1
|
Muzio FM, Hamilton CD, Stincone P, Agaras B, Haney CH, Petras D, Valverde C. Comparative Multi-Omics Survey Reveals Novel Specialized Metabolites and Biosynthetic Gene Clusters Under GacS Control in Pseudomonas donghuensis Strain SVBP6. Mol Microbiol 2024; 122:896-913. [PMID: 39545927 DOI: 10.1111/mmi.15329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
In Pseudomonas donghuensis SVBP6, isolated from an agricultural field, the well-conserved Gac-Rsm pathway upregulates biosynthesis of the antifungal compound 7-hydroxytropolone (7-HT). However, 7-HT does not fully explain the strain's Gac-Rsm-dependent antimicrobial activity. Here, we combined comparative transcriptomic, proteomic, and metabolomic approaches to identify novel GacS-dependent biosynthetic gene clusters (BGC) and/or extracellular specialized metabolites. Our data revealed a broad impact of GacS on gene expression and extracellular metabolite profile of SVBP6. At both the mRNA and polypeptide levels, specialized metabolism was the main affected functional category in the gacS mutant. The major extracellular MS/MS spectral families promoted by GacS were fatty acid amides, fatty acids, and alkaloids. GacS was required for the production of the antimicrobial compound pseudoiodinine and to activate expression of the corresponding BGC. We also detected GacS-dependent production of 2,3,4-trihydro-β-carboline-1-one, which may add to the antimicrobial arsenal of SVBP6. Furthermore, transcriptomics and proteomics pinpointed several GacS-activated BGCs that had escaped in silico genome mining tools. Altogether, comparative multi-omics analyses of gacS loss-of-function mutants in Pseudomonas isolates are a promising strategy to uncover bioactive metabolites and/or their BGCs. Discovery of novel natural products is important for harnessing the potential of microbiota to improve crop plant growth and health.
Collapse
Affiliation(s)
- Federico Matías Muzio
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Bernal, Argentina
| | - Corri D Hamilton
- Department of Biological Science, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paolo Stincone
- Interfaculty of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Betina Agaras
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Bernal, Argentina
| | - Cara H Haney
- Department of Biological Science, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Petras
- Interfaculty of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, California, USA
| | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Bernal, Argentina
| |
Collapse
|
2
|
Moffat AD, Höing L, Santos-Aberturas J, Markwalder T, Malone JG, Teufel R, Truman AW. Understanding the biosynthesis, metabolic regulation, and anti-phytopathogen activity of 3,7-dihydroxytropolone in Pseudomonas spp. mBio 2024; 15:e0102224. [PMID: 39207110 PMCID: PMC11481866 DOI: 10.1128/mbio.01022-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The genus Pseudomonas is a prolific source of specialized metabolites with significant biological activities, including siderophores, antibiotics, and plant hormones. These molecules play pivotal roles in environmental interactions, influencing pathogenicity, inhibiting microorganisms, responding to nutrient limitation and abiotic challenges, and regulating plant growth. These properties mean that pseudomonads are suitable candidates as biological control agents against plant pathogens. Multiple transposon-based screens have identified a Pseudomonas biosynthetic gene cluster (BGC) associated with potent antibacterial and antifungal activities, which produces 7-hydroxytropolone (7-HT). In this study, we show that this BGC also makes 3,7-dihydroxytropolone (3,7-dHT), which has strong antimicrobial activity toward Streptomyces scabies, a potato pathogen. Through metabolomics and reporter assays, we unveil the involvement of cluster-situated genes in generating phenylacetyl-coenzyme A, a key precursor for tropolone biosynthesis via the phenylacetic acid catabolon. The clustering of these phenylacetic acid genes within tropolone BGCs is unusual in other Gram-negative bacteria. Our findings support the interception of phenylacetic acid catabolism via an enoyl-CoA dehydratase encoded in the BGC, as well as highlighting an essential role for a conserved thioesterase in biosynthesis. Biochemical assays were used to show that this thioesterase functions