1
|
Bedsted AE, Rasmussen TB, Martinenghi LD, Bøtner A, Nauwynck H, Belsham GJ. Porcine respiratory coronavirus genome sequences; comparisons and relationships to transmissible gastroenteritis viruses. Virology 2024; 595:110072. [PMID: 38599031 DOI: 10.1016/j.virol.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
Porcine respiratory coronavirus (PRCV) was initially detected in Europe, and later in the United States of America (US), in the 1980s. In this study we obtained and compared PRCV sequences from Europe and the US, and investigated how these are related to transmissible gastroenteritis virus (TGEV) sequences. The whole genome sequences of Danish (1/90-DK), Italian (PRCV15087/12 III NPTV Parma), and Belgian PRCV (91V44) strains are presented. These sequences were aligned with nine other PRCV sequences from Europe and the US, and 43 TGEV sequences. Following alignment of the PRCV sequences, it was apparent that multiple amino acid variations in the structural proteins were distinct between the European and US strains. The alignments were used to build phylogenetic trees to infer the evolutionary relationships between the strains. In these trees, the European PRCV strains clustered as a separate group, whereas the US strains of PRCV all clustered with TGEVs.
Collapse
Affiliation(s)
- Amalie Ehlers Bedsted
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Thomas Bruun Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Laura D Martinenghi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark; Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Anette Bøtner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Hans Nauwynck
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, University of Ghent, 9820, Merelbeke, Belgium
| | - Graham J Belsham
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| |
Collapse
|
2
|
Lang Q, Huang N, Guo J, Ge L, Yang X. High-affinity monoclonal antibodies against the porcine epidemic diarrhea virus S1 protein. BMC Vet Res 2024; 20:239. [PMID: 38831363 PMCID: PMC11145877 DOI: 10.1186/s12917-024-04091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) infection inflicted substantial economic losses upon the global pig-breeding industry. This pathogen can infect all pigs and poses a particularly high fatality risk for suckling piglets. The S1 subunit of spike protein is a crucial target protein for inducing the particularly neutralizing antibodies that can intercept the virus-host interaction and neutralize virus infectivity. In the present study, the HEK293F eukaryotic expression system was successfully utilized to express and produce recombinant S1 protein. Through quantitative analysis, five monoclonal antibodies (mAbs) specifically targeting the recombinant S1 protein of PEDV were developed and subsequently evaluated using enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and flow cytometry assay (FCA). The results indicate that all five mAbs belong to the IgG1 isotype, and their half-maximal effective concentration (EC50) values measured at 84.77, 7.42, 0.89, 14.64, and 7.86 pM. All these five mAbs can be utilized in ELISA, FCA, and IFA for the detection of PEDV infection. MAb 5-F9 exhibits the highest sensitivity to detect as low as 0.3125 ng/mL of recombinant PEDV-S1 protein in ELISA, while only 0.096 ng/mL of mAb 5-F9 is required to detect PEDV in FCA. The results from antigen epitope analysis indicated that mAb 8-G2 is the sole antibody capable of recognizing linear epitopes. In conclusion, this study has yielded a highly immunogenic S1 protein and five high-affinity mAbs specifically targeting the S1 protein. These findings have significant implications for early detection of PEDV infection and provide a solid foundation for further investigation into studying virus-host interactions.
Collapse
Affiliation(s)
- Qiaoli Lang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences Ministry of Agriculture, Chongqing, 402460, China
| | - Nan Huang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China
- Key Laboratory of Pig Industry Sciences Ministry of Agriculture, Chongqing, 402460, China
| | - Jincao Guo
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Key Laboratory of Pig Industry Sciences Ministry of Agriculture, Chongqing, 402460, China.
| | - Xi Yang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
- National Center of Technology Innovation for Pigs, Chongqing, 402460, China.
