1
|
Quaresima B, Scicchitano S, Faniello MC, Mesuraca M. Role of solute carrier transporters in ovarian cancer (Review). Int J Mol Med 2025; 55:24. [PMID: 39611477 PMCID: PMC11637498 DOI: 10.3892/ijmm.2024.5465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024] Open
Abstract
Solute carrier (SLC) transporters are involved in various biological processes associated with metabolic reprogramming and cancer, supporting the increased requirement of nutrients and energy. Over the past decade, there have been significant advancements in understanding the expression and function of SLCs in ovarian cancer (OC). This gynecological condition has a high mortality rate and limited treatment options; thus, early diagnosis remains a target clinically. OC exhibits complexity and heterogeneity, resulting in different clinical characteristics, resistance to chemotherapy drugs and poor prognosis. Additionally, SLCs have a different expression pattern between healthy and tumor tissue, and consequently, their inhibition or activation could modify signaling pathways involved in the tumor growth process, such as cell proliferation, apoptosis and drug accumulation. The present review aims to consolidate current data to provide a comprehensive understanding of the potential importance of SLCs in OC. Additionally, it seeks to offer guidance for further research on utilizing SLCs as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Barbara Quaresima
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, I-88100 Catanzaro, Italy
| | - Stefania Scicchitano
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, I-88100 Catanzaro, Italy
| | | | - Maria Mesuraca
- Correspondence to: Dr Maria Mesuraca or Dr Barbara Quaresima, Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, Viale Europa, I-88100 Catanzaro, Italy, E-mail: , E-mail:
| |
Collapse
|
2
|
Wang Y, Cheng C, Lu Y, Lian Z, Liu Q, Xu Y, Li Y, Li H, Zhang L, Jiang X, Li B, Yu D. β-Catenin Activation Reprograms Ammonia Metabolism to Promote Senescence Resistance in Hepatocellular Carcinoma. Cancer Res 2024; 84:1643-1658. [PMID: 38417136 DOI: 10.1158/0008-5472.can-23-0673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/26/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Hepatocellular carcinoma (HCC) is a typical tumor that undergoes metabolic reprogramming, differing from normal liver tissue in glucose, lipid, nucleic acid, and amino acid metabolism. Although ammonia is a toxic metabolic by-product, it has also been recently recognized as a signaling molecule to activate lipid metabolism, and it can be a nitrogen source for biosynthesis to support tumorigenesis. In this study, we revealed that β-catenin activation increases ammonia production in HCC mainly by stimulating glutaminolysis. β-Catenin/LEF1 activated the transcription of the glutamate dehydrogenase GLUD1, which then promoted ammonia utilization to enhance the production of glutamate, aspartate, and proline as evidenced by 15NH4Cl metabolic flux. β-Catenin/TCF4 induced the transcription of SLC4A11, an ammonia transporter, to excrete excess ammonia. SLC4A11 was upregulated in HCC tumor tissues, and high SLC4A11 expression was associated with poor prognosis and advanced disease stages. Loss of SLC4A11 induced HCC cell senescence in vitro by blocking ammonia excretion and reduced β-catenin-driven tumor growth in vivo. Furthermore, elevated levels of plasma ammonia promoted the progression of β-catenin mutant HCC, which was impeded by SLC4A11 deficiency. Downregulation of SLC4A11 led to ammonia accumulation in tumor interstitial fluid and decreased plasma ammonia levels in HCC with activated β-catenin. Altogether, this study indicates that β-catenin activation reprograms ammonia metabolism and that blocking ammonia excretion by targeting SLC4A11 could be a promising approach to induce senescence in β-catenin mutant HCC. SIGNIFICANCE Ammonia metabolism reprogramming mediated by aberrant activation of β-catenin induces resistance to senescence in HCC and can be targeted by inhibiting SLC4A11 as a potential therapy for β-catenin mutant liver cancer.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chunxiao Cheng
