1
|
Li C, Chen X, Wu J, Heng S, Xu Z, Gu H, Lin E, Wang J, Shan Y. High-throughput screening identified pacritinib as a promising therapeutic approach to overcome lenvatinib resistance in hepatocellular carcinoma by targeting IRAK1. Biochem Biophys Res Commun 2024; 734:150782. [PMID: 39378786 DOI: 10.1016/j.bbrc.2024.150782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Lenvatinib resistance presents a significant challenge in the clinical management of advanced hepatocellular carcinoma (HCC). To address this issue, we established lenvatinib resistant HCC cells and performed high-throughput screening using FDA-approved anti-cancer drug library. Through quantitative selective drug sensitivity scoring (sDSS), pacritinib, a well-known JAK inhibitor, emerged as the top candidate, displaying the highest sDSS score among 219 compounds. We further demonstrated that pacritinib reduced the viability of a panel of HCC cell lines in a dose-dependent manner, while exhibiting minimal effects on normal liver cells. Interestingly, pacritinib, but not other JAK inhibitors such as ruxolitinib, upadacitinib, or filgotinib, acted synergistically with lenvatinib in HCC cells. In lenvatinib-resistant HCC cells, pacritinib significantly decreased proliferation and induced apoptosis. Rescue studies using IL-1 receptor-associated kinase 1 (IRAK1) overexpression and knockdown revealed that pacritinib's effects are mediated through IRAK1, with minimal impact on normal liver cells. In a xenograft model of lenvatinib-resistant HCC, oral administration of pacritinib significantly reduced tumor size without affecting body weight. Immunohistochemical analysis of tumor sections revealed that pacritinib reduced Ki67 staining and phosphorylated IRAK1. Our findings suggest that pacritinib may be a promising therapeutic option for the treatment of advanced HCC, particularly in patients who have developed resistance to lenvatinib.
Collapse
Affiliation(s)
- Changyu Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghao Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shan Heng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zihao Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongyi Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Enhua Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiazhen Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunfeng Shan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Ahmad N, Chen L, Yuan Z, Ma X, Yang X, Wang Y, Zhao Y, Jin H, Khaidamah N, Wang J, Lu J, Liu Z, Wu M, Wang Q, Qi Y, Wang C, Zhao Y, Piao Y, Huang R, Diao Y, Deng S, Shu X. Pyrimidine compounds BY4003 and BY4008 inhibit glioblastoma cells growth via modulating JAK3/STAT3 signaling pathway. Neurotherapeutics 2024; 21:e00431. [PMID: 39153914 DOI: 10.1016/j.neurot.2024.e00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Glioblastoma (GBM) is a brain tumor characterized by its aggressive and invasive properties. It is found that STAT3 is abnormally activated in GBM, and inhibiting STAT3 signaling can effectively suppress tumor progression. In this study, novel pyrimidine compounds, BY4003 and BY4008, were synthesized to target the JAK3/STAT3 signaling pathway, and their therapeutic efficacy and mechanisms of action were evaluated and compared with Tofacitinib in U251, A172, LN428 and patient-derived glioblastoma cells. The ADP-Glo™ kinase assay was utilized to assessed the inhibitory effects of BY4003 and BY4008 on JAK3, a crucial member of the JAK family. The results showed that both compounds significantly inhibited JAK3 enzyme activity, with IC50 values in the nanomolar range. The antiproliferative effects of BY4003, BY4008, and Tofacitinib on GBM and patient-derived glioblastoma cells were evaluated by MTT and H&E assays. The impact of BY4003 and BY4008 on GBM cell migration and apoptosis induction was assessed through wound healing, transwell, and TUNEL assays. STAT3-regulated protein expression and relative mRNA levels were analyzed by western blotting, immunocytochemistry, immunofluorescence, and qRT-PCR. It was found that BY4003, BY4008 and Tofacitinib could inhibit U251, A172, LN428 and patient-derived glioblastoma cells growth and proliferation. Results showed decreased expression of STAT3-associated proteins, including p-STAT3, CyclinD1, and Bcl-2, and increased expression of Bax, a pro-apoptotic protein, as well as significant down-regulation of STAT3 and STAT3-related genes. These findings suggested that BY4003 and BY4008 could inhibit GBM growth by suppressing the JAK3/STAT3 signaling pathway, providing valuable insights into the therapeutic development of GBM.
Collapse
Affiliation(s)
- Nisar Ahmad
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Lixue Chen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zixi Yuan
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratories for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Xiaobo Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Yinan Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, China; The First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Yongshun Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Huan Jin
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Najib Khaidamah
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jinan Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jiashuo Lu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ziqi Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Moli Wu
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Qian Wang
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Chong Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yupu Zhao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yang Piao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Rujie Huang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratories for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian 116044, China
| | - Sa Deng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, China; Key Laboratories for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
3
|
Regua AT, Bindal S, Najjar MK, Zhuang C, Khan M, Arrigo ABJ, Gonzalez AO, Zhang XR, Zhu JJ, Watabe K, Lo HW. Dual inhibition of the TrkA and JAK2 pathways using entrectinib and pacritinib suppresses the growth and metastasis of HER2-positive and triple-negative breast cancers. Cancer Lett 2024; 597:217023. [PMID: 38852701 PMCID: PMC11533721 DOI: 10.1016/j.canlet.2024.217023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
HER2-positive and triple-negative breast cancers (TNBC) are difficult to treat and associated with poor prognosis. Despite showing initial response, HER2-positive breast cancers often acquire resistance to HER2-targeted therapies, and TNBC lack effective therapies. To overcome these clinical challenges, we evaluated the therapeutic utility of co-targeting TrkA and JAK2/STAT3 pathways in these breast cancer subtypes. Here, we report the novel combination of FDA-approved TrkA inhibitors (Entrectinib or Larotrectinib) and JAK2 inhibitors (Pacritinib or Ruxolitinib) synergistically inhibited in vitro growth of HER2-positive breast cancer cells and TNBC cells. The Entrectinib-Pacritinib combination inhibited the breast cancer stem cell subpopulation, reduced expression of stemness genes, SOX2 and MYC, and induced apoptosis. The Entrectinib-Pacritinib combination suppressed orthotopic growth of HER2-positive Trastuzumab-refractory breast cancer xenografts and basal patient-derived xenograft (PDXs), reduced tumoral SOX2 and MYC, and induced apoptosis in both mouse models. The Entrectinib-Pacritinib combination inhibited overall metastatic burden, and brain and bone metastases of intracardially inoculated TNBC cells without toxicity. Together, our results demonstrate for the first time that co-inhibition of TrkA and JAK2 synergistically suppresses breast cancer growth and metastasis, thereby providing preclinical evidence that supports future clinical evaluations.
Collapse
Affiliation(s)
- Angelina T Regua
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shivani Bindal
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mariana K Najjar
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chuling Zhuang
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Munazza Khan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Austin B J Arrigo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anneliese O Gonzalez
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xinhai R Zhang
- Department of Pathology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jay-Jiguang Zhu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
4
|
Mao F, Gao L, Liu L, Tang Y. Enhanced synergy of pacritinib with temsirolimus and sunitinib in preclinical renal cell carcinoma model by targeting JAK2/STAT pathway. J Chemother 2024; 36:238-248. [PMID: 37916436 DOI: 10.1080/1120009x.2023.2274700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Pacritinib is an oral medication that inhibits several kinases including JAK2, FLT3, IRAK and STAT3. It has been recently approved to treat patients with thrombocytopenia and myelofibrosis. Studies are currently exploring the potential use of pacritinib in treating other types of cancer such as leukaemia, breast cancer and prostate cancer. Our study aimed to investigate the effects of pacritinib alone and its combination with standard of care in renal cell carcinoma (RCC). We showed that pacritinib dose-dependently decreased viability of RCC cells, with IC50 at nanomolar or low micromolar concentration rage. Pacritinib inhibited cell proliferation, decreased colony formation, and increased apoptosis. Interestingly, pacritinib exhibited synergistic effects when combined with temsirolimus and sunitinib, but antagonistic effects when combined with doxorubicin, in a panel of RCC cell lines. We also confirmed that the combination of pacritinib with temsirolimus and sunitinib resulted in synergistic effects in RCC mouse models, with complete inhibition of tumour growth throughout the treatment period. Mechanistic studies indicated that the inhibition of JAK2, but not IRAK, was the main contributor to the anti-RCC activity of pacritinib. Our study is the first to demonstrate that pacritinib shows promise as a treatment option for RCC and underscores the therapeutic potential of targeting the JAK2/STAT signalling pathway in RCC.
Collapse
Affiliation(s)
- Fei Mao
- Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, People's Republic of China
| | - Liangkui Gao
- Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, People's Republic of China
| | - Liming Liu
- Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, People's Republic of China
| | - Yuanjia Tang
- Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, People's Republic of China
| |
Collapse
|
5
|
Stuart SF, Curpen P, Gomes AJ, Lan MC, Nie S, Williamson NA, Kannourakis G, Morokoff AP, Achuthan AA, Luwor RB. Interleukin-11/IL-11 Receptor Promotes Glioblastoma Cell Proliferation, Epithelial-Mesenchymal Transition, and Invasion. Brain Sci 2024; 14:89. [PMID: 38248304 PMCID: PMC10813507 DOI: 10.3390/brainsci14010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Glioblastoma is highly proliferative and invasive. However, the regulatory cytokine networks that promote glioblastoma cell proliferation and invasion into other areas of the brain are not fully defined. In the present study, we define a critical role for the IL-11/IL-11Rα signalling axis in glioblastoma proliferation, epithelial to mesenchymal transition, and invasion. We identified enhanced IL-11/IL-11Rα expression correlated with reduced overall survival in glioblastoma patients using TCGA datasets. Proteomic analysis of glioblastoma cell lines overexpressing IL-11Rα displayed a proteome that favoured enhanced proliferation and invasion. These cells also displayed greater proliferation and migration, while the knockdown of IL-11Rα reversed these tumourigenic characteristics. In addition, these IL-11Rα overexpressing cells displayed enhanced invasion in transwell invasion assays and in 3D spheroid invasion assays, while knockdown of IL-11Rα resulted in reduced invasion. Furthermore, IL-11Rα-overexpressing cells displayed a more mesenchymal-like phenotype compared to parental cells and expressed greater levels of the mesenchymal marker Vimentin. Overall, our study identified that the IL-11/IL-11Rα pathway promotes glioblastoma cell proliferation, EMT, and invasion.
Collapse
Affiliation(s)
- Sarah F. Stuart
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia; (S.F.S.); (A.J.G.); (A.P.M.)
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia;
| | - Peter Curpen
- Townsville Hospital and Health Service, James Cook University, Townsville, QLD 4814, Australia;
| | - Adele J. Gomes
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia; (S.F.S.); (A.J.G.); (A.P.M.)
| | - Michelle C. Lan
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia; (S.F.S.); (A.J.G.); (A.P.M.)
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3052, Australia; (S.N.); (N.A.W.)
| | - Nicholas A. Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3052, Australia; (S.N.); (N.A.W.)
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia;
- Federation University, Ballarat, VIC 3350, Australia
| | - Andrew P. Morokoff
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia; (S.F.S.); (A.J.G.); (A.P.M.)
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Adrian A. Achuthan
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia;
| | - Rodney B. Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia; (S.F.S.); (A.J.G.); (A.P.M.)
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia;
- Federation University, Ballarat, VIC 3350, Australia
| |
Collapse
|
6
|
Wei XH, Liu YY. Potential applications of JAK inhibitors, clinically approved drugs against autoimmune diseases, in cancer therapy. Front Pharmacol 2024; 14:1326281. [PMID: 38235120 PMCID: PMC10792058 DOI: 10.3389/fphar.2023.1326281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Disturbances in immunoregulation may lead to both cancer and autoimmune diseases. Many therapeutic drugs for autoimmune diseases also display anti-tumor efficacy. The Janus kinase/signal transducer and activator of transcription signaling pathways are involved in the secretion of more than 50 distinct cytokines, which have critical roles in inducing autoimmune diseases and tumorigenesis. Thus, Janus kinases have become classical immunotherapeutic targets for immune disease. More than 70 Janus kinase inhibitors have been approved as immunomodulatory drugs for clinical use, of which 12 are used in the treatment of autoimmune diseases. This systematic review aims to elucidate the anti-tumor role of clinically approved Janus kinase inhibitors that were primarily designed for the treatment of autoimmune diseases and their potential for clinical translation as cancer treatments.