after a dehydrogenation-epoxidation step catalyzed by a flavoprotein. We use this information to identify diverse uncharacterized BGCs that encode proteins with homology to flavoproteins and thioesterases involved in tropolone biosynthesis. This study provides insights into tropolone biosynthesis in Pseudomonas, laying the foundation for further investigations into the ecological role of tropolone production.IMPORTANCEPseudomonas bacteria produce various potent chemicals that influence interactions in nature, such as metal-binding molecules, antibiotics, or plant hormones. This ability to synthesize bioactive molecules means that Pseudomonas bacteria may be useful as biological control agents to protect plants from agricultural pathogens, as well as a source of antibiotic candidates. We have identified a plant-associated Pseudomonas strain that can produce 3,7-dihydroxytropolone, which has broad biological activity and can inhibit the growth of Streptomyces scabies, a bacterium that causes potato scab. Following the identification of this molecule, we used a combination of genetic, chemical, and biochemical experiments to identify key steps in the production of tropolones in Pseudomonas species. Understanding this biosynthetic process led to the discovery of an array of diverse pathways that we predict will produce new tropolone-like molecules. This work should also help us shed light on the natural function of antibiotics in nature.
Collapse
Affiliation(s)
- Alaster D. Moffat
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Lars Höing
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Tim Markwalder
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jacob G. Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Robin Teufel
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Andrew W. Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
3
|
Lorch MG, Valverde C, Agaras BC. Variability in Maize Seed Bacterization and Survival Correlating with Root Colonization by Pseudomonas Isolates with Plant-Probiotic Traits. PLANTS (BASEL, SWITZERLAND) 2024; 13:2130. [PMID: 39124248 PMCID: PMC11314135 DOI: 10.3390/plants13152130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Seed treatment with plant growth-promoting bacteria represents the primary strategy to incorporate them into agricultural ecosystems, particularly for crops under extensive management, such as maize. In this study, we evaluated the seed bacterization levels, root colonization patterns, and root competitiveness of a collection of autochthonous Pseudomonas isolates that have demonstrated several plant-probiotic abilities in vitro. Our findings indicate that the seed bacterization level, both with and without the addition of various protectants, is specific to each Pseudomonas strain, including their response to seed pre-hydration. Bacterization kinetics revealed that while certain isolates persisted on seed surfaces for up to 4 days post-inoculation (dpi), others experienced a rapid decline in viability after 1 or 2 dpi. The observed differences in seed bacterization levels were consistent with the root colonization densities observed through confocal microscopy analysis, and with root competitiveness quantified via selective plate counts. Notably, isolates P. protegens RBAN4 and P. chlororaphis subsp. aurantiaca SMMP3 demonstrated effective competition with the natural microflora for colonizing the maize rhizosphere and both promoted shoot and root biomass production in maize assessed at the V3 grown stage. Conversely, P. donghuensis SVBP6 was detected at very low levels in the maize rhizosphere, but still exhibited a positive effect on plant parameters, suggesting a growth-stimulatory effect during the early stages of plant development. In conclusion, there is a considerable strain-specific variability in the maize seed bacterization and survival capacities of Pseudomonas isolates with plant-probiotic traits, with a correlation in their root competitiveness under natural conditions. This variability must be understood to optimize their adoption as inputs for the agricultural system. Our experimental approach emphasizes the critical importance of tailoring seed bacterization treatments for each inoculant candidate, including the selection and incorporation of protective substances. It should not be assumed that all bacterial cells exhibit a similar performance.