- Department of Hepatobiliary, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanjun Lu
- Department of Hepatobiliary, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhaowu Lian
- Department of Hepatobiliary, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yanchao Xu
- Department of Hepatobiliary, Nanjing Drum Tower Hospital, the Affiliated Hospital of Jiangsu University, Nanjing, China
| | - Yunzheng Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Laizhu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiang Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Binghua Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Decai Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Hepatobiliary, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hepatobiliary, Nanjing Drum Tower Hospital, the Affiliated Hospital of Jiangsu University, Nanjing, China
| |
Collapse
|
3
|
He JY, Li ZM, Chen YT, Zhao BH, Yu C. Development and validation of a prognostic prediction model for cervical cancer patients treated with radical radiotherapy: a study based on TCGA database. Transl Cancer Res 2024; 13:1721-1736. [PMID: 38737688 PMCID: PMC11082820 DOI: 10.21037/tcr-23-1772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/22/2024] [Indexed: 05/14/2024]
Abstract
Background Radiotherapy or concurrent chemoradiotherapy is the standard treatment for patients with locally advanced or inoperable cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). However, treatment failure for CESC patients treated with radical radiotherapy still occurs due to local recurrence and distant metastasis. The previous prediction models were focused on all CESC patients, neglecting the prognostic differences under different treatment modalities. Therefore, there is a pressing demand to explore novel biomarkers for the prognosis and sensitivity of radiotherapy in CESC patients treated with radical radiotherapy. As a single biomarker has limited effect in stratifying these patients, our objective was to identify radioresponse-related mRNAs to ameliorate forecast of the prognosis for CESC patients treated with radical radiotherapy. Methods Sample data on CESC patients treated with radical radiotherapy were obtained from The Cancer Genome Atlas (TCGA) database. We randomly separated these patients into a training and test cohorts using a 1:1 ratio. Differential expression analysis was carried out to identify radioresponse-related mRNA sets that were significantly dysregulated between complete response (CR) and radiographic progressive disease (RPD) groups, and univariate Cox regression analyses, least absolute shrinkage and selection operator (LASSO) method and multivariate Cox regression were performed to identify the radioresponse-related signature in the training cohort. we adopted survival analysis to measure the predictive value of the radioresponse-related signature both in the test and entire cohorts. Moreover, we developed a novel nomogram to predict the overall survival (OS) of CESC patients treated with radical radiotherapy. In addition, immune infiltration analysis and Gene Set Enrichment Analysis (GSEA) were conducted to preliminarily explore possible mechanisms. Results This study included a total of 92 CESC patients subjected to radical radiotherapy. We developed and verified a risk score model based on radioresponse-related mRNA. The radioresponse-related mRNA signature and International Federation of Gynecology and Obstetrics (FIGO) stage were served as independent prognostic factors for CESC patients treated with radical radiotherapy. Moreover, a nomogram integrating radioresponse-related mRNA signature with FIGO stage was established to perform better for predicting 1-, 3-, and 5-year survival rates. Mechanically, the low-risk group under the risk score of this model had a better survival status, and the distribution of CD4 T cells was potentially involved in the regulation of radiotherapy response in CESC, leading to a better survival outcome in the low-risk group. Conclusions This study presents a new radioresponse-related mRNA signature that shows promising clinical efficacy in predicting the prognosis of CESC patients treated with radical radiotherapy.