Collapse
Affiliation(s)
- Xiao-Huan Wei
- Respiratory and Critical Care Department, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Oncology Department, People’s Hospital of Peixian, Xuzhou, Jiangsu, China
| | - Yuan-Yuan Liu
- Respiratory and Critical Care Department, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
7
|
Chen J, Rodriguez AS, Morales MA, Fang X. Autophagy Modulation and Its Implications on Glioblastoma Treatment. Curr Issues Mol Biol 2023; 45:8687-8703. [PMID: 37998723 PMCID: PMC10670099 DOI: 10.3390/cimb45110546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Autophagy is a vital cellular process that functions to degrade and recycle damaged organelles into basic metabolites. This allows a cell to adapt to a diverse range of challenging conditions. Autophagy assists in maintaining homeostasis, and it is tightly regulated by the cell. The disruption of autophagy has been associated with many diseases, such as neurodegenerative disorders and cancer. This review will center its discussion on providing an in-depth analysis of the current molecular understanding of autophagy and its relevance to brain tumors. We will delve into the current literature regarding the role of autophagy in glioma pathogenesis by exploring the major pathways of JAK2/STAT3 and PI3K/AKT/mTOR and summarizing the current therapeutic interventions and strategies for glioma treatment. These treatments will be evaluated on their potential for autophagy induction and the challenges associated with their utilization. By understanding the mechanism of autophagy, clinical applications for future therapeutics in treating gliomas can be better targeted.
Collapse
Affiliation(s)
- Johnny Chen
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Andrea Salinas Rodriguez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Maximiliano Arath Morales
- Department of Biology, College of Science, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Xiaoqian Fang
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| |
Collapse
|
8
|
Bahia RK, Hao X, Hassam R, Cseh O, Bozek DA, Luchman HA, Weiss S. Epigenetic and molecular coordination between HDAC2 and SMAD3-SKI regulates essential brain tumour stem cell characteristics. Nat Commun 2023; 14:5051. [PMID: 37598220 PMCID: PMC10439933 DOI: 10.1038/s41467-023-40776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
Histone deacetylases are important epigenetic regulators that have been reported to play essential roles in cancer stem cell functions and are promising therapeutic targets in many cancers including glioblastoma. However, the functionally relevant roles of specific histone deacetylases, in the maintenance of key self-renewal and growth characteristics of brain tumour stem cell (BTSC) sub-populations of glioblastoma, remain to be fully resolved. Here, using pharmacological inhibition and genetic loss and gain of function approaches, we identify HDAC2 as the most relevant histone deacetylase for re-organization of chromatin accessibility resulting in maintenance of BTSC growth and self-renewal properties. Furthermore, its specific interaction with the transforming growth factor-β pathway related proteins, SMAD3 and SKI, is crucial for the maintenance of tumorigenic potential in BTSCs in vitro and in orthotopic xenograft models. Inhibition of HDAC2 activity and disruption of the coordinated mechanisms regulated by the HDAC2-SMAD3-SKI axis are thus promising therapeutic approaches for targeting BTSCs.
Collapse
Affiliation(s)
- Ravinder K Bahia
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Xiaoguang Hao
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Rozina Hassam
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Orsolya Cseh
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Danielle A Bozek
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - H Artee Luchman
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.
| | - Samuel Weiss
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
Hao X, Bahia RK, Cseh O, Bozek DA, Blake S, Rinnenthal J, Weyer-Czernilofsky U, Rudolph D, Artee Luchman H. BI-907828, a novel potent MDM2 inhibitor, inhibits glioblastoma brain tumor stem cells in vitro and prolongs survival in orthotopic xenograft mouse models. Neuro Oncol 2023; 25:913-926. [PMID: 36521007 PMCID: PMC10158121 DOI: 10.1093/neuonc/noac271] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The tumor suppressor TP53 (p53) is frequently mutated, and its downstream effectors inactivated in many cancers, including glioblastoma (GBM). In tumors with wild-type status, p53 function is frequently attenuated by alternate mechanisms including amplification and overexpression of its key negative regulator, MDM2. We investigated the efficacy of the MDM2 inhibitor, BI-907828, in GBM patient-derived brain tumor stem cells (BTSCs) with different amplification statuses of MDM2, in vitro and in orthotopic xenograft models. METHODS In vitro growth inhibition and on-target efficacy of BI-907828 were assessed by cell viability, co-immunoprecipitation assays, and western blotting. In vivo efficacy of BI-907828 treatments was assessed with qPCR, immunohistochemistry, and in intracranial xenograft models. RESULTS BI-907828 decreases viability and induces cell death at picomolar concentrations in both MDM2 amplified and normal copy number TP53 wild-type BTSC lines. Restoration of p53 activity, including robust p21 expression and apoptosis induction, was observed in TP53 wild-type but not in TP53 mutant BTSCs. shRNA-mediated knock-down of TP53 in wild-type BTSCs abrogated the effect of BI-907828, confirming the specificity of the inhibitor. Pharmacokinetic-pharmacodynamic studies in orthotopic tumor-bearing severe combined immunodeficiency (SCID) mice demonstrated that a single 50 mg/kg p.o. dose of BI-907828 resulted in strong activation of p53 target genes p21 and MIC1. Long-term weekly or bi-weekly treatment with BI-907828 in orthotopic BTSC xenograft models was well-tolerated and improved survival both as a single-agent and in combination with temozolomide, with dose-dependent efficacy observed in the MDM2 amplified model. CONCLUSIONS BI-907828 provides a promising new therapeutic option for patients with TP53 wild-type primary brain tumors.
Collapse
Affiliation(s)
- Xiaoguang Hao
- Arnie Charbonneau Cancer Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ravinder K Bahia
- Arnie Charbonneau Cancer Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Orsolya Cseh
- Arnie Charbonneau Cancer Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Danielle A Bozek
- Arnie Charbonneau Cancer Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sophia Blake
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | - H Artee Luchman
- Arnie Charbonneau Cancer Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Zhang H, Yang H, Wei W, Zhao J, Vijayalakshmi A, Wang M. Ethacridine Regulation of JAK/STAT/ERK Signaling Pathway in Colon Cancer Cells SW620: In Vitro Approach. Pharmacogn Mag 2023. [DOI: 10.1177/09731296221136906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Background Ethacridine have anticancer effects by inhibiting regulatory transcription factors and cell viability in various cancer cells. To investigate the effect of ethacridine on colorectal cancer cell lines, SW620 was studied via regulation of JAK/STAT/ERK signaling pathway. Materials and Methods Different doses of ethacridine (5–35 µM) expressed antiproliferative effects by decreasing the viability in a dose-dependent manner and the IC50 value was found to be 10 µM. Results Subsequent treatment with 10 µM of ethacridine showed that it induced mitochondrial dysfunction and reactive oxygen species generation. DAPI and PI staining assays revealed prominent apoptotic cells under the microscope when treated with 10 µM of ethacridine. In the mRNA expression study performing RT-PCR of apoptotic markers, cyclin-D1, Bax, Bcl-2, caspase 3, C-Myc, and surviving, enhanced levels of these markers were suppressed, which was inversely proportional to the levels of apoptotic enhancers namely Bax and caspase-3. It was also observed that increased NF-κB, IL-6, TNF-α, and COX-2 in colorectal cancer are suppressed by ethacridine. The expressions of JAK/STAT/ERK were also significantly suppressed after ethacridine treatment in SW620 cell lines. Conclusion In summary, it was corroborated that ethacridine promoted apoptosis in colon cancer cells by inhibiting quite a few cell signaling factors.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Gastroenterology, Hanzhong Central Hospital, Hanzhong, China
| | - Hui Yang
- Department of Oncology Rehabilitation, Shaanxi Kangfu Hospital, Xi’an, China
| | - Wei Wei
- Department of Pathology, Xi’an No. 3 Hospital, Xi’an, China
| | - Jing Zhao
- Department of Oncology Rehabilitation, Shaanxi Kangfu Hospital, Xi’an, China
| | - Annamalai Vijayalakshmi
- Department of Biochemistry, Rabiammal Ahamed Maideen College for Women, Thiruvarur, Tamil Nadu, India
| | - Minhong Wang
- Department of Digestive Oncology, Pucheng County Hospital, Weinan, China
| |
Collapse
|
11
|
Identification and validation of RNA methylation-related alternative splicing gene signature for low-grade glioma to predict survival and immune landscapes. J Cancer Res Clin Oncol 2023; 149:47-62. [PMID: 36528831 DOI: 10.1007/s00432-022-04431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Low-grade glioma (LGG) is a crucial pathological type of glioma. The present study aimed to explore multiple RNA methylation regulator-related AS events and investigate their prognostic values in LGG. METHODS The prognostic model for low-grade glioma was established using the LASSO regression analysis. To validate prognostic value, we performed Kaplan-Maier survival analysis, ROC curves and nomograms. The ESTIMATE algorithm, the CIBERSORT algorithm and the ssGSEA algorithm were utilized to explore the role of the immune microenvironment in LGG. Subsequently, we then used GO, KEGG and GSEA enrichment analysis to explore the functional roles of these genes. In addition, we employed the GDSC database to screen potential chemotherapeutic agents. RESULTS Eight RNA methylation related AS events were involved in construct a survival and prognosis model, which had good ability of independent prediction for patients with LGG. Patients in the high-risk group had shorter life expectancy and higher mortality, while patients in the low-risk group had a better prognosis. We constructed a nomogram which showed an excellent predictive performance for individual OS. The risk score exhibited a close correlation with some immune cells and expression of immune checkpoints. Patients in high-risk group were characterized by immunosuppressive microenvironment and poor response to immunotherapy, and were sensitive to more chemotherapeutic drugs. Pathway and functional enrichment analyses further confirmed that significant differences existed in immune landscape between the two subgroups. CONCLUSION The prognostic RNA methylation-related alternative splicing signature constructed could constitute a promising prognostic biomarker, which could serve to optimize treatment regimens.
Collapse
|
12
|
Torres ID, Loureiro JA, Coelho MAN, Carmo Pereira M, Ramalho MJ. Drug delivery in glioblastoma therapy: a review on nanoparticles targeting MGMT-mediated resistance. Expert Opin Drug Deliv 2022; 19:1397-1415. [DOI: 10.1080/17425247.2022.2124967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Inês David Torres
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel A N Coelho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria João Ramalho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
13
|
Combined MEK and JAK/STAT3 pathway inhibition effectively decreases SHH medulloblastoma tumor progression. Commun Biol 2022; 5:697. [PMID: 35835937 PMCID: PMC9283517 DOI: 10.1038/s42003-022-03654-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/30/2022] [Indexed: 12/16/2022] Open
Abstract
Medulloblastoma (MB) is the most common primary malignant pediatric brain cancer. We recently identified novel roles for the MEK/MAPK pathway in regulating human Sonic Hedgehog (SHH) MB tumorigenesis. The MEK inhibitor, selumetinib, decreased SHH MB growth while extending survival in mouse models. However, the treated mice ultimately succumbed to disease progression. Here, we perform RNA sequencing on selumetinib-treated orthotopic xenografts to identify molecular pathways that compensate for MEK inhibition specifically in vivo. Notably, the JAK/STAT3 pathway exhibits increased activation in selumetinib-treated tumors. The combination of selumetinib and the JAK/STAT3 pathway inhibitor, pacritinib, further reduces growth in two xenograft models and also enhances survival. Multiplex spatial profiling of proteins in drug-treated xenografts reveals shifted molecular dependencies and compensatory changes following combination drug treatment. Our study warrants further investigation into MEK and JAK/STAT3 inhibition as a novel combinatory therapeutic strategy for SHH MB. RNA sequencing of MEK inhibitor (selumetinib)-treated tumors reveals an upregulation of the JAK/STAT3 pathway, with combinatorial therapeutic strategies of JAK/STAT3 inhibitors and selumetinib investigated for the SHH subgroup of medulloblastoma.