Collapse
Affiliation(s)
- Melani G. Lorch
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina; (M.G.L.); (C.V.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Claudio Valverde
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina; (M.G.L.); (C.V.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Betina C. Agaras
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina; (M.G.L.); (C.V.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| |
Collapse
|
4
|
Rajewska M, Maciąg T, Narajczyk M, Jafra S. Carbon Source and Substrate Surface Affect Biofilm Formation by the Plant-Associated Bacterium Pseudomonas donghuensis P482. Int J Mol Sci 2024; 25:8351. [PMID: 39125921 PMCID: PMC11312691 DOI: 10.3390/ijms25158351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The ability of bacteria to colonize diverse environmental niches is often linked to their competence in biofilm formation. It depends on the individual characteristics of a strain, the nature of the colonized surface (abiotic or biotic), or the availability of certain nutrients. Pseudomonas donghuensis P482 efficiently colonizes the rhizosphere of various plant hosts, but a connection between plant tissue colonization and the biofilm formation ability of this strain has not yet been established. We demonstrate here that the potential of P482 to form biofilms on abiotic surfaces and the structural characteristics of the biofilm are influenced by the carbon source available to the bacterium, with glycerol promoting the process. Also, the type of substratum, polystyrene or glass, impacts the ability of P482 to attach to the surface. Moreover, P482 mutants in genes associated with motility or chemotaxis, the synthesis of polysaccharides, and encoding proteases or regulatory factors, which affect biofilm formation on glass, were fully capable of colonizing the root tissue of both tomato and maize hosts. Investigating the role of cellular factors in biofilm formation using these plant-associated bacteria shows that the ability of bacteria to form biofilm on abiotic surfaces does not necessarily mirror its ability to colonize plant tissues. Our research provides a broader perspective on the adaptation of these bacteria to various environments.
Collapse
Affiliation(s)
- Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| | - Tomasz Maciąg
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| |
Collapse
|
5
|
Xiao Y, Xiang W, Ma X, Gao D, Bayram H, Lorimer GH, Ghiladi RA, Xie Z, Wang J. HemN2 Regulates the Virulence of Pseudomonas donghuensis HYS through 7-Hydroxytropolone Synthesis and Oxidative Stress. BIOLOGY 2024; 13:373. [PMID: 38927253 PMCID: PMC11200716 DOI: 10.3390/biology13060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Compared to pathogens Pseudomonas aeruginosa and P. putida, P. donghuensis HYS has stronger virulence towards Caenorhabditis elegans. However, the underlying mechanisms haven't been fully understood. The heme synthesis system is essential for Pseudomonas virulence, and former studies of HemN have focused on the synthesis of heme, while the relationship between HemN and Pseudomonas virulence were barely pursued. In this study, we hypothesized that hemN2 deficiency affected 7-hydroxytropolone (7-HT) biosynthesis and redox levels, thereby reducing bacterial virulence. There are four hemN genes in P. donghuensis HYS, and we reported for the first time that deletion of hemN2 significantly reduced the virulence of HYS towards C. elegans, whereas the reduction in virulence by the other three genes was not significant. Interestingly, hemN2 deletion significantly reduced colonization of P. donghuensis HYS in the gut of C. elegans. Further studies showed that HemN2 was regulated by GacS and participated in the virulence of P. donghuensis HYS towards C. elegans by mediating the synthesis of the virulence factor 7-HT. In addition, HemN2 and GacS regulated the virulence of P. donghuensis HYS by affecting antioxidant capacity and nitrative stress. In short, the findings that HemN2 was regulated by the Gac system and that it was involved in bacterial virulence via regulating 7-HT synthesis and redox levels were reported for the first time. These insights may enlighten further understanding of HemN-based virulence in the genus Pseudomonas.
Collapse
Affiliation(s)
- Yaqian Xiao
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Wang Xiang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Xuerui Ma
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Donghao Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Hasan Bayram
- Department of Pulmonary Medicine, School of Medicine, Koc University, 34010 Istanbul, Turkey;
| | - George H. Lorimer
- Department of Chemistry, University of Maryland, College Park, MD 20742, USA;
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA;
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Jun Wang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan 430068, China; (Y.X.); (W.X.); (X.M.)