- Key Laboratory of Pig Industry Sciences Ministry of Agriculture, Chongqing, 402460, China.
| |
Collapse
|
3
|
Luo T, Li K, Li C, Xia C, Gao C. Development of a triplex quantitative reverse transcription-polymerase chain reaction for the detection of porcine epidemic diarrhea virus, porcine transmissible gastroenteritis virus, and porcine rotavirus A. Front Microbiol 2024; 15:1390328. [PMID: 38800746 PMCID: PMC11117717 DOI: 10.3389/fmicb.2024.1390328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Porcine viral diarrhea is caused by many pathogens and can result in watery diarrhea, dehydration and death. Various detection methods, such as polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR), have been widely used for molecular diagnosis. We developed a triplex real-time quantitative reverse transcription PCR (qRT-PCR) for the simultaneous detection of three RNA viruses potentially associated with porcine viral diarrhea: porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), and porcine rotavirus A (PoRVA). The triplex qRT-PCR had R2 values of 0.999 for the standard curves of PEDV, TGEV and PoRVA. Importantly, the limits of detection for PEDV, TGEV and PoRVA were 10 copies/μL. The specificity test showed that the triplex qRT-PCR detected these three pathogens specifically, without cross-reaction with other pathogens. In addition, the approach had good repeatability and reproducibility, with intra-and inter-assay coefficients of variation <1%. Finally, this approach was evaluated for its practicality in the field using 256 anal swab samples. The positive rates of PEDV, TGEV and PoRVA were 2.73% (7/256), 3.91% (10/256) and 19.14% (49/256), respectively. The co-infection rate of two or more pathogens was 2.73% (7/256). The new triplex qRT-PCR was compared with the triplex RT-PCR recommended by the Chinese national standard (GB/T 36871-2018) and showed 100% agreement for PEDV and TGEV and 95.70% for PoRVA. Therefore, the triplex qRT-PCR provided an accurate and sensitive method for identifying three potential RNA viruses for porcine viral diarrhea that could be applied to diagnosis, surveillance and epidemiological investigation.
Collapse
Affiliation(s)
| | | | | | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Caixia Gao
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
4
|
Nalewaj M, Szabat M. Examples of Structural Motifs in Viral Genomes and Approaches for RNA Structure Characterization. Int J Mol Sci 2022; 23:ijms232415917. [PMID: 36555559 PMCID: PMC9784701 DOI: 10.3390/ijms232415917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The relationship between conserved structural motifs and their biological function in the virus replication cycle is the interest of many researchers around the world. RNA structure is closely related to RNA function. Therefore, technological progress in high-throughput approaches for RNA structure analysis and the development of new ones are very important. In this mini review, we discuss a few perspectives on the structural elements of viral genomes and some methods used for RNA structure prediction and characterization. Based on the recent literature, we describe several examples of studies concerning the viral genomes, especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV). Herein, we emphasize that a better understanding of viral genome architecture allows for the discovery of the structure-function relationship, and as a result, the discovery of new potential antiviral therapeutics.
Collapse
|
5
|
The tyrosine phosphatase PTPN14 inhibits the activation of STAT3 in PEDV infected Vero cells. Vet Microbiol 2022; 267:109391. [DOI: 10.1016/j.vetmic.2022.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/23/2022]
|
6
|
Tran TX, Lien NTK, Thu HT, Duy ND, Duong BTT, Quyen DV. Changes in the spike and nucleocapsid protein of porcine epidemic diarrhea virus strain in Vietnam-a molecular potential for the vaccine development? PeerJ 2021; 9:e12329. [PMID: 34721997 PMCID: PMC8530102 DOI: 10.7717/peerj.12329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV) is a dangerous virus causing large piglet losses. PEDV spread rapidly between pig farms and caused the death of up to 90% of infected piglets. Current vaccines are only partially effective in providing immunity to suckling due to the rapid dissemination and ongoing evolution of PEDV. Methods In this study, the complete genome of a PEDV strain in Vietnam 2018 (IBT/VN/2018 strain) has been sequenced. The nucleotide sequence of each fragment was assembled to