Collapse
|
14
|
A Comprehensive Overview of Globally Approved JAK Inhibitors. Pharmaceutics 2022; 14:pharmaceutics14051001. [PMID: 35631587 PMCID: PMC9146299 DOI: 10.3390/pharmaceutics14051001] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Janus kinase (JAK) is a family of cytoplasmic non-receptor tyrosine kinases that includes four members, namely JAK1, JAK2, JAK3, and TYK2. The JAKs transduce cytokine signaling through the JAK-STAT pathway, which regulates the transcription of several genes involved in inflammatory, immune, and cancer conditions. Targeting the JAK family kinases with small-molecule inhibitors has proved to be effective in the treatment of different types of diseases. In the current review, eleven of the JAK inhibitors that received approval for clinical use have been discussed. These drugs are abrocitinib, baricitinib, delgocitinib, fedratinib, filgotinib, oclacitinib, pacritinib, peficitinib, ruxolitinib, tofacitinib, and upadacitinib. The aim of the current review was to provide an integrated overview of the chemical and pharmacological data of the globally approved JAK inhibitors. The synthetic routes of the eleven drugs were described. In addition, their inhibitory activities against different kinases and their pharmacological uses have also been explained. Moreover, their crystal structures with different kinases were summarized, with a primary focus on their binding modes and interactions. The proposed metabolic pathways and metabolites of these drugs were also illustrated. To sum up, the data in the current review could help in the design of new JAK inhibitors with potential therapeutic benefits in inflammatory and autoimmune diseases.
Collapse
|
15
|
Aldaz P, Martín-Martín N, Saenz-Antoñanzas A, Carrasco-Garcia E, Álvarez-Satta M, Elúa-Pinin A, Pollard SM, Lawrie CH, Moreno-Valladares M, Samprón N, Hench J, Lovell-Badge R, Carracedo A, Matheu A. High SOX9 Maintains Glioma Stem Cell Activity through a Regulatory Loop Involving STAT3 and PML. Int J Mol Sci 2022; 23:ijms23094511. [PMID: 35562901 PMCID: PMC9104987 DOI: 10.3390/ijms23094511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
Glioma stem cells (GSCs) are critical targets for glioma therapy. SOX9 is a transcription factor with critical roles during neurodevelopment, particularly within neural stem cells. Previous studies showed that high levels of SOX9 are associated with poor glioma patient survival. SOX9 knockdown impairs GSCs proliferation, confirming its potential as a target for glioma therapy. In this study, we characterized the function of SOX9 directly in patient-derived glioma stem cells. Notably, transcriptome analysis of GSCs with SOX9 knockdown revealed STAT3 and PML as downstream targets. Functional studies demonstrated that SOX9, STAT3, and PML form a regulatory loop that is key for GSC activity and self-renewal. Analysis of glioma clinical biopsies confirmed a positive correlation between SOX9/STAT3/PML and poor patient survival among the cases with the highest SOX9 expression levels. Importantly, direct STAT3 or PML inhibitors reduced the expression of SOX9, STAT3, and PML proteins, which significantly reduced GSCs tumorigenicity. In summary, our study reveals a novel role for SOX9 upstream of STAT3, as a GSC pathway regulator, and presents pharmacological inhibitors of the signaling cascade.
Collapse
Affiliation(s)
- Paula Aldaz
- Group of Cellular Oncology, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (P.A.); (A.S.-A.); (E.C.-G.); (M.Á.-S.); (M.M.-V.); (N.S.)
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; (N.M.-M.); (A.C.)
| | - Ander Saenz-Antoñanzas
- Group of Cellular Oncology, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (P.A.); (A.S.-A.); (E.C.-G.); (M.Á.-S.); (M.M.-V.); (N.S.)
| | - Estefania Carrasco-Garcia
- Group of Cellular Oncology, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (P.A.); (A.S.-A.); (E.C.-G.); (M.Á.-S.); (M.M.-V.); (N.S.)
- CIBER of Frailty and Healthy Aging (CIBERFES), Carlos III Institute, 28029 Madrid, Spain
| | - María Álvarez-Satta
- Group of Cellular Oncology, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (P.A.); (A.S.-A.); (E.C.-G.); (M.Á.-S.); (M.M.-V.); (N.S.)
| | | | - Steven M. Pollard
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, Edinburgh EH16 4UU, UK;
| | - Charles H. Lawrie
- Group of Molecular Oncology, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Manuel Moreno-Valladares
- Group of Cellular Oncology, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (P.A.); (A.S.-A.); (E.C.-G.); (M.Á.-S.); (M.M.-V.); (N.S.)
- Donostia University Hospital, 20014 San Sebastian, Spain;
| | - Nicolás Samprón
- Group of Cellular Oncology, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (P.A.); (A.S.-A.); (E.C.-G.); (M.Á.-S.); (M.M.-V.); (N.S.)
- Donostia University Hospital, 20014 San Sebastian, Spain;
| | - Jürgen Hench
- Institute of Pathology, University Hospital Basel, 48009 Basel, Switzerland;
| | | | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; (N.M.-M.); (A.C.)
- Institute of Pathology, University Hospital Basel, 48009 Basel, Switzerland;
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- CIBER of Cancer (CIBERONC), Carlos III Institute, 28029 Madrid, Spain
| | - Ander Matheu
- Group of Cellular Oncology, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (P.A.); (A.S.-A.); (E.C.-G.); (M.Á.-S.); (M.M.-V.); (N.S.)
- CIBER of Frailty and Healthy Aging (CIBERFES), Carlos III Institute, 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Correspondence: ; Tel.: +34-943006073
| |
Collapse
|
16
|
Role of JAK-STAT and PPAR-Gamma Signalling Modulators in the Prevention of Autism and Neurological Dysfunctions. Mol Neurobiol 2022; 59:3888-3912. [PMID: 35437700 DOI: 10.1007/s12035-022-02819-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/23/2022] [Indexed: 01/10/2023]
Abstract
The Janus-kinase (JAK) and signal transducer activator of transcription (STAT) signalling pathways regulate gene expression and control various factors involved in normal physiological functions such as cell proliferation, neuronal development, and cell survival. JAK activation phosphorylates STAT3 in astrocytes and microglia, and this phosphorylation has been linked to mitochondrial damage, apoptosis, neuroinflammation, reactive astrogliosis, and genetic mutations. As a regulator, peroxisome proliferator-activated receptor gamma (PPAR-gamma), in relation to JAK-STAT signalling, prevents this phosphorylation and aids in the treatment of the above-mentioned neurocomplications. Changes in cellular signalling may also contribute to the onset and progression of autism. Thus, PPAR-gamma agonist upregulation may be associated with JAK-STAT signal transduction downregulation. It may also be responsible for attenuating neuropathological changes by stimulating SOCS3 or involving RXR or SMRT, thereby reducing transcription of the various cytokine proteins and genes involved in neuronal damage. Along with JAK-STAT inhibitors, PPAR-gamma agonists could be used as target therapeutic interventions for autism. This research-based review explores the potential involvement and mutual regulation of JAK-STAT and PPAR-gamma signalling in controlling multiple pathological factors associated with autism.
Collapse
|
17
|
Tumor-Associated Macrophages in Gliomas—Basic Insights and Treatment Opportunities. Cancers (Basel) 2022; 14:cancers14051319. [PMID: 35267626 PMCID: PMC8909866 DOI: 10.3390/cancers14051319] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Macrophages are a specialized immune cell type found in both invertebrates and vertebrates. Versatile in functionality, macrophages carry out important tasks such as cleaning cellular debris in healthy tissues and mounting immune responses during infection. In many cancer types, macrophages make up a significant portion of tumor tissue, and these are aptly called tumor-associated macrophages. In gliomas, a group of primary brain tumors, these macrophages are found in very high frequency. Tumor-associated macrophages can promote glioma development and influence the outcome of various therapeutic regimens. At the same time, these cells provide various potential points of intervention for therapeutic approaches in glioma patients. The significance of tumor-associated macrophages in the glioma microenvironment and potential therapeutic targets are the focus of this review. Abstract Glioma refers to a group of primary brain tumors which includes glioblastoma (GBM), astrocytoma and oligodendroglioma as major entities. Among these, GBM is the most frequent and most malignant one. The highly infiltrative nature of gliomas, and their intrinsic intra- and intertumoral heterogeneity, pose challenges towards developing effective treatments. The glioma microenvironment, in addition, is also thought to play a critical role during tumor development and treatment course. Unlike most other solid tumors, the glioma microenvironment is dominated by macrophages and microglia—collectively known as tumor-associated macrophages (TAMs). TAMs, like their homeostatic counterparts, are plastic in nature and can polarize to either pro-inflammatory or immunosuppressive states. Many lines of evidence suggest that immunosuppressive TAMs dominate the glioma microenvironment, which fosters tumor development, contributes to tumor aggressiveness and recurrence and, very importantly, impedes the therapeutic effect of various treatment regimens. However, through the development of new therapeutic strategies, TAMs can potentially be shifted towards a proinflammatory state which is of great therapeutic interest. In this review, we will discuss various aspects of TAMs in the context of glioma. The focus will be on the basic biology of TAMs in the central nervous system (CNS), potential biomarkers, critical evaluation of model systems for studying TAMs and finally, special attention will be given to the potential targeted therapeutic options that involve the TAM compartment in gliomas.
Collapse
|
18
|
Mengie Ayele T, Tilahun Muche Z, Behaile Teklemariam A, Bogale Kassie A, Chekol Abebe E. Role of JAK2/STAT3 Signaling Pathway in the Tumorigenesis, Chemotherapy Resistance, and Treatment of Solid Tumors: A Systemic Review. J Inflamm Res 2022; 15:1349-1364. [PMID: 35241923 PMCID: PMC8887966 DOI: 10.2147/jir.s353489] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway is a common signaling pathway used to transduce signals from the extracellular to the intracellular (nucleus) upon the binding of cytokines and growth factors to the extracellular domain of specific cell surface receptors. This signaling pathway is tightly regulated and has a multitude of biological functions such as cell proliferation, differentiation, and apoptosis. Besides, the regulated JAK2/STAT3 signaling plays a crucial role in embryonic development, hemopoiesis, and controlling the immune system. Conversely, aberrantly activated JAK2/STAT3 is frequently detected in varieties of tumors and involved in oncogenesis, angiogenesis, and metastasis of many cancer diseases that are usually refractory to the standard chemotherapy. However, the JAK3/STAT3 pathway recently emerged interestingly as a new site for the development of novel anti-tumor agents and becomes a promising therapeutic target in the treatment of many solid malignancies. Herein, this review aimed to provide insight into the JAK2/STAT3 pathway, in the hope to gain an understanding of its potential role in the pathogenesis, progression, chemotherapy resistance, and cancer therapy of solid tumors.