Collapse
Affiliation(s)
- Jun-Yan He
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhi-Min Li
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ya-Ting Chen
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Bi-Huan Zhao
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Chang Yu
- Preventive Medicine Clinic, Sichuan Provincial Center for Disease Control and Prevention, Chengdu, China
| |
Collapse
|
4
|
Li Z, Zeng T, Zhou C, Chen Y, Yin W. A prognostic signature model for unveiling tumor progression in lung adenocarcinoma. Front Oncol 2022; 12:1019442. [PMID: 36387251 PMCID: PMC9663930 DOI: 10.3389/fonc.2022.1019442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
A more accurate prognosis is important for clinical treatment of lung adenocarcinoma. However, due to the limitation of sample and technical bias, most prognostic signatures lacked reproducibility, and few were applied to clinical practice. In addition, understanding the molecular driving mechanism is indispensable for developing more promising therapies for lung adenocarcinoma. Here, we built an unbiased prognostic significance model to perform an integrative analysis, including differentially expressed genes and clinical data with lung adenocarcinoma patients from TCGA. Multivariable Cox proportional hazards model with the Lasso penalty and 10-fold cross-validate were used to identify the best gene signature. We generated a 17-gene signature for prognostic risk prediction based on the overall survival time of lung adenocarcinoma patients. To further test the model's predictive ability, we have applied an independent GEO database to verify the predictive ability of prognostic signature. The model can more objectively describe several biological processes related to tumors and reveal important molecular mechanisms in tumor development by GO and KEGG analysis. Furthermore, differential expression analysis by GSEA revealed that tumor microenvironments such as ER stress, exosome, and immune microenvironment were enriched. Using single-cell RNA sequence technology, we found that risk score was positively correlated with lung adenocarcinoma marker genes and copy number variation but negatively correlated with lung epithelial marker genes. High-risk cell populations with the model had stronger cancer stemness and tumor-related pathway activation. As we expected, the risk score was in accordance with the malignancy of each cluster from tumor progression. In conclusion, the risking model established in this study is more reliable than others in evaluating the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Zijian Li
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Tao Zeng
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Chong Zhou
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yan Chen
- Department of Chinese Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Wu Yin, ; Yan Chen,
| | - Wu Yin
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu, China,*Correspondence: Wu Yin, ; Yan Chen,
| |
Collapse
|
5
|
Zahra A, Hall M, Chatterjee J, Sisu C, Karteris E. In Silico Study to Predict the Structural and Functional Consequences of SNPs on Biomarkers of Ovarian Cancer (OC) and BPA Exposure-Associated OC. Int J Mol Sci 2022; 23:ijms23031725. [PMID: 35163645 PMCID: PMC8835975 DOI: 10.3390/ijms23031725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Recently, we have shown that seven genes, namely GBP5, IRS2, KRT4, LINCOO707, MRPL55, RRS1 and SLC4A11, have prognostic power for the overall survival in ovarian cancer (OC). Methods: We present an analysis on the association of these genes with any phenotypes and mutations indicative of involvement in female cancers and predict the structural and functional consequences of those SNPS using in silico tools. Results: These seven genes present with 976 SNPs/mutations that are associated with human cancers, out of which 284 related to female cancers. We have then analysed the mutation impact on amino acid polarity, charge and water affinity, leading to the identification of 30 mutations in gynaecological cancers where amino acid (aa) changes lead to opposite polarity, charges and water affinity. Out of these 30 mutations identified, only a missense mutation (i.e., R831C/R804C in uterine corpus endometrial carcinomas, UCEC) was suggestive of structural damage on the SLC4A11 protein. Conclusions: We demonstrate that the R831C/R804C mutation is deleterious and the predicted ΔΔG values suggest that the mutation reduces the stability of the protein. Future in vitro studies should provide further insight into the role of this transporter protein in UCEC.
Collapse
Affiliation(s)
- Aeman Zahra
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (M.H.); (J.C.)
| | - Marcia Hall
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (M.H.); (J.C.)
- Mount Vernon Cancer Centre, Northwood HA6 2RN, UK
| | - Jayanta Chatterjee
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (M.H.); (J.C.)
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Cristina Sisu
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (M.H.); (J.C.)
- Correspondence: (C.S.); (E.K.)
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (M.H.); (J.C.)
- Correspondence: (C.S.); (E.K.)