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
6
|
Jafra S, Jabłońska M, Maciąg T, Matuszewska M, Borowicz M, Prusiński M, Żmudzińska W, Thiel M, Czaplewska P, Krzyżanowska DM, Czajkowski R. An iron fist in a velvet glove: The cooperation of a novel pyoverdine from Pseudomonas donghuensis P482 with 7-hydroxytropolone is pivotal for its antibacterial activity. Environ Microbiol 2024; 26:e16559. [PMID: 38151794 DOI: 10.1111/1462-2920.16559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Pseudomonas donghuensis P482 exhibits broad antimicrobial activity against phytopathogens, including the soft rot bacteria of the Dickeya genus. Here, we report that under limited nutrient availability, the antibacterial activity of P. donghuensis P482 against Dickeya solani requires the reciprocal action of two iron scavengers: 7-hydroxytropolone (7-HT) and a newly characterized pyoverdine (PVDP482 ) and is quenched in the iron-augmented environment. Further, we show that the biosynthesis of pyoverdine and 7-HT is metabolically coordinated, and the functional BV82_4709 gene involved in 7-HT synthesis is pivotal for expressing the BV82_3755 gene, essential for pyoverdine biosynthesis and vice versa. The synthesis of both scavengers is under the control of Gac/Rsm, but only PVD is controlled by Fur. The isoelectric focusing profile of the P482 siderophore differs from that of the other Pseudomonas spp. tested. This finding led to the unveiling of the chemical structure of the new pyoverdine PVDP482 . To summarize, the antibacterial activity of P. donghuensis P482 is attributed to 7-HT and PVDP482 varies depending on the nutrient and iron availability, highlighting the importance of these factors in the competition between P482 and D. solani.
Collapse
Affiliation(s)
- Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Magdalena Jabłońska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Tomasz Maciąg
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Marta Matuszewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Marcin Borowicz
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Michał Prusiński
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Wioletta Żmudzińska
- Laboratory of Biopolymers Structure, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Marcel Thiel
- Laboratory of Biopolymers Structure, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Dorota M Krzyżanowska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| |
Collapse
|
7
|
Agaras BC, Grossi CEM, Ulloa RM. Unveiling the Secrets of Calcium-Dependent Proteins in Plant Growth-Promoting Rhizobacteria: An Abundance of Discoveries Awaits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3398. [PMID: 37836138 PMCID: PMC10574481 DOI: 10.3390/plants12193398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
The role of Calcium ions (Ca2+) is extensively documented and comprehensively understood in eukaryotic organisms. Nevertheless, emerging insights, primarily derived from studies on human pathogenic bacteria, suggest that this ion also plays a pivotal role in prokaryotes. In this review, our primary focus will be on unraveling the intricate Ca2+ toolkit within prokaryotic organisms, with particular emphasis on its implications for plant growth-promoting rhizobacteria (PGPR). We undertook an in silico exploration to pinpoint and identify some of the proteins described in the existing literature, including prokaryotic Ca2+ channels, pumps, and exchangers that are responsible for regulating intracellular Calcium concentration ([Ca2+]i), along with the Calcium-binding proteins (CaBPs) that play a pivotal role in sensing and transducing this essential cation. These investigations were conducted in four distinct PGPR strains: Pseudomonas chlororaphis subsp. aurantiaca SMMP3, P. donghuensis SVBP6, Pseudomonas sp. BP01, and Methylobacterium sp. 2A, which have been isolated and characterized within our research laboratories. We also present preliminary experimental data to evaluate the influence of exogenous Ca2+ concentrations ([Ca2+]ex) on the growth dynamics of these strains.