Collapse
Affiliation(s)
- Teklie Mengie Ayele
- Department of Pharmacy, Debre Tabor University, Debre Tabor, Amhara, Ethiopia
| | | | | | | | - Endeshaw Chekol Abebe
- Department of Medical Biochemistry, Debre Tabor University, Debre Tabor, Amhara, Ethiopia
- Correspondence: Endeshaw Chekol Abebe, Tel +251928428133, Email
| |
Collapse
|
19
|
Taglang C, Batsios G, Mukherjee J, Tran M, Gillespie AM, Hong D, Ronen SM, Artee Luchman H, Pieper RO, Viswanath P. Deuterium magnetic resonance spectroscopy enables noninvasive metabolic imaging of tumor burden and response to therapy in low-grade gliomas. Neuro Oncol 2022; 24:1101-1112. [PMID: 35091751 PMCID: PMC9248401 DOI: 10.1093/neuonc/noac022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The alternative lengthening of telomeres (ALT) pathway is essential for tumor proliferation in astrocytomas. The goal of this study was to identify metabolic alterations linked to the ALT pathway that can be exploited for noninvasive magnetic resonance spectroscopy (MRS)-based imaging of astrocytomas in vivo. METHODS Genetic and pharmacological methods were used to dissect the association between the ALT pathway and glucose metabolism in genetically engineered and patient-derived astrocytoma models. 2H-MRS was used for noninvasive imaging of ALT-linked modulation of glycolytic flux in mice bearing orthotopic astrocytomas in vivo. RESULTS The ALT pathway was associated with higher activity of the rate-limiting glycolytic enzyme phosphofructokinase-1 and concomitantly elevated flux of glucose to lactate in astrocytoma cells. Silencing the ALT pathway or treating with the poly(ADP-ribose) polymerase inhibitor niraparib that induces telomeric fusion in ALT-dependent astrocytoma cells abrogated glycolytic flux. Importantly, this metabolic reprogramming could be non-invasively visualized by 2H-MRS. Lactate production from [6,6'-2H]-glucose was higher in ALT-dependent astrocytoma tumors relative to the normal brain in vivo. Furthermore, treatment of orthotopic astrocytoma-bearing mice with niraparib reduced lactate production from [6,6'-2H]-glucose at early timepoints when alterations in tumor volume could not be detected by anatomical imaging, pointing to the ability of [6,6'-2H]-glucose to report on pseudoprogression in vivo. CONCLUSIONS We have mechanistically linked the ALT pathway to elevated glycolytic flux and demonstrated the ability of [6,6'-2H]-glucose to non-invasively assess tumor burden and response to therapy in astrocytomas. Our findings point to a novel, clinically translatable method for metabolic imaging of astrocytoma patients.
Collapse
Affiliation(s)
- Céline Taglang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Joydeep Mukherjee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Meryssa Tran
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Donghyun Hong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Hema Artee Luchman
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute and Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Russell O Pieper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Pavithra Viswanath
- Corresponding Author: Pavithra Viswanath, PhD, Department of Radiology and Biomedical Imaging, University of California, San Francisco, 1700 4th St, San Francisco, CA 94143, USA ()
| |
Collapse
|
20
|
Khera R, Mehan S, Bhalla S, Kumar S, Alshammari A, Alharbi M, Sadhu SS. Guggulsterone Mediated JAK/STAT and PPAR-Gamma Modulation Prevents Neurobehavioral and Neurochemical Abnormalities in Propionic Acid-Induced Experimental Model of Autism. Molecules 2022; 27:889. [PMID: 35164154 PMCID: PMC8839522 DOI: 10.3390/molecules27030889] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder is a neurodevelopmental disorder marked by repetitive behaviour, challenges in verbal and non-verbal communication, poor socio-emotional health, and cognitive impairment. An increased level of signal transducer and activator of transcription 3 (STAT3) and a decreased level of peroxisome proliferator-activated receptor (PPAR) gamma have been linked to autism pathogenesis. Guggulsterone (GST) has a neuroprotective effect on autistic conditions by modulating these signalling pathways. Consequently, the primary objective of this study was to examine potential neuroprotective properties of GST by modulating JAK/STAT and PPAR-gamma levels in intracerebroventricular propionic acid (ICV PPA) induced experimental model of autism in adult rats. In this study, the first 11 days of ICV-PPA injections in rats resulted in autism-like behavioural, neurochemical, morphological, and histopathological changes. The above modifications were also observed in various biological samples, including brain homogenate, CSF, and blood plasma. GST was also observed to improve autism-like behavioural impairments in autistic rats treated with PPA, including locomotion, neuromuscular coordination, depression-like behaviour, spatial memory, cognition, and body weight. Prolonged GST treatment also restored neurochemical deficits in a dose-dependent manner. Chronic PPA administration increased STAT3 and decreased PPAR gamma in autistic rat brain, CSF, and blood plasma samples, which were reversed by GST. GST also restored the gross and histopathological alterations in PPA-treated rat brains. Our results indicate the neuroprotective effects of GST in preventing autism-related behavioural and neurochemical alterations.
Collapse
Affiliation(s)
- Rishabh Khera
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.K.); (S.B.); (S.K.)
| | - Sidharth Mehan
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.K.); (S.B.); (S.K.)
| | - Sonalika Bhalla
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.K.); (S.B.); (S.K.)
| | - Sumit Kumar
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.K.); (S.B.); (S.K.)
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.)
| | - Satya Sai Sadhu
- Chemistry Department, Northern Michigan University, 1401, Presque, Isle, Marquette, MI 49855, USA;
| |
Collapse
|
21
|
Xue YY, Lu YY, Sun GQ, Fang F, Ji YQ, Tang HF, Qiu PC, Cheng G. CN-3 increases TMZ sensitivity and induces ROS-dependent apoptosis and autophagy in TMZ-resistance glioblastoma. J Biochem Mol Toxicol 2021; 36:e22973. [PMID: 34967073 DOI: 10.1002/jbt.22973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022]
Abstract
Many glioma patients develop resistance to temozolomide (TMZ) treatment, resulting in reduced efficacy and survival rates. TMZ-resistant cell lines SHG44R and U87R, which highly express O6 -methylguanine DNA methyltransferase (MGMT) and P-gp, were established. CN-3, a new asterosaponin, showed cytotoxic effects on TMZ-resistant cells in a dose- and time-dependent manner via reactive oxygen species (ROS)-mediated apoptosis and autophagy. Transmission electron microscopy and monodansylcadaverine (MDC) staining showed turgidity of the mitochondria and autophagosomes in CN-3-treated SHG44R and U87R cells. The autophagy inhibitor 3-methyladenine was used to confirm the important role of autophagy in CN-3 cytotoxicity in TMZ-resistant cells. The ROS scavenger N-acetyl- l-cysteine (NAC) attenuated the levels of ROS induced by CN-3 and, therefore, rescued the CN-3 cytotoxic effect on the viability of SHG44R and U87R cells by Cell Counting Kit-8 assays and JuLI-Stage videos. MDC staining also confirmed that NAC rescued an autophagosome increase in CN-3-treated SHG44R and U87R cells. Western blotting revealed that CN-3 increased Bax, cleaved-caspase 3, cytochrome C, PARP-1, LC3-Ⅱ, and Beclin1, and decreased P-AKT, Bcl-2, and p62. Further rescue experiments revealed that CN-3 induced apoptosis and autophagy through ROS-mediated cytochrome C, cleaved-caspase 3, Bcl-2, P-AKT, PARP-1, and LC3-Ⅱ. In addition, CN-3 promoted SHG44R and U87R cells sensitive to TMZ by reducing the expression of P-gp, MGMT, and nuclear factor kappa B p65, and it had a synergistic cytotoxic effect with TMZ. Moreover, CN-3 disrupted the natural cycle arrest and inhibited the migration of SHG44R and U87R cells by promoting cyclin E1 and D1, and by decreasing P21, P27, N-cadherin, β-catenin, transforming growth factor beta 1, and Smad2.
Collapse
Affiliation(s)
- Yu-Ye Xue
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yun-Yang Lu
- Department of Chinese Materia Medica and Natural Medicines, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Guang-Qiang Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fei Fang
- Central Laboratory of Xi'an No. 1 Hospital, Xi'an, China
| | - Yu-Qiang Ji
- Central Laboratory of Xi'an No. 1 Hospital, Xi'an, China
| | - Hai-Feng Tang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Chinese Materia Medica and Natural Medicines, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Peng-Cheng Qiu
- Department of Chinese Materia Medica and Natural Medicines, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Guang Cheng
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Air Force Medical University, Xi'an, China
| |
Collapse
|
22
|
Mirzaei R, Gordon A, Zemp FJ, Kumar M, Sarkar S, Luchman HA, Bellail AC, Hao C, Mahoney DJ, Dunn JF, Bose P, Yong VW. PD-1 independent of PD-L1 ligation promotes glioblastoma growth through the NFκB pathway. SCIENCE ADVANCES 2021; 7:eabh2148. [PMID: 34739319 PMCID: PMC8570610 DOI: 10.1126/sciadv.abh2148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Brain tumor–initiating cells (BTICs) drive glioblastoma growth through not fully understood mechanisms. Here, we found that about 8% of cells within the human glioblastoma microenvironment coexpress programmed cell death 1 (PD-1) and BTIC marker. Gain- or loss-of-function studies revealed that tumor-intrinsic PD-1 promoted proliferation and self-renewal of BTICs. Phosphorylation of tyrosines within the cytoplasmic tail of PD-1 recruited Src homology 2–containing phosphatase 2 and activated the nuclear factor kB in BTICs. Notably, the tumor-intrinsic promoting effects of PD-1 did not require programmed cell death ligand 1(PD-L1) ligation; thus, the therapeutic antibodies inhibiting PD-1/PD-L1 interaction could not overcome the growth advantage of PD-1 in BTICs. Last, BTIC-intrinsic PD-1 accelerated intracranial tumor growth, and this occurred in mice lacking T and B cells. These findings point to a critical role for PD-1 in BTICs and uncover a nonimmune resistance mechanism of patients with glioblastoma to PD-1– or PD-L1–blocking therapies.
Collapse
Affiliation(s)
- Reza Mirzaei
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ashley Gordon
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Franz J. Zemp
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mehul Kumar
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Susobhan Sarkar
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - H. Artee Luchman
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anita C. Bellail
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chunhai Hao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Douglas J. Mahoney
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F. Dunn
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Pinaki Bose
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - V. Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Corresponding author.
| |
Collapse
|
23
|
Second-Generation Jak2 Inhibitors for Advanced Prostate Cancer: Are We Ready for Clinical Development? Cancers (Basel) 2021; 13:cancers13205204. [PMID: 34680353 PMCID: PMC8533841 DOI: 10.3390/cancers13205204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Prostate Cancer (PC) is currently estimated to affect 1 in 9 men and is the second leading cause of cancer in men in the US. While androgen deprivation therapy, which targets the androgen receptor, is one of the front-line therapies for advanced PC and for recurrence of organ-confined PC treated with surgery, lethal castrate-resistant PC develops consistently in patients. PC is a multi-focal cancer with different grade carcinoma areas presenting simultaneously. Jak2-Stat5 signaling pathway has emerged as a potentially highly effective molecular target in PCs with positive areas for activated Stat5 protein. Activated Jak2-Stat5 signaling can be readily targeted by the second-generation Jak2-inhibitors that have been developed for myeloproliferative and autoimmune disorders and hematological malignancies. In this review, we analyze and summarize the Jak2 inhibitors that are currently in preclinical and clinical development. Abstract Androgen deprivation therapy (ADT) for metastatic and high-risk prostate cancer (PC) inhibits growth pathways driven by the androgen receptor (AR). Over time, ADT leads to the emergence of lethal castrate-resistant PC (CRPC), which is consistently caused by an acquired ability of tumors to re-activate AR. This has led to the development of second-generation anti-androgens that more effectively antagonize AR, such as enzalutamide (ENZ). However, the resistance of CRPC to ENZ develops rapidly. Studies utilizing preclinical models of PC have established that inhibition of the Jak2-Stat5 signaling leads to extensive PC cell apoptosis and decreased tumor growth. In large clinical cohorts, Jak2-Stat5 activity predicts PC progression and recurrence. Recently, Jak2-Stat5 signaling was demonstrated to induce ENZ-resistant PC growth in preclinical PC models, further emphasizing the importance of Jak2-Stat5 for therapeutic targeting for advanced PC. The discovery of the Jak2V617F somatic mutation in myeloproliferative disorders triggered the rapid development of Jak1/2-specific inhibitors for a variety of myeloproliferative and auto-immune disorders as well as hematological malignancies. Here, we review Jak2 inhibitors targeting the mutated Jak2V617F vs. wild type (WT)-Jak2 that are currently in the development pipeline. Among these 35 compounds with documented Jak2 inhibitory activity, those with potency against WT-Jak2 hold strong potential for advanced PC therapy.