| |
Collapse
|
6
|
Yamadera M, Shinto E, Nagata K, Shiraishi T, Kajiwara Y, Mochizuki S, Okamoto K, Kishi Y, Ueno H. Proposal for a tumor budding predictive score derived from endoscopic biopsy samples in colorectal cancer. Int J Clin Oncol 2022; 27:756-764. [DOI: 10.1007/s10147-021-02104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022]
|
7
|
Sato M, Sato S, Shintani D, Hanaoka M, Ogasawara A, Miwa M, Yabuno A, Kurosaki A, Yoshida H, Fujiwara K, Hasegawa K. Clinical significance of metabolism-related genes and FAK activity in ovarian high-grade serous carcinoma. BMC Cancer 2022; 22:59. [PMID: 35027024 PMCID: PMC8756654 DOI: 10.1186/s12885-021-09148-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Administration of poly (ADP-ribose) polymerase (PARP) inhibitors after achieving a response to platinum-containing drugs significantly prolonged relapse-free survival compared to placebo administration. PARP inhibitors have been used in clinical practice. However, patients with platinum-resistant relapsed ovarian cancer still have a poor prognosis and there is an unmet need. The purpose of this study was to examine the clinical significance of metabolic genes and focal adhesion kinase (FAK) activity in advanced ovarian high-grade serous carcinoma (HGSC). METHODS The RNA sequencing (RNA-seq) data and clinical data of HGSC patients were obtained from the Genomic Data Commons (GDC) Data Portal and analysed ( https://portal.gdc.cancer.gov/ ). In addition, tumour tissue was sampled by laparotomy or screening laparoscopy prior to treatment initiation from patients diagnosed with stage IIIC ovarian cancer (International Federation of Gynecology and Obstetrics (FIGO) classification, 2014) at the Saitama Medical University International Medical Center, and among the patients diagnosed with HGSC, 16 cases of available cryopreserved specimens were included in this study. The present study was reviewed and approved by the Institutional Review Board of Saitama Medical University International Medical Center (Saitama, Japan). Among the 6307 variable genes detected in both The Cancer Genome Atlas-Ovarian (TCGA-OV) data and clinical specimen data, 35 genes related to metabolism and FAK activity were applied. RNA-seq data were analysed using the Subio Platform (Subio Inc, Japan). JMP 15 (SAS, USA) was used for statistical analysis and various types of machine learning. The Kaplan-Meier method was used for survival analysis, and the Wilcoxon test was used to analyse significant differences. P < 0.05 was considered significant. RESULTS In the TCGA-OV data, patients with stage IIIC with a residual tumour diameter of 1-10 mm were selected for K means clustering and classified into groups with significant prognostic correlations (p = 0.0444). These groups were significantly associated with platinum sensitivity/resistance in clinical cases (χ2 test, p = 0.0408) and showed significant relationships with progression-free survival (p = 0.0307). CONCLUSION In the TCGA-OV data, 2 groups classified by clustering focusing on metabolism-related genes and FAK activity were shown to be associated with platinum resistance and a poor prognosis.
Collapse
Affiliation(s)
- Masakazu Sato
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.
| | - Sho Sato
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Daisuke Shintani
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Mieko Hanaoka
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Aiko Ogasawara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Maiko Miwa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Akira Yabuno
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Akira Kurosaki
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Hiroyuki Yoshida
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | | | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| |
Collapse
|
8
|
Bonanno JA, Shyam R, Choi M, Ogando DG. The H + Transporter SLC4A11: Roles in Metabolism, Oxidative Stress and Mitochondrial Uncoupling. Cells 2022; 11:197. [PMID: 35053313 PMCID: PMC8773465 DOI: 10.3390/cells11020197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
Solute-linked cotransporter, SLC4A11, a member of the bicarbonate transporter family, is an electrogenic H+ transporter activated by NH3 and alkaline pH. Although SLC4A11 does not transport bicarbonate, it shares many properties with other members of the SLC4 family. SLC4A11 mutations can lead to corneal endothelial dystrophy and hearing deficits that are recapitulated in SLC4A11 knock-out mice. SLC4A11, at the inner mitochondrial membrane, facilitates glutamine catabolism and suppresses the production of mitochondrial superoxide by providing ammonia-sensitive H+ uncoupling that reduces glutamine-driven mitochondrial membrane potential hyperpolarization. Mitochondrial oxidative stress in SLC4A11 KO also triggers dysfunctional autophagy and lysosomes, as well as ER stress. SLC4A11 expression is induced by oxidative stress through the transcription factor NRF2, the master regulator of antioxidant genes. Outside of the corneal endothelium, SLC4A11's function has been demonstrated in cochlear fibrocytes, salivary glands, and kidneys, but is largely unexplored overall. Increased SLC4A11 expression is a component of some "glutamine-addicted" cancers, and is possibly linked to cells and tissues that rely on glutamine catabolism.