build a continuous complete sequence using the DNASTAR program. The complete nucleotide sequences and amino acid sequences of S, N, and ORF3 genes were aligned and analyzed to detect the mutations. Results The full-length genome was determined with 28,031 nucleotides in length which consisted of the 5'UTR, ORF1ab, S protein, ORF3, E protein, M protein, N protein, and 3'UTR region. The phylogenetic analysis showed that the IBT/VN/2018 strain was highly virulent belonged to the G2b subgroup along with the Northern American and Asian S-INDEL strains. Multiple sequence alignment of deduced amino acids revealed numerous mutations in the S, N, and ORF3 regions including one substitution 766P > L766 in the epitope SS6; two in the S0subdomain (135DN136 > 135SI136 and N144> D144); two in subdomain SHR1 at aa 1009L > M1009 and 1089S > L1089; one at aa 1279P > S1279 in subdomain SHR2 of the S protein; two at aa 364N > I364 and 378N > S378 in the N protein; four at aa 25L > S25, 70I > V70, 107C > F107, and 168D > N168 in the ORF3 protein. We identified two insertions (at aa 59NQGV62 and aa 145N) and one deletion (at aa 168DI169) in S protein. Remarkable, eight amino acid substitutions (294I > M294, 318A > S318, 335V > I335, 361A > T361, 497R > T497, 501SH502 > 501IY502, 506I > T506, 682V > I682, and 777P > L777) were found in SA subdomain. Besides, N- and O-glycosylation analysis of S, N, and ORF3 protein reveals three known sites (25G+, 123N+, and 62V+) and three novel sites (144D+, 1009M+, and 1279L+) in the IBT/VN/2018 strain compared with the vaccine strains. Taken together, the results showed that mutations in the S, N, and ORF3 genes can affect receptor specificity, viral pathogenicity, and the ability to evade the host immune system of the IBT/VN/2018 strain. Our results highlight the importance of molecular characterization of field strains of PEDV for the development of an effective vaccine to control PEDV infections in Vietnam.
Collapse
Affiliation(s)
- Thach Xuan Tran
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Nguyen T K Lien
- Functional of Genomics Lab, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha T Thu
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Nguyen Dinh Duy
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Bui T T Duong
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Dong Van Quyen
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam.,University of Science and Technology of Ha Noi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
7
|
Antas M, Olech M, Szczotka-Bochniarz A. Molecular characterization of porcine epidemic diarrhoea virus (PEDV) in Poland reveals the presence of swine enteric coronavirus (SeCoV) sequence in S gene. PLoS One 2021; 16:e0258318. [PMID: 34714840 PMCID: PMC8555794 DOI: 10.1371/journal.pone.0258318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
Porcine epidemic diarrhoea (PED) is a highly contagious enteric viral disease of pigs with a high morbidity and mortality rate, which ultimately results in huge economic losses in the pig production sector. The etiological agent of this disease is the porcine epidemic diarrhoea virus (PEDV) which is an enveloped, positive single-stranded RNA virus. The aim of this study was to perform molecular characterization of PEDV to identify the strains circulating in Poland. In this study, 662 faecal samples from 2015 to 2021 were tested with reverse transcription quantitative real-time PCR (RT-qPCR) and the results showed that 3.8% of the tested samples revealed a positive result for PEDV. A phylogenetic analysis of the complete genome and complete S gene sequences showed that Polish PEDV strains belonged to the G1b (S-INDEL) subgroup and were closely related to the European PEDV strains isolated from 2014 to 2019. Furthermore, RDP4 analysis revealed that the Polish PEDV strains harboured a recombinant fragment of ~400 nt in the 5' end of S gene with PEDV and swine enteric coronavirus (SeCoV) being the major and minor parents, respectively. Antigenic analysis showed that the aa sequences of neutralizing epitopes were conserved among the Polish PEDV strains. Only one strain, #0100/5P, had a unique substitution in the COE epitope. However, Polish PEDV strains showed several substitutions, especially in the COE antigen, as compared to the classical strain CV777. To the best of our knowledge, this is the first report concerning the molecular characterization of porcine epidemic diarrhoea virus strains, as well as the first phylogenetic analysis for PEDV in Poland.