Collapse
|
24
|
Basheer AS, Abas F, Othman I, Naidu R. Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications. Cancers (Basel) 2021; 13:4226. [PMID: 34439380 PMCID: PMC8393628 DOI: 10.3390/cancers13164226] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common, highly malignant, and deadliest forms of brain tumors. These intra-cranial solid tumors are comprised of both cancerous and non-cancerous cells, which contribute to tumor development, progression, and resistance to the therapeutic regimen. A variety of soluble inflammatory mediators (e.g., cytokines, chemokines, and chemotactic factors) are secreted by these cells, which help in creating an inflammatory microenvironment and contribute to the various stages of cancer development, maintenance, and progression. The major tumor infiltrating immune cells of the tumor microenvironment include TAMs and TANs, which are either recruited peripherally or present as brain-resident macrophages (microglia) and support stroma for cancer cell expansion and invasion. These cells are highly plastic in nature and can be polarized into different phenotypes depending upon different types of stimuli. During neuroinflammation, glioma cells interact with TAMs and TANs, facilitating tumor cell proliferation, survival, and migration. Targeting inflammatory mediators along with the reprogramming of TAMs and TANs could be of great importance in glioma treatment and may delay disease progression. In addition, an inhibition of the key signaling pathways such as NF-κB, JAK/STAT, MAPK, PI3K/Akt/mTOR, and TLRs, which are activated during neuroinflammation and have an oncogenic role in glioblastoma (GBM), can exert more pronounced anti-glioma effects.
Collapse
Affiliation(s)
- Abdul Samad Basheer
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), Serdang 434000, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| |
Collapse
|
25
|
Unterman I, Bloch I, Cazacu S, Kazimirsky G, Ben-Zeev B, Berman BP, Brodie C, Tabach Y. Expanding the MECP2 network using comparative genomics reveals potential therapeutic targets for Rett syndrome. eLife 2021; 10:e67085. [PMID: 34355696 PMCID: PMC8346285 DOI: 10.7554/elife.67085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Inactivating mutations in the Methyl-CpG Binding Protein 2 (MECP2) gene are the main cause of Rett syndrome (RTT). Despite extensive research into MECP2 function, no treatments for RTT are currently available. Here, we used an evolutionary genomics approach to construct an unbiased MECP2 gene network, using 1028 eukaryotic genomes to prioritize proteins with strong co-evolutionary signatures with MECP2. Focusing on proteins targeted by FDA-approved drugs led to three promising targets, two of which were previously linked to MECP2 function (IRAK, KEAP1) and one that was not (EPOR). The drugs targeting these three proteins (Pacritinib, DMF, and EPO) were able to rescue different phenotypes of MECP2 inactivation in cultured human neural cell types, and appeared to converge on Nuclear Factor Kappa B (NF-κB) signaling in inflammation. This study highlights the potential of comparative genomics to accelerate drug discovery, and yields potential new avenues for the treatment of RTT.
Collapse
Affiliation(s)
- Irene Unterman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| | - Idit Bloch
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| | - Simona Cazacu
- Hermelin Brain Tumor Center, Henry Ford HospitalDetroitUnited States
| | - Gila Kazimirsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Bruria Ben-Zeev
- Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical CenterRamat GanIsrael
| | - Benjamin P Berman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| | - Chaya Brodie
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| |
Collapse
|
26
|
Glogowska A, Thanasupawat T, Beiko J, Pitz M, Hombach-Klonisch S, Klonisch T. Novel CTRP8-RXFP1-JAK3-STAT3 axis promotes Cdc42-dependent actin remodeling for enhanced filopodia formation and motility in human glioblastoma cells. Mol Oncol 2021; 16:368-387. [PMID: 33960104 PMCID: PMC8763656 DOI: 10.1002/1878-0261.12981] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
C1q tumor necrosis factor‐related peptide 8 (CTRP8) is the least studied member of the C1Q‐TNF‐related peptide family. We identified CTRP8 as a ligand of the G protein‐coupled receptor relaxin family peptide receptor 1 (RXFP1) in glioblastoma multiforme (GBM). The CTRP8‐RXFP1 ligand–receptor system protects human GBM cells against the DNA‐alkylating damage‐inducing temozolomide (TMZ), the drug of choice for the treatment of patients with GBM. The DNA protective role of CTRP8 was dependent on a functional RXFP1‐STAT3 signaling cascade and targeted the monofunctional glycosylase N‐methylpurine DNA glycosylase (MPG) for more efficient base excision repair of TMZ‐induced DNA‐damaged sites. CTRP8 also improved the survival of GBM cells by upregulating anti‐apoptotic BCl‐2 and BCL‐XL. Here, we have identified Janus‐activated kinase 3 (JAK3) as a novel member of a novel CTRP8‐RXFP1‐JAK3‐STAT3 signaling cascade that caused an increase in cellular protein content and activity of the small Rho GTPase Cdc42. This is associated with significant F‐actin remodeling and increased GBM motility. Cdc42 was critically important for the upregulation of the actin nucleation complex N‐Wiskott–Aldrich syndrome protein/Arp3/4 and actin elongation factor profilin‐1. The activation of the RXFP1‐JAK3‐STAT3‐Cdc42 axis by both RXFP1 agonists, CTRP8 and relaxin‐2, caused extensive filopodia formation. This coincided with enhanced activity of ezrin, a key factor in tethering F‐actin to the plasma membrane, and inhibition of the actin filament severing activity of cofilin. The F‐actin remodeling and pro‐migratory activities promoted by the novel RXFP1‐JAK3‐STAT3‐Cdc42 axis were blocked by JAK3 inhibitor tofacitinib and STAT3 inhibitor STAT3 inhibitor VI. This provides a new rationale for the design of JAK3 and STAT3 inhibitors with better brain permeability for clinical treatment of the pervasive brain invasiveness of GBM.
Collapse
Affiliation(s)
- Aleksandra Glogowska
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Jason Beiko
- Department of Surgery, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Marshall Pitz
- Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada.,Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Surgery, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada.,Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
27
|
Yamada T, Tsuji S, Nakamura S, Egashira Y, Shimazawa M, Nakayama N, Yano H, Iwama T, Hara H. Riluzole enhances the antitumor effects of temozolomide via suppression of MGMT expression in glioblastoma. J Neurosurg 2021; 134:701-710. [PMID: 32168477 DOI: 10.3171/2019.12.jns192682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/30/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Glutamatergic signaling significantly promotes proliferation, migration, and invasion in glioblastoma (GBM). Riluzole, a metabotropic glutamate receptor 1 inhibitor, reportedly suppresses GBM growth. However, the effects of combining riluzole with the primary GBM chemotherapeutic agent, temozolomide (TMZ), are unknown. This study aimed to investigate the efficacy of combinatorial therapy with TMZ/riluzole for GBM in vitro and in vivo. METHODS Three GBM cell lines, T98G (human; O6-methylguanine DNA methyltransferase [MGMT] positive), U87MG (human; MGMT negative), and GL261 (murine; MGMT positive), were treated with TMZ, riluzole, or a combination of both. The authors performed cell viability assays, followed by isobologram analysis, to evaluate the effects of combinatorial treatment for each GBM cell line. They tested the effect of riluzole on MGMT, a DNA repair enzyme causing chemoresistance to TMZ, through quantitative real-time reverse transcription polymerase chain reaction in T98G cells. Furthermore, they evaluated the efficacy of combinatorial TMZ/riluzole treatment in an orthotopic mouse allograft model of MGMT-positive GBM using C57BL/6 J mice and GL261 cells. RESULTS Riluzole displayed significant time- and dose-dependent growth-inhibitory effects on all GBM cell lines assessed independently. Riluzole enhanced the antitumor effect of TMZ synergistically in MGMT-positive but not in MGMT-negative GBM cell lines. Riluzole singularly suppressed MGMT expression, and it significantly suppressed TMZ-induced MGMT upregulation (p < 0.01). Furthermore, combinatorial TMZ/riluzole treatment significantly suppressed tumor growth in the intracranial MGMT-positive GBM model (p < 0.05). CONCLUSIONS Riluzole attenuates TMZ-induced MGMT upregulation and enhances the antitumor effect of TMZ in MGMT-positive GBMs. Therefore, combinatorial TMZ/riluzole treatment is a potentially promising novel therapeutic regimen for MGMT-positive GBMs.
Collapse
Affiliation(s)
- Tetsuya Yamada
- 1Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University; and
- 2Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shohei Tsuji
- 1Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University; and
| | - Shinsuke Nakamura
- 1Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University; and
| | - Yusuke Egashira
- 2Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masamitsu Shimazawa
- 1Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University; and
| | - Noriyuki Nakayama
- 2Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirohito Yano
- 2Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toru Iwama
- 2Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hideaki Hara
- 1Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University; and
| |
Collapse
|
28
|
Vazquez N, Lopez A, Cuello V, Persans M, Schuenzel E, Innis-Whitehouse W, Keniry M. NVP-BEZ235 or JAKi Treatment leads to decreased survival of examined GBM and BBC cells. Cancer Treat Res Commun 2021; 27:100340. [PMID: 33636591 DOI: 10.1016/j.ctarc.2021.100340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
Abstract
Cancer cells almost universally harbor constitutively active Phosphatidylinositol-3 Kinase (PI3K) Pathway activity via mutation of key signaling components and/or epigenetic mechanisms. Scores of PI3K Pathway inhibitors are currently under investigation as putative chemotherapeutics. However, feedback and stem cell mechanisms induced by PI3K Pathway inhibition can lead to reduced treatment efficacy. To address therapeutic barriers, we examined whether JAKi would reduce stem gene expression in a setting of PI3K Pathway inhibition in order to improve treatment efficacy. We targeted the PI3K Pathway with NVP-BEZ235 (dual PI3K and mTOR inhibitor) in combination with the Janus Kinase inhibitor JAKi in glioblastoma (GBM) and basal-like breast cancer (BBC) cell lines. We examined growth, gene expression, and apoptosis in cells treated with NVP-BEZ235 and/or JAKi. Growth and recovery assays showed no significant impact of dual treatment with NVP-BEZ235/JAKi compared to NVP-BEZ235 treatment alone. Gene expression and flow cytometry revealed that single and dual treatments induced apoptosis. Stem gene expression was retained in dual NVP-BEZ235/JAKi treatment samples. Future in vivo studies may give further insight into the impact of combined NVP-BEZ235/JAKi treatment in GBM and BBC.
Collapse
Affiliation(s)
- Neftali Vazquez
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Alma Lopez
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Victoria Cuello
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Michael Persans
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Erin Schuenzel
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Wendy Innis-Whitehouse
- School of Medicine, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Megan Keniry
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States.
| |
Collapse
|
29
|
Ou A, Ott M, Fang D, Heimberger AB. The Role and Therapeutic Targeting of JAK/STAT Signaling in Glioblastoma. Cancers (Basel) 2021; 13:437. [PMID: 33498872 PMCID: PMC7865703 DOI: 10.3390/cancers13030437] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma remains one of the deadliest and treatment-refractory human malignancies in large part due to its diffusely infiltrative nature, molecular heterogeneity, and capacity for immune escape. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway contributes substantively to a wide variety of protumorigenic functions, including proliferation, anti-apoptosis, angiogenesis, stem cell maintenance, and immune suppression. We review the current state of knowledge regarding the biological role of JAK/STAT signaling in glioblastoma, therapeutic strategies, and future directions for the field.