Collapse
Affiliation(s)
- Betina Cecilia Agaras
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
| | - Cecilia Eugenia María Grossi
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
- Laboratory of Plant Signal Transduction, Institute of Genetic Engineering and Molecular Biology (INGEBI), National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Rita María Ulloa
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
- Laboratory of Plant Signal Transduction, Institute of Genetic Engineering and Molecular Biology (INGEBI), National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
- Biochemistry Department, Faculty of Exact and Natural Sciences, University of Buenos Aires (FCEN-UBA), Buenos Aires C1428EGA, Argentina
| |
Collapse
|
8
|
Wang P, Xiao Y, Gao D, Long Y, Xie Z. The Gene paaZ of the Phenylacetic Acid (PAA) Catabolic Pathway Branching Point and ech outside the PAA Catabolon Gene Cluster Are Synergistically Involved in the Biosynthesis of the Iron Scavenger 7-Hydroxytropolone in Pseudomonas donghuensis HYS. Int J Mol Sci 2023; 24:12632. [PMID: 37628812 PMCID: PMC10454607 DOI: 10.3390/ijms241612632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The newly discovered iron scavenger 7-hydroxytropolone (7-HT) is secreted by Pseudomonas donghuensis HYS. In addition to possessing an iron-chelating ability, 7-HT has various other biological activities. However, 7-HT's biosynthetic pathway remains unclear. This study was the first to report that the phenylacetic acid (PAA) catabolon genes in cluster 2 are involved in the biosynthesis of 7-HT and that two genes, paaZ (orf13) and ech, are synergistically involved in the biosynthesis of 7-HT in P. donghuensis HYS. Firstly, gene knockout and a sole carbon experiment indicated that the genes orf17-21 (paaEDCBA) and orf26 (paaG) were involved in the biosynthesis of 7-HT and participated in the PAA catabolon pathway in P. donghuensis HYS; these genes were arranged in gene cluster 2 in P. donghuensis HYS. Interestingly, ORF13 was a homologous protein of PaaZ, but orf13 (paaZ) was not essential for the biosynthesis of 7-HT in P. donghuensis HYS. A genome-wide BLASTP search, including gene knockout, complemented assays, and site mutation, showed that the gene ech homologous to the ECH domain of orf13 (paaZ) is essential for the biosynthesis of 7-HT. Three key conserved residues of ech (Asp39, His44, and Gly62) were identified in P. donghuensis HYS. Furthermore, orf13 (paaZ) could not complement the role of ech in the production of 7-HT, and the single carbon experiment indicated that paaZ mainly participates in PAA catabolism. Overall, this study reveals a natural association between PAA catabolon and the biosynthesis of 7-HT in P. donghuensis HYS. These two genes have a synergistic effect and different functions: paaZ is mainly involved in the degradation of PAA, while ech is mainly related to the biosynthesis of 7-HT in P. donghuensis HYS. These findings complement our understanding of the mechanism of the biosynthesis of 7-HT in the genus Pseudomonas.
Collapse
Affiliation(s)
| | | | | | - Yan Long
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; (P.W.); (Y.X.); (D.G.)
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; (P.W.); (Y.X.); (D.G.)
| |
Collapse
|
9
|
Teng S, Wu T, Gao D, Wu S, Xiao Y, Long Y, Xie Z. Insight into the Global Negative Regulation of Iron Scavenger 7-HT Biosynthesis by the SigW/RsiW System in Pseudomonas donghuensis HYS. Int J Mol Sci 2023; 24:ijms24021184. [PMID: 36674714 PMCID: PMC9861184 DOI: 10.3390/ijms24021184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
7-Hydroxytropolone (7-HT) is a unique iron scavenger synthesized by Pseudomonas donghuensis HYS that has various biological activities in addition to functioning as a siderophore. P. donghuensis HYS is more pathogenic than P. aeruginosa toward Caenorhabditis elegans, an observation that is closely linked to the biosynthesis of 7-HT. The nonfluorescent siderophore (nfs) gene cluster is responsible for the orderly biosynthesis of 7-HT and represents a competitive advantage that contributes to the increased survival of P. donghuensis HYS; however, the regulatory mechanisms of 7-HT biosynthesis remain unclear. This study is the first to propose that the ECF σ factor has a regulatory effect on 7-HT biosynthesis. In total, 20 ECF σ factors were identified through genome-wide scanning, and their responses to extracellular ferrous ions were characterized. We found that SigW was both significantly upregulated under high-iron conditions and repressed by an adjacent anti-σ factor. RNA-Seq results suggest that the SigW/RsiW system is involved in iron metabolism and 7-HT biosynthesis. Combined with the siderophore phenotype, we also found that SigW could inhibit siderophore synthesis, and this inhibition can be relieved by RsiW. EMSA assays proved that SigW, when highly expressed, can directly bind to the promoter region of five operons of the nfs cluster to inhibit the transcription of the corresponding genes and consequently suppress 7-HT biosynthesis. In addition, SigW not only directly negatively regulates structural genes related to 7-HT synthesis but also inhibits the transcription of regulatory proteins, including of the Gac/Rsm cascade system. Taken together, our results highlight that the biosynthesis of 7-HT is negatively regulated by SigW and that the SigW/RsiW system is involved in mechanisms for the regulation of iron homeostasis in P. donghuensis HYS. As a result of this work, we identified a novel mechanism for the global negative regulation of 7-HT biosynthesis, complementing our understanding of the function of ECF σ factors in Pseudomonas.