Collapse
Affiliation(s)
- Marta Antas
- Department of Swine Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Monika Olech
- Department of Biochemistry, National Veterinary Research Institute, Puławy, Poland
| | | |
Collapse
|
8
|
Hsu WT, Chang CY, Tsai CH, Wei SC, Lo HR, Lamis RJS, Chang HW, Chao YC. PEDV Infection Generates Conformation-Specific Antibodies That Can Be Effectively Detected by a Cell-Based ELISA. Viruses 2021; 13:v13020303. [PMID: 33671997 PMCID: PMC7919263 DOI: 10.3390/v13020303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a coronavirus that causes serious and highly contagious enteric disease in swine worldwide. In this study, we constructed a recombinant baculovirus (S-Bac) expressing full-length spike protein of the virulent epidemic genotype 2b (G2b) PEDV strain for serological studies of infected pigs. We found that most spike-specific antibodies produced upon PEDV infection in pigs are conformation-specific and they could be detected on S-Bac-infected insect cells by immunofluorescent assay, but they were insensitive to Western blot analysis, the typical method for antiserum analysis. These results indicated that spike conformation is crucial for serum recognition. Since it is difficult to purify trimeric spike membrane protein for conventional enzyme-linked immunosorbent assay (ELISA), we used S-Bac to generate a novel cell-based ELISA for convenient PEDV detection. We analyzed 100 pig serum samples, and our cell-based ELISA exhibited a sensitivity of 100%, a specificity of 97%, and almost perfect agreement [Cohen’s kappa coefficient value (κ) = 0.98] with immunocytochemical staining results. Our cell-based ELISA rapidly presented antigen for proper detection of conformation-specific antibodies, making PEDV detection more convenient, and it will be useful for detecting many viral diseases in the future.
Collapse
Affiliation(s)
- Wei-Ting Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Yu Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (C.-Y.C.); (H.-W.C.)
| | - Chih-Hsuan Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
| | - Sung-Chan Wei
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
| | - Huei-Ru Lo
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
| | - Robert John S. Lamis
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (C.-Y.C.); (H.-W.C.)
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Chan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; (W.-T.H.); (C.-H.T.); (S.-C.W.); (H.-R.L.); (R.J.S.L.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 115, Taiwan
- Department of Entomology, National Chung Hsing University, Taichung 402, Taiwan
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 106, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Liu Q, Gerdts V. Transmissible Gastroenteritis Virus of Pigs and Porcine Epidemic Diarrhea Virus (Coronaviridae). ENCYCLOPEDIA OF VIROLOGY 2021. [PMCID: PMC7157468 DOI: 10.1016/b978-0-12-809633-8.20928-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Domańska-Blicharz K, Woźniakowski G, Konopka B, Niemczuk K, Welz M, Rola J, Socha W, Orłowska A, Antas M, Śmietanka K, Cuvelier-Mizak B. Animal Coronaviruses in the Light of COVID-19. J Vet Res 2020; 64:333-345. [PMID: 32984621 PMCID: PMC7497757 DOI: 10.2478/jvetres-2020-0050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022] Open
Abstract
Coronaviruses are extremely susceptible to genetic changes due to the characteristic features of the genome structure, life cycle and environmental pressure. Their remarkable variability means that they can infect many different species of animals and cause different disease symptoms. Moreover, in some situations, coronaviruses might be transmitted across species. Although they are commonly found in farm, companion and wild animals, causing clinical and sometimes serious signs resulting in significant economic losses, not all of them have been classified by the World Organization for Animal Health (OIE) as hazardous and included on the list of notifiable diseases. Currently, only three diseases caused by coronaviruses are on the OIE list of notifiable terrestrial and aquatic animal diseases. However, none of these three entails any administrative measures. The emergence of the SARS-CoV-2 infections that have caused the COVID-19 pandemic in humans has proved that the occurrence and variability of coronaviruses is highly underestimated in the animal reservoir and reminded us of the critical importance of the One Health approach. Therefore, domestic and wild animals should be intensively monitored, both to broaden our knowledge of the viruses circulating among them and to understand the mechanisms of the emergence of viruses of relevance to animal and human health.