Collapse
Affiliation(s)
- Alexander Ou
- Department of Neuro-Oncology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA;
| | - Martina Ott
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Dexing Fang
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Amy B. Heimberger
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| |
Collapse
|
30
|
Qureshy Z, Johnson DE, Grandis JR. Targeting the JAK/STAT pathway in solid tumors. JOURNAL OF CANCER METASTASIS AND TREATMENT 2020; 6:27. [PMID: 33521321 PMCID: PMC7845926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aberrant activation of signal transducer and activator of transcription (STAT) proteins is associated with the development and progression of solid tumors. However, as transcription factors, these proteins are difficult to target directly. In this review, we summarize the role of targeting Janus kinases (JAKs), upstream activators of STATs, as a strategy for decreasing STAT activation in solid tumors. Preclinical studies in solid tumor cell line models show that JAK inhibitors decrease STAT activation, cell proliferation, and cell survival; in in vivo models, they also inhibit tumor growth. JAK inhibitors, particularly the JAK1/2 inhibitor ruxolitinib, sensitize cell lines and murine models to chemotherapy, immunotherapy, and oncolytic viral therapy. Ten JAK inhibitors have been or are actively being tested in clinical trials as monotherapy or in combination with other agents in patients with solid tumors; two of these inhibitors are already Food and Drug Administration (FDA) approved for the treatment of myeloproliferative disorders and rheumatoid arthritis, making them attractive agents for use in patients with solid tumors as they are known to be well-tolerated. Four JAK inhibitors (two of which are FDA approved for other indications) have exhibited promising anti-cancer effects in preclinical studies; however, clinical studies specifically assessing their activity against the JAK/STAT pathway in solid tumors have not yet been conducted. In summary, JAK inhibition is a viable option for targeting the JAK/STAT pathway in solid tumors and merits further testing in clinical trials.
Collapse
Affiliation(s)
- Zoya Qureshy
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco 94158, USA
| | - Daniel E Johnson
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco 94158, USA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco 94158, USA
| |
Collapse
|
31
|
Delen E, Doğanlar O. The Dose Dependent Effects of Ruxolitinib on the Invasion and Tumorigenesis in Gliomas Cells via Inhibition of Interferon Gamma-Depended JAK/STAT Signaling Pathway. J Korean Neurosurg Soc 2020; 63:444-454. [PMID: 32492985 PMCID: PMC7365278 DOI: 10.3340/jkns.2019.0252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/11/2020] [Indexed: 01/08/2023] Open
Abstract
Objective Glioblastoma multiforme (GBM) is the most aggressive for of brain tumor and treatment often fails due to the invasion of tumor cells into neighboring healthy brain tissues. Activation of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is essential for normal cellular function including angiogenesis, and has been proposed to have a pivotal role in glioma invasion. This study aimed to determine the dose-dependent effects of ruxolitinib, an inhibitor of JAK, on the interferon (IFN)-I/IFN-α/IFN-β receptor/STAT and IFN-γ/IFN-γ receptor/STAT1 axes of the IFN-receptor-dependent JAK/STAT signaling pathway in glioblastoma invasion and tumorigenesis in U87 glioblastoma tumor spheroids.
Methods We administered three different doses of ruxolitinib (50, 100, and 200 nM) to human U87 glioblastoma spheroids and analyzed the gene expression profiles of IFNs receptors from the JAK/STAT pathway. To evaluate activation of this pathway, we quantified the phosphorylation of JAK and STAT proteins using Western blotting.
Results Quantitative real-time polymerase chain reaction analysis demonstrated that ruxolitinib led to upregulated of the IFN-α and IFN-γ while no change on the hypoxia-inducible factor-1α and vascular endothelial growth factor expression levels. Additionally, we showed that ruxolitinib inhibited phosphorylation of JAK/STAT proteins. The inhibition of IFNs dependent JAK/STAT signaling by ruxolitinib leads to decreases of the U87 cells invasiveness and tumorigenesis. We demonstrate that ruxolitinib may inhibit glioma invasion and tumorigenesis through inhibition of the IFN-induced JAK/STAT signaling pathway.
Conclusion Collectively, our results revealed that ruxolitinib may have therapeutic potential in glioblastomas, possibly by JAK/STAT signaling triggered by IFN-α and IFN-γ.
Collapse
Affiliation(s)
- Emre Delen
- Department of Neurosurgery, Trakya University School of Medicine, Edirne, Turkey
| | - Oğuzhan Doğanlar
- Department of Medical Biology, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
32
|
Hin Tang JJ, Hao Thng DK, Lim JJ, Toh TB. JAK/STAT signaling in hepatocellular carcinoma. Hepat Oncol 2020; 7:HEP18. [PMID: 32273976 PMCID: PMC7137178 DOI: 10.2217/hep-2020-0001] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the second most lethal cancer in the world with limited treatment options. Hepatocellular carcinoma (HCC), which accounts for more than 80% of all liver cancers, has had increasing global incidence over the past few years. There is an urgent need for novel and better therapeutic intervention for HCC patients. The JAK/STAT signaling pathway plays a multitude of important biological functions in both normal and malignant cells. In a subset of HCC, JAK/STAT signaling is aberrantly activated, leading to dysregulation of downstream target genes that controls survival, angiogenesis, stemness, immune surveillance, invasion and metastasis. In this review, we will focus on the role of JAK/STAT signaling in HCC and discuss the current clinical status of several JAK/STAT inhibitors.
Collapse
Affiliation(s)
- Justin Jit Hin Tang
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| | - Dexter Kai Hao Thng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| |
Collapse
|
33
|
Lebedev TD, Vagapova ER, Astashkova OO, Spirin PV, Prassolov VS. Inhibition of Non-Receptor Tyrosine Kinase JAK2 Reduces Neuroblastoma Cell Growth and Enhances the Action of Doxorubicin. Mol Biol 2020. [DOI: 10.1134/s0026893320020119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Jensen KV, Hao X, Aman A, Luchman HA, Weiss S. EGFR blockade in GBM brain tumor stem cells synergizes with JAK2/STAT3 pathway inhibition to abrogate compensatory mechanisms in vitro and in vivo. Neurooncol Adv 2020; 2:vdaa020. [PMID: 32226941 PMCID: PMC7086303 DOI: 10.1093/noajnl/vdaa020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background The EGFR pathway is frequently mutated in glioblastoma (GBM). However, to date, EGFR therapies have not demonstrated efficacy in clinical trials. Poor brain penetration of conventional inhibitors, lack of patient stratification for EGFR status, and mechanisms of resistance are likely responsible for the failure of EGFR-targeted therapy. We aimed to address these elements in a large panel of molecularly diverse patient-derived GBM brain tumor stem cells (BTSCs). Methods In vitro growth inhibition and on-target efficacy of afatinib, pacritinib, or a combination were assessed by cell viability, neurosphere formation, cytotoxicity, limiting dilution assays, and western blotting. In vivo efficacy was assessed with mass spectrometry, immunohistochemistry, magnetic resonance imaging, and intracranial xenograft models. Results We show that afatinib and pacritinib decreased BTSC growth and sphere-forming capacity in vitro. Combinations of the 2 drugs were synergistic and abrogated the activation of STAT3 signaling observed upon EGFR inhibition in vitro and in vivo. We further demonstrate that the brain-penetrant EGFR inhibitor, afatinib, improved survival in EGFRvIII mt orthotopic xenograft models. However, upregulation of the oncogenic STAT3 signaling pathway was observed following afatinib treatment. Combined inhibition with 2 clinically relevant drugs, afatinib and pacritinib, synergistically decreased BTSC viability and abrogated this compensatory mechanism of resistance to EGFR inhibition. A significant decrease in tumor burden in vivo was observed with the combinatorial treatment. Conclusions These data demonstrate that brain-penetrant combinatorial therapies targeting the EGFR and STAT3 signaling pathways hold therapeutic promise for GBM.
Collapse
Affiliation(s)
- Katharine V Jensen
- Hotchkiss Brain Institute and Arnie Charbonneau Cancer Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xiaoguang Hao
- Hotchkiss Brain Institute and Arnie Charbonneau Cancer Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - H Artee Luchman
- Hotchkiss Brain Institute and Arnie Charbonneau Cancer Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Weiss
- Hotchkiss Brain Institute and Arnie Charbonneau Cancer Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
35
|
Chi F, Chen L, Wang C, Li L, Sun X, Xu Y, Ma T, Liu K, Ma X, Shu X. JAK3 inhibitors based on thieno[3,2-d]pyrimidine scaffold: design, synthesis and bioactivity evaluation for the treatment of B-cell lymphoma. Bioorg Chem 2019; 95:103542. [PMID: 31918398 DOI: 10.1016/j.bioorg.2019.103542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/02/2019] [Accepted: 12/21/2019] [Indexed: 01/12/2023]
Abstract
JAK3 is predominantly expressed in hematopoietic cells and has been a promising therapeutic target for the treatment of B-cell lymphoma. In this study, a new class of thieno[3,2-d]pyrimidines harboring acrylamide pharmacophore were synthesized as potent covalent JAK3 inhibitors (IC50 < 10 nM). Among them, 9a and 9 g displayed the strongest inhibitory potency against JAK3 kinase activity, with IC50 values of 1.9 nM and 1.8 nM, respectively. Furthermore, compared with the reference agents, Spebrutinib and Ibrutinib, 9a not only demonstrated enhanced antiproliferative activity against B lymphoma cells, but also showed very weak proliferative inhibition against normal peripheral blood mononuclear cells (PBMCs) at a concentration of 20 μM. Analysis of the mechanism revealed that 9a could induce the obvious apoptosis in B lymphoma cells and prevent JAK3-STAT3 cascade as well as BTK pathway. Taken together, 9a may be served as a potential new JAK3 inhibitor for the treatment of B-cell lymphoma.
Collapse
Affiliation(s)
- Fuyun Chi
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Lixue Chen
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China; School of Pharmaceutical Engineering, and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Changyuan Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Lei Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Xiuli Sun
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Youjun Xu
- School of Pharmaceutical Engineering, and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Tengyue Ma
- Dalian Buyun Biotechnology Co., Ltd. 116085, PR China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China.
| | - Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China.
| |
Collapse
|
36
|
Cletzer E, Klahn S, Dervisis N, LeRoith T. Identification of the JAK-STAT pathway in canine splenic hemangiosarcoma, thyroid carcinoma, mast cell tumor, and anal sac adenocarcinoma. Vet Immunol Immunopathol 2019; 220:109996. [PMID: 31958674 DOI: 10.1016/j.vetimm.2019.109996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Dysregulation of the Janus Kinase (JAK) - Signal Transducer and Activator of Transcription (STAT) cellular signaling pathway has been associated with the development and progression of multiple human cancers. STAT3 has been reported to be present and constitutively active in a number of veterinary cancers, and few studies have reported mutations or activation of JAK1 or JAK2. Archived tissue samples from 54 client-owned dogs with histologically-diagnosed HSA, MCT, TC, or AGASACA were evaluated by immunohistochemical scoring of JAK1, JAK2, STAT3, and the phosphorylated counterparts pJAK1, pJAK2, and pSTAT3. IHC scoring was retrospectively analyzed with retrospectively-collected clinical parameters, including patient characteristics, metastasis, and survival. JAK1, pJAK1, JAK2, pJAK2, STAT3, and pSTAT3 were present in all tumor types evaluated. Significant correlations between JAK 1/2 or STAT3 and activated or downstream components were identified in all tumor types. Clinically, pSTAT3 was correlated with development of metastasis in dogs with MCT, while increased JAK1 expression or activation may impact survival in dogs with MCT or HSA. These findings provide a foundation to further investigate the JAK-STAT pathway in canine malignancies for additional therapeutic options.
