affiliation(s)
- Dennis E Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
13
|
Dietary Fatty Acids Change Circulating Fatty Acids, Microbial Putrefactive Postbiotics and Betaine Status in the Cat. Animals (Basel) 2020; 10:ani10122310. [PMID: 33291310 PMCID: PMC7762147 DOI: 10.3390/ani10122310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The cat is an obligate carnivore that is well adapted to dietary polyunsaturated fatty acids (PUFA), perhaps because of the variance resulting from normal consumption of organ meat which is high in PUFA, and storage lipid which is often relatively low in PUFA. Although able to tolerate and thrive with this variation, cats have a metabolic response to fatty acids that is relatively unknown. This study shows that dietary PUFA resulted in changing circulating concentrations of that specific PUFA. Increasing dietary eicosapentaenoic acid EPA and docosahexaenoic acid DHA (E&D) resulted in little change in total circulating PUFA as compared to increasing dietary arachidonic acid (ARA) which resulted in an increased concentration of total circulating PUFA. Cats responded to increased dietary E&D by reducing circulating cholesterol as compared to control fed cats. Increasing dietary PUFA also resulted in a decrease in circulating betaine, dimethylglycine and sarcosine in comparison to the cats consuming the control food at the end of the study. Changing dietary PUFA also changed circulating concentrations of gut microbial purification postbiotics. Increasing dietary ARA resulted in an increased concentration of indoleacetate, indolepropionate and indoleacetylglutamine in comparison to cats fed foods enhanced with increased E&D. Increasing E&D resulted in a decreased concentration of 4-ethylphenylsulfate, 3-methyl catechol sulfate and 4-vinylphenol sulfate at the end of the feeding period as compared to cats fed increased ARA or fed the unsupplemented control food. These changes suggest that support of single carbon metabolism would benefit cats with increasing dietary PUFA, that increasing E&D beneficially lowered cholesterol and that dietary PUFA influenced gut microbes resulting in changes in their postbiotics. Abstract There is a normal variation of polyunsaturated fatty acids (PUFA) in the foods consumed both by the domestic cat and wild felines. This variation may lead to specific changes in metabolites and circulating fatty acids that influence health and response to disease. Therefore, in order to evaluate the response to these changes in dietary PUFA three foods were formulated: a complete and balanced control food (COF) with no enhanced source of added PUFA (ARA = 0.08%, EPA & DHA = 0.01%), Test food 1 (E&DF) like the COF with added eicosapentaenoic acid EPA and docosahexaenoic acid DHA (E&D = 0.36%)) from menhaden fish oil, and Test Food 2 (ARAF) like the COF with added arachidonic acid (ARA = 0.16%) from liver. All test foods had similar protein concentrations and similar vitamin and mineral concentrations while the PUFA supplemented foods had slightly higher fat concentrations. Cats (n = 36) were fed a pre-trial food for 28 days and then assigned to a group fed either the control, E&DF or ARAF for 56 days (12 cats per group). Blood samples were drawn and serum analyzed for fatty acids, albumin, urea, creatinine, cholesterol and triglycerides at the beginning of the study and after consuming the test foods for 28 and 56 days. Plasma was similarly analyzed for metabolomics. Increasing dietary E&D resulted in reduced cholesterol, betaine, dimethyl glycine, sarcosine and 4-ethylphenylsulfate. Increasing dietary ARA resulted in reduced betaine, dimethyl glycine and sarcosine and an increased concentration of indoleacetate, indolepropionate and indoleacetylglutamine. These data suggest a benefit of dietary single carbon metabolism support for cats supplemented with ARA or E&D. Moreover, the reduction in circulating cholesterol and triglycerides through dietary E&D supplementation could benefit cats with hyperlipidemia. Further research into the interrelationship between dietary PUFA and the gut microbe will benefit from the data showing that ARA increased specific positive postbiotics (i.e., indoleacetate, indolepropionate) while E&D supplementation showed the benefit of reducing some postbiotics which have been associated with reduced health (4-ethylphenylsulfate, 3-methyl catechol sulfate and 4-vinylphenol sulfate).