Collapse
Affiliation(s)
- Joseph A. Bonanno
- Vision Science Program, School of Optometry, Indiana University, Bloomington, IN 47405, USA; (R.S.); (M.C.).; (D.G.O.)
| | | | | | | |
Collapse
|
9
|
Insights into the Role of Oxidative Stress in Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8388258. [PMID: 34659640 PMCID: PMC8516553 DOI: 10.1155/2021/8388258] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Oxidative stress (OS) arises when the body is subjected to harmful endogenous or exogenous factors that overwhelm the antioxidant system. There is increasing evidence that OS is involved in a number of diseases, including ovarian cancer (OC). OC is the most lethal gynecological malignancy, and risk factors include genetic factors, age, infertility, nulliparity, microbial infections, obesity, smoking, etc. OS can promote the proliferation, metastasis, and therapy resistance of OC, while high levels of OS have cytotoxic effects and induce apoptosis in OC cells. This review focuses on the relationship between OS and the development of OC from four aspects: genetic alterations, signaling pathways, transcription factors, and the tumor microenvironment. Furthermore, strategies to target aberrant OS in OC are summarized and discussed, with a view to providing new ideas for clinical treatment.
Collapse
|
10
|
Lei J, He ZY, Wang J, Hu M, Zhou P, Lian CL, Hua L, Wu SG, Zhou J. Identification of MEG8/miR-378d/SOBP axis as a novel regulatory network and associated with immune infiltrates in ovarian carcinoma by integrated bioinformatics analysis. Cancer Med 2021; 10:2924-2939. [PMID: 33742531 PMCID: PMC8026926 DOI: 10.1002/cam4.3854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/31/2022] Open
Abstract
Background To investigate the potential molecular mechanism of ovarian cancer (OC) evolution and immunological correlation using the integrated bioinformatics analysis. Methods Data from the Gene Expression Omnibus was used to gain differentially expressed genes (DEGs). Gene Ontology and Kyoto Encyclopedia of Gene and Genome pathway analysis were completed by utilizing the Database for Annotation, Visualization, and Integrated Discovery. After multiple validations via The Cancer Genome Atlas (TCGA), Genotype‐Tissue Expression (GTEx) projects, the Human Protein Atlas, Kaplan–Meier (KM) plotter, and immune logical relationships of the key gene SOBP were evaluated based on Tumor Immune Estimation Resource, and Gene Set Enrichment Analysis (GSEA) software. Finally, the lncRNAs‐miRNAs‐mRNAs subnetwork was predicted by starBase, TargetScan, miRBD, and LncBase, individually. Correlation of expression and prognosis for mRNAs, miRNAs, and lncRNAs were confirmed by TCGA, Gene Expression Profiling Interactive Analysis 2 (GEPIA 2), starBase, and KM. Results A total of 192 shared DEGs were discovered from the four data sets, including 125 upregulated and 67 downregulated genes. Functional enrichment analysis presented that they were mainly enriched in cartilage development, pathway in PI3 K‐Akt signaling pathway. Lower expression of SOBP was the independent prognostic factor for inferior prognosis in OC patients. The downregulation of SOBP enhanced the infiltration levels of B cells, CD8+ T cells, Macrophage, Neutrophil, and Dendritic cells. GSEA also disclosed low SOBP showed a significantly associated with the activation of various immune‐related pathways. Finally, we first reported that the MEG8/miR‐378d/SOBP axis was linked to the development and prognosis of OC through regulating the cytokines pathway. Conclusions Our study establishes a novel MEG8/miR‐378d/SOBP axis in the development and prognosis of OC, and the triple subnetwork probably affects the progression of the OC by regulating the cytokines pathway.