Collapse
Affiliation(s)
- Erin Cletzer
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Dr, Blacksburg, VA, 24061, USA
| | - Shawna Klahn
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Dr, Blacksburg, VA, 24061, USA.
| | - Nikolaos Dervisis
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Dr, Blacksburg, VA, 24061, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Dr, Blacksburg, VA, 24061, USA
| |
Collapse
|
37
|
SLUG Directs the Precursor State of Human Brain Tumor Stem Cells. Cancers (Basel) 2019; 11:cancers11111635. [PMID: 31652994 PMCID: PMC6895861 DOI: 10.3390/cancers11111635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023] Open
Abstract
In glioblastoma (GBM), brain tumor stem cells (BTSCs) encompass heterogenous populations of multipotent, self-renewing, and tumorigenic cells, which have been proposed to be at the root of therapeutic resistance and recurrence. While the functional significance of BTSC heterogeneity remains to be fully determined, we previously distinguished relatively quiescent stem-like precursor state from the more aggressive progenitor-like precursor state. In the present study, we hypothesized that progenitor-like BTSCs arise from stem-like precursors through a mesenchymal transition and drive post-treatment recurrence. We first demonstrate that progenitor-like BTSCs display a more mesenchymal transcriptomic profile. Moreover, we show that both mesenchymal GBMs and progenitor-like BTSCs are characterized by over-activated STAT3/EMT pathways and that SLUG is the primary epithelial to mesenchymal transition (EMT) transcription factor directly regulated by STAT3 in BTSCs. SLUG overexpression in BTSCs enhances invasiveness, promotes inflammation, and shortens survival. Importantly, SLUG overexpression in a quiescent stem-like BTSC line enhances tumorigenesis. Finally, we report that recurrence is associated with SLUG-induced transcriptional changes in both BTSCs and GBM patient samples. Collectively, our findings show that a STAT3-driven precursor state transition, mediated by SLUG, may prime BTSCs to initiate more aggressive mesenchymal recurrence. Targeting the STAT3/SLUG pathway may maintain BTSCs in a quiescent stem-like precursor state, delaying recurrence and improving survival in GBM.
Collapse
|
38
|
Park SY, Lee CJ, Choi JH, Kim JH, Kim JW, Kim JY, Nam JS. The JAK2/STAT3/CCND2 Axis promotes colorectal Cancer stem cell persistence and radioresistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:399. [PMID: 31511084 PMCID: PMC6737692 DOI: 10.1186/s13046-019-1405-7] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/02/2019] [Indexed: 12/24/2022]
Abstract
Background Radiotherapy (RT) is a highly effective multimodal nonsurgical treatment that is essential for patients with advanced colorectal cancer (CRC). Nevertheless, cell subpopulations displaying intrinsic radioresistance survive after RT. The reactivation of their proliferation and successful colonization at local or distant sites may increase the risk of poor clinical outcomes. Recently, radioresistant cancer cells surviving RT were reported to exhibit a more aggressive phenotype than parental cells, although the underlying mechanisms remain unclear. Methods By investigating public databases containing CRC patient data, we explored potential radioresistance-associated signaling pathways. Then, their mechanistic roles in radioresistance were investigated through multiple validation steps using patient-derived primary CRC cells, human CRC cell lines, and CRC xenografts. Results Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling was activated in radioresistant CRC tissues in correlation with local and distant metastases. JAK2 was preferentially overexpressed in the CRC stem cell subpopulation, which was accompanied by the phosphorylation of STAT proteins, especially STAT3. JAK2/STAT3 signaling played an essential role in promoting tumor initiation and radioresistance by limiting apoptosis and enhancing clonogenic potential. Mechanistically, the direct binding of STAT3 to the cyclin D2 (CCND2) promoter increased CCND2 transcription. CCND2 expression was required for persistent cancer stem cell (CSC) growth via the maintenance of an intact cell cycle and proliferation with low levels of DNA damage accumulation. Conclusion Herein, we first identified JAK2/STAT3/CCND2 signaling as a resistance mechanism for the persistent growth of CSCs after RT, suggesting potential biomarkers and regimens for improving outcomes among CRC patients.
Collapse
Affiliation(s)
- So-Yeon Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.,Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Choong-Jae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jang-Hyun Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jee-Heun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Ji-Won Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Ji-Young Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jeong-Seok Nam
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea. .,Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
39
|
Cheng YP, Li S, Chuang WL, Li CH, Chen GJ, Chang CC, Or CHR, Lin PY, Chang CC. Blockade of STAT3 Signaling Contributes to Anticancer Effect of 5-Acetyloxy-6,7,8,4'-Tetra-Methoxyflavone, a Tangeretin Derivative, on Human Glioblastoma Multiforme Cells. Int J Mol Sci 2019; 20:ijms20133366. [PMID: 31323961 PMCID: PMC6651290 DOI: 10.3390/ijms20133366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with poor prognosis, largely due to resistance to current radiotherapy and Temozolomide chemotherapy. The constitutive activation of Signal Transducer and Activator of Transcription 3 (STAT3) is evidenced as a pivotal driver of GBM pathogenesis and therapy resistance, and hence, is a promising GBM drug target. 5-acetyloxy-6,7,8,4'-tetramethoxyflavone (5-AcTMF) is an acetylated derivative of Tangeretin which is known to exert anticancer effects on breast, colon, lung, and multiple myeloma; however, its effect on GBM remains elusive. Herein, we reported that 5-AcTMF suppressed the viability and clonogenicity along with inducing apoptosis in multiple human GBM cell lines. Mechanistic analyses further revealed that 5-AcTMF lowered the levels of Tyrosine 705-phosphorylated STAT3 (p-STAT3), a canonical marker of STAT3 activation, but also dampened p-STAT3 upregulation elicited by Interleukin-6. Notably, ectopic expression of dominant-active STAT3 impeded 5-AcTMF-induced suppression of viability and clonogenicity plus apoptosis induction in GBM cells, confirming the prerequisite of STAT3 blockage for the inhibitory action of 5-AcTMF on GBM cell survival and growth. Additionally, 5-AcTMF impaired the activation of STAT3 upstream kinase JAK2 but also downregulated antiapoptotic BCL-2 and BCL-xL in a STAT3-dependent manner. Moreover, the overexpression of either BCL-2 or BCL-xL abrogated 5-AcTMF-mediated viability reduction and apoptosis induction in GBM cells. Collectively, we, for the first time, revealed the anticancer effect of 5-AcTMF on GBM cells, which was executed via thwarting the JAK2-STAT3-BCL-2/BCL-xL signaling axis. Our findings further implicate the therapeutic potential of 5-AcTMF for GBM treatment.
Collapse
Affiliation(s)
- Yen-Po Cheng
- Division of Neurosurgery, Department of Surgery, Yuanlin Changhua Christian Hospital, Changhua 50006, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shiming Li
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Wan-Ling Chuang
- Transplant Medicine & Surgery Research Center, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Chia-Hsuan Li
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Guan-Jun Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ching-Chin Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chi-Hung R Or
- Department of Anesthesiology, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan
| | - Ping-Yi Lin
- Transplant Medicine & Surgery Research Center, Changhua Christian Hospital, Changhua 50006, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Chia-Che Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan.
- Department of Life Sciences, The iEGG and Animal Biotechnology Research Center, Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
40
|
Preclinical Evidence of STAT3 Inhibitor Pacritinib Overcoming Temozolomide Resistance via Downregulating miR-21-Enriched Exosomes from M2 Glioblastoma-Associated Macrophages. J Clin Med 2019; 8:jcm8070959. [PMID: 31269723 PMCID: PMC6678764 DOI: 10.3390/jcm8070959] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/22/2019] [Accepted: 06/29/2019] [Indexed: 12/27/2022] Open
Abstract
Background: The tumor microenvironment (TME) plays a crucial role in virtually every aspect of tumorigenesis of glioblastoma multiforme (GBM). A dysfunctional TME promotes drug resistance, disease recurrence, and distant metastasis. Recent evidence indicates that exosomes released by stromal cells within the TME may promote oncogenic phenotypes via transferring signaling molecules such as cytokines, proteins, and microRNAs. Results: In this study, clinical GBM samples were collected and analyzed. We found that GBM-associated macrophages (GAMs) secreted exosomes which were enriched with oncomiR-21. Coculture of GAMs (and GAM-derived exosomes) and GBM cell lines increased GBM cells’ resistance against temozolomide (TMZ) by upregulating the prosurvival gene programmed cell death protein 4 (PDCD4) and stemness markers SRY (sex determining region y)-box 2 (Sox2), signal transducer and activator of transcription 3 (STAT3), Nestin, and miR-21-5p and increasing the M2 cytokines interleukin 6 (IL-6) and transforming growth factor beta 1(TGF-β1) secreted by GBM cells, promoting the M2 polarization of GAMs. Subsequently, pacritinib treatment suppressed GBM tumorigenesis and stemness; more importantly, pacritinib-treated GBM cells showed a markedly reduced ability to secret M2 cytokines and reduced miR-21-enriched exosomes secreted by GAMs. Pacritinib-mediated effects were accompanied by a reduction of oncomiR miR-21-5p, by which the tumor suppressor PDCD4 was targeted. We subsequently established patient-derived xenograft (PDX) models where mice bore patient GBM and GAMs. Treatment with pacritinib and the combination of pacritinib and TMZ appeared to significantly reduce the tumorigenesis of GBM/GAM PDX mice as well as overcome TMZ resistance and M2 polarization of GAMs. Conclusion: In summation, we showed the potential of pacritinib alone or in combination with TMZ to suppress GBM tumorigenesis via modulating STAT3/miR-21/PDCD4 signaling. Further investigations are warranted for adopting pacritinib for the treatment of TMZ-resistant GBM in clinical settings.
Collapse
|
41
|
Majd N, de Groot J. Challenges and strategies for successful clinical development of immune checkpoint inhibitors in glioblastoma. Expert Opin Pharmacother 2019; 20:1609-1624. [DOI: 10.1080/14656566.2019.1621840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Nazanin Majd
- Department of Neuro-Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John de Groot
- Department of Neuro-Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
42
|
Fogg KC, Olson WR, Miller JN, Khan A, Renner C, Hale I, Weisman PS, Kreeger PK. Alternatively activated macrophage-derived secretome stimulates ovarian cancer spheroid spreading through a JAK2/STAT3 pathway. Cancer Lett 2019; 458:92-101. [PMID: 31129149 DOI: 10.1016/j.canlet.2019.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) metastasizes when tumor spheroids detach from the primary tumor and re-attach throughout the peritoneal cavity. Once the cancer cells have implanted in these new sites, the development of metastatic lesions is dependent on the disaggregation of cancer cells from the spheroids and subsequent expansion across the collagenous extracellular matrix (ECM). As HGSOC progresses an increase in alternatively activated macrophages (AAMs) in the surrounding ascites fluid has been observed and AAMs have been shown to enhance tumor invasion and growth in a wide range of cancers. We hypothesized that soluble factors from AAMs in the peritoneal microenvironment promote the disaggregation of ovarian cancer spheroids across the underlying ECM. We determined that co-culture with AAMs significantly increased HGSOC spheroid spreading across a collagen matrix. Multivariate modeling identified AAM-derived factors that correlated with enhanced spread of HGSOC spheroids and experimental validation showed that each individual cell line responded to a distinct AAM-derived factor (FLT3L, leptin, or HB-EGF). Despite this ligand-level heterogeneity, we determined that the AAM-derived factors utilized a common signaling pathway to induce spheroid spreading: JAK2/STAT3 activation followed by MMP-9 mediated spreading. Furthermore, immunostaining demonstrated that FLT3, LEPR, EGFR, and pSTAT3 were upregulated in metastases in HGSOC patients, with substantial patient-to-patient heterogeneity. These results suggest that inhibiting individual soluble factors will not inhibit AAM-induced effects across a broad group of patients; instead, the downstream JAK2/STAT3/MMP-9 pathway should be examined as potential therapeutic targets to slow metastasis in ovarian cancer.