Collapse
|
14
|
Chao Y, Gao S, Li N, Zhao H, Qian Y, Zha H, Chen W, Dong X. Lipidomics Reveals the Therapeutic Effects of EtOAc Extract of Orthosiphon stamineus Benth. on Nephrolithiasis. Front Pharmacol 2020; 11:1299. [PMID: 32973524 PMCID: PMC7472562 DOI: 10.3389/fphar.2020.01299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Background Nephrolithiasis is a systemic metabolic disease with a high prevalence worldwide and is closely related to lipid-mediated oxidative stress and inflammation. Orthosiphon stamineus Benth. (OS) is a traditional medicinal herb mainly containing flavonoids, caffeic acid derivatives, and terpenoids, which has the effect of treating urinary stones. However, the active ingredients of OS for the treatment of kidney stones and their regulatory mechanisms remain unknown. As a powerful antioxidant, flavonoids from herbs can mitigate calcium oxalate stone formation by scavenging radical. Thus, this work focused on EtOAc extract of OS (EEOS, mainly flavonoids) and aimed to reveal the potential intrinsic mechanism of EEOS in the treatment of kidney stones disease. Methods Firstly, 75% ethanol extract of OS was further extracted with EtOAc to obtain EtOAc extract containing 88.82% flavonoids. Secondly, the extract was subjected to component analysis and used in animal experiments. Then, an untargeted lipidomics based on ultrahigh performance liquid chromatography coupled with TripleTOF 5600 mass spectrometer (UPLC-QTOF-MS) was performed to test the lipid changes of kidneys in the control group, model group and EEOS treatment groups. Finally, multivariate statistical analysis was used to identify differences between the lipid profiles of mice in the model group and the EEOS group. Results Fifty-one lipid metabolites were significantly different between the mice in the model group and the EEOS intervention group, including glycerophosphocholines, glycerophosphoethanolamines, glycerophosphoinositols, and glycerophosphoglycerols. And the composition of glycerophospholipids-esterified ω-3 polyunsaturated fatty acids and glycerophospholipid subclasses in the kidneys of the EEOS group significantly changed compared to model group. Conclusions The EEOS can inhibit the stones formation by improving oxidative stress and inflammation mediated by glycerophospholipid metabolism. This study reveals the potential mechanism of EEOS for kidney stones treatment at the lipid molecule level, providing a new direction for further study of the efficacy of OS.
Collapse
Affiliation(s)
- Yufan Chao
- School of Medicine, Shanghai University, Shanghai, China
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai, China
| | - Hongxia Zhao
- School of Medicine, Shanghai University, Shanghai, China
| | - Yong Qian
- Shanghai Standard Technology Co., Ltd, Shanghai, China
| | - Haihong Zha
- SCIEX, Analytical Instrument Trading Co., Ltd, Shanghai, China
| | - Wei Chen
- Department of Nephrology, Shanghai Changhai Hospital, Shanghai, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
15
|
Wernimont SM, Radosevich J, Jackson MI, Ephraim E, Badri DV, MacLeay JM, Jewell DE, Suchodolski JS. The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: Impact on Health and Disease. Front Microbiol 2020; 11:1266. [PMID: 32670224 PMCID: PMC7329990 DOI: 10.3389/fmicb.2020.01266] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) microbiome of cats and dogs is increasingly recognized as a metabolically active organ inextricably linked to pet health. Food serves as a substrate for the GI microbiome of cats and dogs and plays a significant role in defining the composition and metabolism of the GI microbiome. The microbiome, in turn, facilitates the host's nutrient digestion and the production of postbiotics, which are bacterially derived compounds that can influence pet health. Consequently, pet owners have a role in shaping the microbiome of cats and dogs through the food they choose to provide. Yet, a clear understanding of the impact these food choices have on the microbiome, and thus on the overall health of the pet, is lacking. Pet foods are formulated to contain the typical nutritional building blocks of carbohydrates, proteins, and fats, but increasingly include microbiome-targeted ingredients, such as prebiotics and probiotics. Each of these categories, as well as their relative proportions in food, can affect the composition and/or function of the microbiome. Accumulating evidence suggests that dietary components may impact not only GI disease, but also allergies, oral health, weight management, diabetes, and kidney disease through changes in the GI microbiome. Until recently, the focus of microbiome research was to characterize alterations in microbiome composition in disease states, while less research effort has been devoted to understanding how changes in nutrition can influence pet health by modifying the microbiome function. This review summarizes the impact of pet food nutritional components on the composition and function of the microbiome and examines evidence for the role of nutrition in impacting host health through the microbiome in a variety of disease states. Understanding how nutrition can modulate GI microbiome composition and function may reveal new avenues for enhancing the health and resilience of cats and dogs.