Collapse
Affiliation(s)
- Jian Lei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Zhen-Yu He
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Jun Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Min Hu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Ping Zhou
- Department of Radiation Oncology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Chen-Lu Lian
- Department of Radiation Oncology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Li Hua
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - San-Gang Wu
- Department of Radiation Oncology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Juan Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
11
|
Marjanovic ND, Hofree M, Chan JE, Canner D, Wu K, Trakala M, Hartmann GG, Smith OC, Kim JY, Evans KV, Hudson A, Ashenberg O, Porter CBM, Bejnood A, Subramanian A, Pitter K, Yan Y, Delorey T, Phillips DR, Shah N, Chaudhary O, Tsankov A, Hollmann T, Rekhtman N, Massion PP, Poirier JT, Mazutis L, Li R, Lee JH, Amon A, Rudin CM, Jacks T, Regev A, Tammela T. Emergence of a High-Plasticity Cell State during Lung Cancer Evolution. Cancer Cell 2020; 38:229-246.e13. [PMID: 32707077 PMCID: PMC7745838 DOI: 10.1016/j.ccell.2020.06.012] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/13/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Tumor evolution from a single cell into a malignant, heterogeneous tissue remains poorly understood. Here, we profile single-cell transcriptomes of genetically engineered mouse lung tumors at seven stages, from pre-neoplastic hyperplasia to adenocarcinoma. The diversity of transcriptional states increases over time and is reproducible across tumors and mice. Cancer cells progressively adopt alternate lineage identities, computationally predicted to be mediated through a common transitional, high-plasticity cell state (HPCS). Accordingly, HPCS cells prospectively isolated from mouse tumors and human patient-derived xenografts display high capacity for differentiation and proliferation. The HPCS program is associated with poor survival across human cancers and demonstrates chemoresistance in mice. Our study reveals a central principle underpinning intra-tumoral heterogeneity and motivates therapeutic targeting of the HPCS.
Collapse
Affiliation(s)
- Nemanja Despot Marjanovic
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Computational and Systems Biology PhD Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jason E Chan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Canner
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Katherine Wu
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marianna Trakala
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Griffin G Hartmann
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olivia C Smith
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jonathan Y Kim
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kelly Victoria Evans
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Anna Hudson
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Caroline B M Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alborz Bejnood
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kenneth Pitter
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yan Yan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Toni Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Devan R Phillips
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nisargbhai Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ojasvi Chaudhary
- The Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Tsankov
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Travis Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pierre P Massion
- Department of Medicine and Cancer Early Detection and Prevention Initiative, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John T Poirier
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Linas Mazutis
- The Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruifang Li
- Epigenetics Technology Innovation Lab, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joo-Hyeon Lee
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cell and Developmental Biology, Weill-Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
12
|
Ogando DG, Choi M, Shyam R, Li S, Bonanno JA. Ammonia sensitive SLC4A11 mitochondrial uncoupling reduces glutamine induced oxidative stress. Redox Biol 2019; 26:101260. [PMID: 31254733 PMCID: PMC6604051 DOI: 10.1016/j.redox.2019.101260] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
SLC4A11 is a NH3 sensitive membrane transporter with H+ channel-like properties that facilitates Glutamine catabolism in Human and Mouse corneal endothelium (CE). Loss of SLC4A11 activity induces oxidative stress and cell death, resulting in Congenital Hereditary Endothelial Dystrophy (CHED) with corneal edema and vision loss. However, the mechanism by which SLC4A11 prevents ROS production and protects CE is unknown. Here we demonstrate that SLC4A11 is localized to the inner mitochondrial membrane of CE and SLC4A11 transfected PS120 fibroblasts, where it acts as an NH3-sensitive mitochondrial uncoupler that enhances glutamine-dependent oxygen consumption, electron transport chain activity, and ATP levels by suppressing damaging Reactive Oxygen Species (ROS) production. In the presence of glutamine, Slc4a11-/- (KO) mouse CE generate significantly greater mitochondrial superoxide, a greater proportion of damaged depolarized mitochondria, and more apoptotic cells than WT. KO CE can be rescued by MitoQ, reducing NH3 production by GLS1 inhibition or dimethyl αKetoglutarate supplementation, or by BAM15 mitochondrial uncoupling. Slc4a11 KO mouse corneal edema can be partially reversed by αKetoglutarate eye drops. Moreover, we demonstrate that this role for SLC4A11 is not specific to CE cells, as SLC4A11 knockdown in glutamine-addicted colon carcinoma cells reduced glutamine catabolism, increased ROS production, and inhibited cell proliferation. Overall, our studies reveal a unique metabolic mechanism that reduces mitochondrial oxidative stress while promoting glutamine catabolism.