Collapse
Affiliation(s)
- Kaitlin C Fogg
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Will R Olson
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Jamison N Miller
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Aisha Khan
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Carine Renner
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Isaac Hale
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Paul S Weisman
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Pamela K Kreeger
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
43
|
Liu B, Saber A, Haisma HJ. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discov Today 2019; 24:955-970. [PMID: 30849442 DOI: 10.1016/j.drudis.2019.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9), as a powerful genome-editing tool, has revolutionized genetic engineering. It is widely used to investigate the molecular basis of different cancer types. In this review, we present an overview of recent studies in which CRISPR/Cas9 has been used for the identification of potential molecular targets. Based on the collected data, we suggest here that CRISPR/Cas9 is an effective system to distinguish between mutant and wild-type alleles in cancer. We show that several new potential therapeutic targets, such as CD38, CXCR2, MASTL, and RBX2, as well as several noncoding (nc)RNAs have been identified using CRISPR/Cas9 technology. We also discuss the obstacles and challenges that we face for using CRISPR/Cas9 as a therapeutic.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Ali Saber
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands.
| |
Collapse
|
44
|
Nabavi SM, Ahmed T, Nawaz M, Devi KP, Balan DJ, Pittalà V, Argüelles-Castilla S, Testai L, Khan H, Sureda A, de Oliveira MR, Vacca RA, Xu S, Yousefi B, Curti V, Daglia M, Sobarzo-Sánchez E, Filosa R, Nabavi SF, Majidinia M, Dehpour AR, Shirooie S. Targeting STATs in neuroinflammation: The road less traveled! Pharmacol Res 2018; 141:73-84. [PMID: 30550953 DOI: 10.1016/j.phrs.2018.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/01/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022]
Abstract
JAK/STAT transduction pathway is a highly conserved pathway implicated in regulating cellular proliferation, differentiation, survival and apoptosis. Dysregulation of this pathway is involved in the onset of autoimmune, haematological, oncological, metabolic and neurological diseases. Over the last few years, the research of anti-neuroinflammatory agents has gained considerable attention. The ability to diminish the STAT-induced transcription of inflammatory genes is documented for both natural compounds (such as polyphenols) and chemical drugs. Among polyphenols, quercetin and curcumin directly inhibit STAT, while Berberis vulgaris L. and Sophora alopecuroides L extracts act indirectly. Also, the Food and Drug Administration has approved several JAK/STAT inhibitors (direct or indirect) for treating inflammatory diseases, indicating STAT can be considered as a therapeutic target for neuroinflammatory pathologies. Considering the encouraging data obtained so far, clinical trials are warranted to demonstrate the effectiveness and potential use in the clinical practice of STAT inhibitors to treat inflammation-associated neurodegenerative pathologies.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Maheen Nawaz
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, via Bonanno 6 - 56126, Pisa, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, E-07122 Palma de Mallorca, Spain.
| | - Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, 78060-900, Brazil
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, I-70126, Bari, Italy
| | - Suowen Xu
- University of Rochester, Aab Cardiovascular Research Institute, Rochester, NY, 14623, USA
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Valeria Curti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain; Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Rosanna Filosa
- Consorzio Sannio Tech, Appia Str, Apollosa, BN 82030, Italy
| | - Seyed Fazel Nabavi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
45
|
Abedalthagafi M, Barakeh D, Foshay KM. Immunogenetics of glioblastoma: the future of personalized patient management. NPJ Precis Oncol 2018; 2:27. [PMID: 30534602 PMCID: PMC6279755 DOI: 10.1038/s41698-018-0070-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
The prognosis of glioblastoma has changed little over the past two decades, with only minor improvements in length of overall survival through the addition of temozolomide (temodal) to standard of care and the recommended use of alternating electric field therapy (optune) to newly diagnosed patients. In an effort to define novel therapeutic targets across molecularly heterogeneous disease subgroups, researchers have begun to uncover the complex interplay between epigenetics, cell signaling, metabolism, and the immunosuppressive tumor microenvironment. Indeed, IDH mutations are now recognized as a defining differential factor not only influencing global hypermethylation and patient prognosis but also degree of immune infiltration within individual tumors. Likewise, next-generation sequencing has defined subgroup-specific transcriptional profiles that correlate with different mechanisms of immune evasion, including increased PD-L1 and CTLA-4 among mesenchymal tumors. Interestingly, sequencing of the T cell repertoire from numerous patient samples suggests that the correlation between mutational burden and enrichment of tumor-specific peptides may be less convincing than originally suspected. While this raises questions over the efficacy of dendritic cell or tumor-lysate vaccines and CAR-T therapies, these avenues continue to be explored. In addition to these active immunotherapies, inhibitors of molecular hubs with wide reaching effects, including STAT3, IDO, and TGF-β, are now in early-phase clinical trials. With the potential to block intrinsic biological properties of tumor growth and invasion while bolstering the immunogenic profile of the tumor microenvironment, these new targets represent a new direction for GBM therapies. In this review, we show the advances in molecular profiling and immunophenotyping of GBM, which may lead to the development of new personalized therapeutic strategies.
Collapse
Affiliation(s)
- Malak Abedalthagafi
- 1Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,2Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA USA
| | - Duna Barakeh
- 1Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Kara M Foshay
- Inova Neuroscience and Spine Institute, Inova Health Systems, Falls Church, VA USA
| |
Collapse
|
46
|
Restall I, Bozek DA, Chesnelong C, Weiss S, Luchman HA. Live-Cell Imaging Assays to Study Glioblastoma Brain Tumor Stem Cell Migration and Invasion. J Vis Exp 2018. [PMID: 30222149 PMCID: PMC6231945 DOI: 10.3791/58152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor that is poorly controlled with the currently available treatment options. Key features of GBMs include rapid proliferation and pervasive invasion into the normal brain. Recurrence is thought to result from the presence of radio- and chemo-resistant brain tumor stem cells (BTSCs) that invade away from the initial cancerous mass and, thus, evade surgical resection. Hence, therapies that target BTSCs and their invasive abilities may improve the otherwise poor prognosis of this disease. Our group and others have successfully established and characterized BTSC cultures from GBM patient samples. These BTSC cultures demonstrate fundamental cancer stem cell properties such as clonogenic self-renewal, multi-lineage differentiation, and tumor initiation in immune-deficient mice. In order to improve on the current therapeutic approaches for GBM, a better understanding of the mechanisms of BTSC migration and invasion is necessary. In GBM, the study of migration and invasion is restricted, in part, due to the limitations of existing techniques which do not fully account for the in vitro growth characteristics of BTSCs grown as neurospheres. Here, we describe rapid and quantitative live-cell imaging assays to study both the migration and invasion properties of BTSCs. The first method described is the BTSC migration assay which measures the migration toward a chemoattractant gradient. The second method described is the BTSC invasion assay which images and quantifies a cellular invasion from neurospheres into a matrix. The assays described here are used for the quantification of BTSC migration and invasion over time and under different treatment conditions.
Collapse
Affiliation(s)
- Ian Restall
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary
| | - Danielle Anne Bozek
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary
| | - Charles Chesnelong
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary; Department of Developmental and Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children
| | - Samuel Weiss
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary
| | - H Artee Luchman
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary;
| |
Collapse
|
47
|
A Repurposed Drug for Brain Cancer: Enhanced Atovaquone Amorphous Solid Dispersion by Combining a Spontaneously Emulsifying Component with a Polymer Carrier. Pharmaceutics 2018; 10:pharmaceutics10020060. [PMID: 29783757 PMCID: PMC6027483 DOI: 10.3390/pharmaceutics10020060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal central nervous system tumor. Recently, atovaquone has shown inhibition of signal transducer and activator transcription 3, a promising target for GBM therapy. However, it is currently unable to achieve therapeutic drug concentrations in the brain with the currently reported and marketed formulations. The present study sought to explore the efficacy of atovaquone against GBM as well as develop a formulation of atovaquone that would improve oral bioavailability, resulting in higher amounts of drug delivered to the brain. Atovaquone was formulated as an amorphous solid dispersion using an optimized formulation containing a polymer and a spontaneously emulsifying component (SEC) with greatly improved wetting, disintegration, dispersibility, and dissolution properties. Atovaquone demonstrated cytotoxicity against GBM cell lines as well as provided a confirmed target for atovaquone brain concentrations in in vitro cell viability studies. This new formulation approach was then assessed in a proof-of-concept in vivo exposure study. Based on these results, the enhanced amorphous solid dispersion is promising for providing therapeutically effective brain levels of atovaquone for the treatment of GBM.
Collapse
|
48
|
Guadagno E, Presta I, Maisano D, Donato A, Pirrone CK, Cardillo G, Corrado SD, Mignogna C, Mancuso T, Donato G, Del Basso De Caro M, Malara N. Role of Macrophages in Brain Tumor Growth and Progression. Int J Mol Sci 2018; 19:ijms19041005. [PMID: 29584702 PMCID: PMC5979398 DOI: 10.3390/ijms19041005] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/10/2018] [Accepted: 03/23/2018] [Indexed: 12/16/2022] Open
Abstract
The role of macrophages in the growth and the progression of tumors has been extensively studied in recent years. A large body of data demonstrates that macrophage polarization plays an essential role in the growth and progression of brain tumors, such as gliomas, meningiomas, and medulloblastomas. The brain neoplasm cells have the ability to influence the polarization state of the tumor associated macrophages. In turn, innate immunity cells have a decisive role through regulation of the acquired immune response, but also through humoral cross-talking with cancer cells in the tumor microenvironment. Neoangiogenesis, which is an essential element in glial tumor progression, is even regulated by the tumor associated macrophages, whose activity is linked to other factors, such as hypoxia. In addition, macrophages play a decisive role in establishing the entry into the bloodstream of cancer cells. As is well known, the latter phenomenon is also present in brain tumors, even if they only rarely metastasize. Looking ahead in the future, we can imagine that characterizing the relationships between tumor and tumor associated macrophage, as well as the study of circulating tumor cells, could give us useful tools in prognostic evaluation and therapy. More generally, the study of innate immunity in brain tumors can boost the development of new forms of immunotherapy.
Collapse
Affiliation(s)
- Elia Guadagno
- Department of Advanced Biomedical Sciences-Pathology Section, University of Naples "Federico II"-via Pansini 5, 80131 Naples, Italy.
| | - Ivan Presta
- Department of Health Sciences, University of Catanzaro "Magna Græcia"-viale Europa, 88100 Catanzaro, Italy.
| | - Domenico Maisano
- Department of Health Sciences, University of Catanzaro "Magna Græcia"-viale Europa, 88100 Catanzaro, Italy.
| | - Annalidia Donato
- Department of Medical and Surgical Sciences-University of Catanzaro "Magna Graecia"-viale Europa, 88100 Catanzaro, Italy.
| | - Caterina Krizia Pirrone
- Department of Health Sciences, University of Catanzaro "Magna Græcia"-viale Europa, 88100 Catanzaro, Italy.
| | - Gabriella Cardillo
- Department of Health Sciences, University of Catanzaro "Magna Græcia"-viale Europa, 88100 Catanzaro, Italy.
| | - Simona Domenica Corrado
- Department of Health Sciences, University of Catanzaro "Magna Græcia"-viale Europa, 88100 Catanzaro, Italy.
| | - Chiara Mignogna
- Department of Health Sciences, University of Catanzaro "Magna Græcia"-viale Europa, 88100 Catanzaro, Italy.
| | - Teresa Mancuso
- Department of Medical and Surgical Sciences-University of Catanzaro "Magna Graecia"-viale Europa, 88100 Catanzaro, Italy.
| | - Giuseppe Donato
- Department of Health Sciences, University of Catanzaro "Magna Græcia"-viale Europa, 88100 Catanzaro, Italy.
| | - Marialaura Del Basso De Caro
- Department of Advanced Biomedical Sciences-Pathology Section, University of Naples "Federico II"-via Pansini 5, 80131 Naples, Italy.
| | - Natalia Malara
- Department of Clinical and Experimental Medicine-University of Catanzaro "Magna Graecia"-viale Europa, 88100 Catanzaro, Italy.
| |
Collapse
|