Collapse
|
10
|
Shayea RH, Ali MR. Whole-genome Study of Carbapenem-resistant Acinetobacter baumannii Virulence and Resistance. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2023. [DOI: 10.30699/ijmm.17.1.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
11
|
Díaz M, Bach T, González Anta G, Agaras B, Wibberg D, Noguera F, Canciani W, Valverde C. Agronomic efficiency and genome mining analysis of the wheat-biostimulant rhizospheric bacterium Pseudomonas pergaminensis sp. nov. strain 1008 T. FRONTIERS IN PLANT SCIENCE 2022; 13:894985. [PMID: 35968096 PMCID: PMC9369656 DOI: 10.3389/fpls.2022.894985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Pseudomonas sp. strain 1008 was isolated from the rhizosphere of field grown wheat plants at the tillering stage in an agricultural plot near Pergamino city, Argentina. Based on its in vitro phosphate solubilizing capacity and the production of IAA, strain 1008 was formulated as an inoculant for bacterization of wheat seeds and subjected to multiple field assays within the period 2010-2017. Pseudomonas sp. strain 1008 showed a robust positive impact on the grain yield (+8% on average) across a number of campaigns, soil properties, seed genotypes, and with no significant influence of the simultaneous seed treatment with a fungicide, strongly supporting the use of this biostimulant bacterium as an agricultural input for promoting the yield of wheat. Full genome sequencing revealed that strain 1008 has the capacity to access a number of sources of inorganic and organic phosphorus, to compete for iron scavenging, to produce auxin, 2,3-butanediol and acetoin, and to metabolize GABA. Additionally, the genome of strain 1008 harbors several loci related to rhizosphere competitiveness, but it is devoid of biosynthetic gene clusters for production of typical secondary metabolites of biocontrol representatives of the Pseudomonas genus. Finally, the phylogenomic, phenotypic, and chemotaxonomic comparative analysis of strain 1008 with related taxa strongly suggests that this wheat rhizospheric biostimulant isolate is a representative of a novel species within the genus Pseudomonas, for which the name Pseudomonas pergaminensis sp. nov. (type strain 1008T = DSM 113453T = ATCC TSD-287T) is proposed.