Collapse
Affiliation(s)
| | - Grzegorz Woźniakowski
- Department of Swine Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | | | - Krzysztof Niemczuk
- Director General, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Mirosław Welz
- General Veterinary Inspectorate, 00-930Warsaw, Poland
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Wojciech Socha
- Department of Virology, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Anna Orłowska
- Department of Virology, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Marta Antas
- Department of Swine Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Beata Cuvelier-Mizak
- Department of Veterinary Pharmacy, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
11
|
Ba Abduallah MM, Hemida MG. Comparative analysis of the genome structure and organization of the Middle East respiratory syndrome coronavirus (MERS-CoV) 2012 to 2019 revealing evidence for virus strain barcoding, zoonotic transmission, and selection pressure. Rev Med Virol 2020; 31:1-12. [PMID: 32803835 PMCID: PMC7461035 DOI: 10.1002/rmv.2150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
The Middle East respiratory syndrome coronavirus (MERS‐CoV) emerged in late 2012 in Saudi Arabia. For this study, we conducted a large‐scale comparative genome study of MERS‐CoV from both human and dromedary camels from 2012 to 2019 to map any genetic changes that emerged in the past 8 years. We downloaded 1309 submissions, including 308 full‐length genome sequences of MERS‐CoV available in GenBank from 2012 to 2019. We used bioinformatics tools to describe the genome structure and organization of the virus and to map the most important motifs within various regions/genes throughout the genome over the past 8 years. We also monitored variations/mutations among these sequences since its emergence. Our phylogenetic analyses suggest that the cluster within African camels is derived by S gene. We identified some prominent motifs within the ORF1ab, S gene and ORF‐5, which may be used for barcoding the African camel lineages of MERS‐CoV. Furthermore, we mapped some sequence patterns that support the zoonotic origin of the virus from dromedary camels. Other sequences identified selection pressures, particularly within the N gene and the 5′ UTR. Further studies are required for careful monitoring of the MERS‐CoV genome to identify any potential significant mutations in the future.
Collapse
Affiliation(s)
- Mohamed M Ba Abduallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Maged Gomaa Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| |
Collapse
|
12
|
Antas M, Woźniakowski G. Current Status of Porcine Epidemic Diarrhoea (PED) in European Pigs. J Vet Res 2019; 63:465-470. [PMID: 31934654 PMCID: PMC6950429 DOI: 10.2478/jvetres-2019-0064] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
Porcine epidemic diarrhoea (PED) is a highly contagious and devastating enteric disease of pigs caused by porcine epidemic diarrhoea virus (PEDV), an enveloped, single-stranded RNA virus belonging to the Alphacoronavirus genus of the Coronaviridae family. The disease is clinically similar to other forms of porcine gastroenteritis. Pigs are the only known host of the disease, and the occurrence of PED in wild boars is unknown. The virus causes acute diarrhoea, vomiting, dehydration, and high mortality in suckling piglets reaching 100%. Heavy economic losses in the pig-farming industry were sustained in the USA between 2013 and 2015 when PEDV spread very quickly and resulted in epidemics. The loss in the US pig industry has been estimated at almost seven million pigs. The purpose of this review is a description of the current status of porcine epidemic diarrhoea in European pigs and the risk presented by the introduction of PEDV to Poland in comparison to the epidemics in the USA.
Collapse
Affiliation(s)
- Marta Antas
- Department of Swine Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Grzegorz Woźniakowski
- Department of Swine Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
13
|
Bao F, Wang L, Zhao X, Lu T, Na AM, Wang X, Cao J, Du Y. Preparation and characterization of a single-domain antibody specific for the porcine epidemic diarrhea virus spike protein. AMB Express 2019; 9:104. [PMID: 31300902 PMCID: PMC6626092 DOI: 10.1186/s13568-019-0834-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/05/2019] [Indexed: 11/10/2022] Open
Abstract
Porcine epidemic diarrhea (PED) is a diarrheal disease of swine caused by porcine epidemic diarrhea virus (PEDV). It is characterized by acute watery diarrhea, dehydration and vomiting in swine of all ages and is especially fatal for neonatal and postweaning piglets. The spike protein of PEDV plays an important role in mediating virus attachment and fusion to target cells, and recent studies also reported that the neutralizing epitopes of the spike protein were mainly located in the S1 subunit, which makes it a candidate for vaccine development and clinical diagnosis. In this study, we successfully constructed an immune phage display single-domain antibody library with a library size of 3.4 × 106. A single-domain antibody, named S7, specific for the spike protein of PEDV was identified from the phage display single-domain antibody library. S7 could be expressed in a soluble form in E. coli, bound to the spike protein of PEDV in ELISA and stained the PEDV virus in Vero cells, but it showed no neutralization activity on PEDV. These results indicated the potent application of the S7 antibody as an imaging probe or as a candidate for the development of a diagnostic assay.