Collapse
Affiliation(s)
| | | | | | - Eden Ephraim
- Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | | | | | - Dennis E. Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Jan S. Suchodolski
- Texas A&M College of Veterinary Medicine & Biomedical Sciences, College Station, TX, United States
| |
Collapse
|
16
|
Wolf C, Gredig N, Ulbrich SE, Kreuzer M, Berard J, Giller K. Partitioning of Rumen-Protected n-3 and n-6 Fatty Acids is Organ-Specific in Growing Angus Heifers. Lipids 2019; 54:503-517. [PMID: 31410851 DOI: 10.1002/lipd.12183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Dietary polyunsaturated fatty acids (PUFA), especially n-3 and n-6 fatty acids (FA), play an important role in the regulation of FA metabolism in all mammals. However, FA metabolism differs between different organs, suggesting a distinct partitioning of highly relevant FA. For the present study in cattle, a novel technology was applied to overcome rumen biohydrogenation of dietary unsaturated FA. Angus heifers were fed a straw-based diet supplemented for 8 weeks with 450 g/day of rumen-protected oil, either from fish (FO) or sunflower (SO). The FA composition in blood and five important organs, namely heart, kidney, liver, lung, and spleen, was examined. In blood, proportions of polyunsaturated FA were increased by supplementing FO compared to SO. The largest increase of eicosapentaenoic acid (EPA) proportion was found with FO instead of SO in the kidney, the lowest in the lung. Docosahexaenoic acid (DHA) was increased more in the liver than in kidney, lung, and spleen. The heart incorporated seven times more EPA than DHA, which is more than all other organs and described here for the first time in ruminants. In addition, the heart had the highest proportions of α-linolenic acid (18:3n-3) and linoleic acid (18:2n-6) of all organs. The proportions of polyunsaturated FA in the lung and spleen were exceptionally low compared to heart, liver, and kidney. In conclusion, it was shown that the response to FO in the distribution of dietary n-3 FA was organ-specific while proportions of n-6 FA were quite inert with respect to the type of oil supplemented.
Collapse
Affiliation(s)
- Christina Wolf
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Nicole Gredig
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Institute of Agricultural Sciences, Animal Physiology, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Michael Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Joel Berard
- ETH Zurich, AgroVet-Strickhof, Eschikon 27, 8315, Lindau, Switzerland
| | - Katrin Giller
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Universitaetstrasse 2, 8092, Zurich, Switzerland
| |
Collapse
|
17
|
Hall JA, Jackson MI, Vondran JC, Vanchina MA, Jewell DE. Comparison of circulating metabolite concentrations in dogs and cats when allowed to freely choose macronutrient intake. Biol Open 2018; 7:bio.036228. [PMID: 30254078 PMCID: PMC6262854 DOI: 10.1242/bio.036228] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Food intake changes circulating metabolite concentrations. Thus, a comparison of circulating metabolites between dogs and cats is necessarily confounded by the composition of foods offered. The objective of this study was to determine differences between dogs and cats when given the opportunity to choose their own macronutrient intake. Four experimental foods with similar palatability, but varying in macronutrient content were prepared for dogs, and four for cats. Foods were available to dogs (n=17) for food intake once a day and to cats (n=27) at all times. Food 1 was high protein; Food 2 was high fat; Food 3 was high carbohydrates and Food 4 was balanced for macronutrients. By choosing a combination of foods, each animal could individually set its own macronutrient intake. Plasma metabolomics were determined after pets had consumed their food intake of choice for 28 days. Cats had higher concentrations of the essential amino acids histidine, isoleucine, phenylalanine and valine, but lower concentrations of lysine, methionine and threonine compared with dogs. Overall, non-essential amino acids were higher in cats. Regarding lipids, cats had increased concentrations of highly polyunsaturated fatty acids (PUFA) after 28 days, although arachidonic acid (AA) was consistently higher in dogs. Regarding circulating microbial metabolites, there was more stability for dogs compared with cats (none changed over time in dogs versus 42% changed in cats; P<0.01). Concentrations of urea cycle intermediates, antioxidants and methylated compounds were also different between species. In conclusion, metabolite differences between dogs and cats reflected differences in species and food choices. Summary: Dogs and cats offered foods with different macronutrient composition, but equivalent palatability, have different circulating metabolite concentrations that reflect differences in species and food choices.
Collapse
Affiliation(s)
- Jean A Hall
- Department of Biomedical Sciences, Dryden Hall 206, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon 97331-4802, USA
| | - Matthew I Jackson
- Pet Nutrition Center, Hill's Pet Nutrition, Inc, 1035 NE 43rd Street, Topeka, Kansas 66617-1587, USA
| | - Jodi C Vondran
- Pet Nutrition Center, Hill's Pet Nutrition, Inc, 1035 NE 43rd Street, Topeka, Kansas 66617-1587, USA
| | - Melissa A Vanchina
- Pet Nutrition Center, Hill's Pet Nutrition, Inc, 1035 NE 43rd Street, Topeka, Kansas 66617-1587, USA
| | - Dennis E Jewell
- Pet Nutrition Center, Hill's Pet Nutrition, Inc, 1035 NE 43rd Street, Topeka, Kansas 66617-1587, USA
| |
Collapse
|