Collapse
Affiliation(s)
- Marisa Díaz
- Rizobacter Argentina S.A., Buenos Aires, Argentina
| | - Teresa Bach
- Rizobacter Argentina S.A., Buenos Aires, Argentina
| | - Gustavo González Anta
- Escuela de Ciencias Agrarias, Exactas y Naturales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
- Departamento de Ciencias Naturales y Exactas, Universidad Nacional de San Antonio de Areco (UNSAdA), Buenos Aires, Argentina
- Indrasa Biotecnología S.A., Córdoba, Argentina
| | - Betina Agaras
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | | | | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| |
Collapse
|
12
|
Helal DS, El-Khawas H, Elsayed TR. Molecular characterization of endophytic and ectophytic plant growth promoting bacteria isolated from tomato plants (Solanum lycopersicum L.) grown in different soil types. J Genet Eng Biotechnol 2022; 20:79. [PMID: 35608711 PMCID: PMC9130443 DOI: 10.1186/s43141-022-00361-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/02/2022] [Indexed: 11/24/2022]
Abstract
Background Successful rhizosphere colonization by plant growth promoting rhizobacteria (PGPR) is of crucial importance to perform the desired plant growth promoting activities. Since rhizocompetence is a dynamic process influenced by surrounding environmental conditions. In the present study, we hypothesized that bacterial isolates obtained from different tomato plant microhabitats (balk soil, rhizosphere, endorhiza, phyllosphere, and endoshoot) grown in different soils (sand, clay, and peat moss) will show different rhizocompetence abilities. Results To evaluate this hypothesis, bacterial isolates were obtained from different plant microhabitats and screened for their phosphate solubilizing and nitrogen fixing activates. BOX-PCR fingerprint profiles showed high genotypic diversity among the tested isolates and that same genotypes were shared between different soils and/or plant microhabitats. 16S rRNA gene sequences of 25 PGP isolates, representing different plant spheres and soil types, were affiliated to eight genera: Enterobacter, Paraburkholderia, Klebsiella, Bacillus, Paenibacillus, Stenotrophomonas, Pseudomonas, and Kosakonia. The rhizocompetence of each isolate was evaluated in the rhizosphere of tomato plants grown on a mixture of the three soils. Different genotypes of the same bacterial species displayed different rhizocompetence potentials. However, isolates obtained from the above-ground parts of the plant showed high rhizocompetence. In addition, biological control-related genes, ituD and srfC, were detected in the obtained spore forming bacterial isolates. Conclusion This study evaluates, for the first time, the relationship between plant microhabitat and the rhizocompetence ability in tomato rhizosphere. The results indicated that soil type and plant sphere can influence both the genotypic diversity and rhizocompetence ability of the same bacterial species. Bacterial isolates obtained in this study are promising to be used as an environmentally friendly substitution of chemical fertilizers. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00361-0.
Collapse
Affiliation(s)
- Donia S Helal
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Hussein El-Khawas
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Tarek R Elsayed
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Cairo, Egypt.
| |
Collapse
|
13
|
Krzyżanowska DM, Iwanicki A, Czajkowski R, Jafra S. High-Quality Complete Genome Resource of Tomato Rhizosphere Strain Pseudomonas donghuensis P482, a Representative of a Species with Biocontrol Activity Against Plant Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1450-1454. [PMID: 34428926 DOI: 10.1094/mpmi-06-21-0136-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strain P482 was isolated from a tomato rhizosphere and classified as Pseudomonas donghuensis. The P. donghuensis species was first established in 2015 and currently consists of only four strains: P482, HYST, SVBP6, and 22G5. P. donghuensis strains antagonize plant pathogens, including bacteria, fungi, and oomycetes, and, therefore, are of high interest regarding their biological control potential to combat plant diseases. The antimicrobial activity of P. donghuensis P482 is based on the production of iron-scavenging compound 7-hydroxytropolone, antifungal volatile organic compounds, and as-yet-unidentified secondary metabolites. Here, we report a complete genome resource for P. donghuensis strain P482. The genome consists of a single chromosome (5,656,185 bp) with 5,258 open reading frames (5,158 protein-coding genes, 74 transfer RNAs, 22 ribosomal RNAs, 3 noncoding RNAs, and 1 transfer-messenger RNA) and no plasmid. We believe that information on the first high-quality, complete genome of P. donghuensis will provide resources for analyses targeting the biological control potential of this species and understanding the traits essential for plant-microbe interaction.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Dorota M Krzyżanowska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, A. Abrahama 58, 80-307 Gdańsk, Poland