Collapse
|
14
|
Tsai TL, Su CC, Hsieh CC, Lin CN, Chang HW, Lo CY, Lin CH, Wu HY. Gene Variations in Cis-Acting Elements between the Taiwan and Prototype Strains of Porcine Epidemic Diarrhea Virus Alter Viral Gene Expression. Genes (Basel) 2018; 9:E591. [PMID: 30501108 PMCID: PMC6316102 DOI: 10.3390/genes9120591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 01/30/2023] Open
Abstract
In 2013, the outbreak of porcine epidemic diarrhea (PED) in Taiwan caused serious economic losses. In this study, we examined whether the variations of the cis-acting elements between the porcine epidemic diarrhea virus (PEDV) Taiwan (TW) strain and the prototype strain CV777 alter gene expression. For this aim, we analyzed the variations of the cis-acting elements in the 5' and 3' untranslated regions (UTRs) between the PEDV TW, CV777, and other reference strains. We also determined the previously unidentified transcription regulatory sequence (TRS), a sequence motif required for coronavirus transcription, and found that a nucleotide deletion in the TW strain, in comparison with CV777 strain, immediately downstream of the leader core sequence alters the identity between the leader TRS and the body TRS. Functional analyses using coronavirus defective interfering (DI) RNA revealed that such variations in cis-acting elements for the TW strain compared with the CV777 strain have an influence on the efficiency of gene expression. The current data show for the first time the evolution of PEDV in terms of cis-acting elements and their effects on gene expression, and thus may contribute to our understanding of recent PED outbreaks worldwide.
Collapse
Affiliation(s)
- Tsung-Lin Tsai
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chen-Chang Su
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Ching-Chi Hsieh
- Division of Chest Medicine, Department of Internal Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan.
| | - Chao-Nan Lin
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan.
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Chen-Yu Lo
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Ching-Houng Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
15
|
S1 Subunit of Spike Protein from a Current Highly Virulent Porcine Epidemic Diarrhea Virus Is an Important Determinant of Virulence in Piglets. Viruses 2018; 10:v10090467. [PMID: 30200258 PMCID: PMC6163780 DOI: 10.3390/v10090467] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/27/2022] Open
Abstract
Base on the sequence of S genes, which encode spike proteins, we previously identified three different types (North American, S INDEL, and S large-DEL types) of porcine epidemic diarrhea virus (PEDV) that have re-emerged in Japan since 2013. Based on experimental infections with the North American and S large-DEL types, we also hypothesized that PEDV virulence may be linked to the S1 subunit of the S protein. To test this hypothesis, we have now assayed in gnotobiotic piglets various recombinant PEDVs generated by reverse genetics. Piglets inoculated with CV777 maintained in National Institute of Animal Health, along with piglets infected with a recombinant form of the same virus, developed subclinical to mild diarrhea. In contrast, severe watery diarrhea, dehydration, weight loss, astasia, and high mortality were observed in piglets inoculated with recombinant strains in which the S gene was partially or fully replaced with corresponding sequences from the highly virulent Japanese PEDV isolate OKN-1/JPN/2013. Indeed, symptoms resembled those in piglets inoculated with the OKN-1/JPN/2013, and were especially pronounced in younger piglets. Collectively, the data demonstrate that the S1 subunit of the S protein is an important determinant of PEDV virulence, and advance development of new vaccine candidate.
Collapse
|