Collapse
Affiliation(s)
- Diego G Ogando
- Indiana University, School of Optometry, Bloomington, IN, 47405, United States
| | - Moonjung Choi
- Indiana University, School of Optometry, Bloomington, IN, 47405, United States
| | - Rajalekshmy Shyam
- Indiana University, School of Optometry, Bloomington, IN, 47405, United States
| | - Shimin Li
- Indiana University, School of Optometry, Bloomington, IN, 47405, United States
| | - Joseph A Bonanno
- Indiana University, School of Optometry, Bloomington, IN, 47405, United States.
| |
Collapse
|
13
|
Wang H, Zong Q, Wang S, Zhao C, Wu S, Bao W. Genome-Wide DNA Methylome and Transcriptome Analysis of Porcine Intestinal Epithelial Cells upon Deoxynivalenol Exposure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6423-6431. [PMID: 31013075 DOI: 10.1021/acs.jafc.9b00613] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Deoxynivalenol (DON) is a type of mycotoxin that is disruptive to intestinal and immune systems. To better understand the molecular effects of DON exposure, we performed genome-wide comparisons of DNA methylation and gene expression from porcine intestinal epithelial cell IPEC-J2 upon DON exposure using reduced representation bisulfite sequencing and RNA-seq technologies. We characterized the methylation pattern changes and found 3030 differentially methylated regions. Moreover, 3226 genes showing differential expression were enriched in pathways of protein and nucleic acid synthesis and ribosome biogenesis. Integrative analysis identified 29 genes showing inverse correlations between promoter methylation and expression. Altered DNA methylation and expression of various genes suggested their roles and potential functional interactions upon DON exposure. Our data provided new insights into epigenetic and transcriptomic alterations of intestinal epithelial cells upon DON exposure and may advance the identification of biomarkers and drug targets for predicting and controlling the toxic effects of this common mycotoxin.
Collapse
Affiliation(s)
- Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| | - Qiufang Zong
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| | - Shiqin Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| | - Chengxiang Zhao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety , Yangzhou University , No. 48 Wenhui East Road , Yangzhou 225009 , China
| |
Collapse
|
14
|
Zhang Y, Wu J, Jing H, Huang G, Dong J, Cui Z. Increased DHRS12 expression independently predicts poor survival in patients with high-grade serous ovarian cancer. Future Oncol 2018; 14:2579-2588. [PMID: 29783891 DOI: 10.2217/fon-2018-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To explore the expression profile of some DHRS genes in high-grade serous ovarian cancer (SOVC) and to study their prognostic values. PATIENTS & METHODS A retrospective bioinformatic analysis was performed using data in the Gene Expression Omnibus, the Human Protein Atlas and the Cancer Genome Atlas-Ovarian Cancer. RESULTS Increased DHRS12 expression was an independent indicator of poor overall survival (hazard ratio [HR]: 1.265, 95% CI: 1.075-1.488; p = 0.005) and recurrence-free survival (RFS; HR: 2.242, 95%CI: 1.464-3.432; p < 0.001) in patients with high-grade SOVC. DNA deletion was associated with decreased DHRS12 expression, as well as the best overall survival and RFS among the three copy number alteration groups. CONCLUSION DHRS12 might serve as a valuable prognostic biomarker in high-grade SOVC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| | - Jiang Wu
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| | - Hong Jing
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| | - Gui Huang
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| | - Jinlong Dong
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, 475000, PR China
| | - Zhanjun Cui
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| |
Collapse
|