| | - Adam Iwanicki
- Division of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Gdańsk, Dębinki 1, 80-211, Poland
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, A. Abrahama 58, 80-307 Gdańsk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, A. Abrahama 58, 80-307 Gdańsk, Poland
| |
Collapse
|
14
|
Xiao Y, Wang P, Zhu X, Xie Z. Pseudomonas donghuensis HYS gtrA/ B/ II Gene Cluster Contributes to Its Pathogenicity toward Caenorhabditis elegans. Int J Mol Sci 2021; 22:ijms221910741. [PMID: 34639082 PMCID: PMC8509367 DOI: 10.3390/ijms221910741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas donghuensis HYS is more virulent than P. aeruginosa toward Caenorhabditis elegans but the mechanism underlying virulence is unclear. This study is the first to report that the specific gene cluster gtrA/B/II in P. donghuensis HYS is involved in the virulence of this strain toward C. elegans, and there are no reports of GtrA, GtrB and GtrII in any Pseudomonas species. The pathogenicity of P. donghuensis HYS was evaluated using C. elegans as a host. Based on the prediction of virulence factors and comparative genomic analysis of P. donghuensis HYS, we identified 42 specific virulence genes in P. donghuensis HYS. Slow-killing assays of these genes showed that the gtrAB mutation had the greatest effect on the virulence of P. donghuensis HYS, and GtrA, GtrB and GtrII all positively affected P. donghuensis HYS virulence. Two critical GtrII residues (Glu47 and Lys480) were identified in P. donghuensis HYS. Transmission electron microscopy (TEM) showed that GtrA, GtrB and GtrII were involved in the glucosylation of lipopolysaccharide (LPS) O-antigen in P. donghuensis HYS. Furthermore, colony-forming unit (CFU) assays showed that GtrA, GtrB and GtrII significantly enhanced P. donghuensis HYS colonization in the gut of C. elegans, and glucosylation of LPS O-antigen and colonization in the host intestine contributed to the pathogenicity of P. donghuensis HYS. In addition, experiments using the worm mutants ZD101, KU4 and KU25 revealed a correlation between P. donghuensis HYS virulence and the TIR-1/SEK-1/PMK-1 pathways of the innate immune p38 MAPK pathway in C. elegans. In conclusion, these results reveal that the specific virulence gene cluster gtrA/B/II contributes to the unique pathogenicity of HYS compared with other pathogenic Pseudomonas, and that this process also involves C. elegans innate immunity. These findings significantly increase the available information about GtrA/GtrB/GtrII-based virulence mechanisms in the genus Pseudomonas.
Collapse
|
15
|
Zdorovenko EL, Dmitrenok AS, Masi M, Castaldi S, Muzio FM, Isticato R, Valverde C, Knirel YA, Evidente A. Structural studies on the O-specific polysaccharide of the lipopolysaccharide from Pseudomonas donghuensis strain SVBP6, with antifungal activity against the phytopathogenic fungus Macrophomina phaseolina. Int J Biol Macromol 2021; 182:2019-2023. [PMID: 34081955 DOI: 10.1016/j.ijbiomac.2021.05.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/30/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022]
Abstract
An O-specific polysaccharide (OPS) was isolated from the lipopolysaccharide (LPS) of Pseudomonas donghuensis SVBP6, a bacterium with a broad-spectrum antifungal activity in vitro, particularly that against Macrophomina phaseolina. This latter is one of the most virulent and dangerous pathogens of plants, including soybean which is an economically important crop in Argentina today. The OPS was studied by sugar analysis and spectroscopy (1D and 2D 1H and 13C NMR) showing the following trisaccharide repeating unit: →6)-ɑ-D-ManpNAc-(1 → 3)-β-l-Rhap-(1 → 4)-β-D-Glcp-(1→. The crude LPS, the purified LPS and the O-chain were assayed for their antifungal activity against M. phaseolina at 25, 50, 100, and 200 μg plug-1. The results showed that the crude LPS best inhibition was at 200 μg plug-1, able to inhibit the fungus growth by about 45%, while purified LPS and the corresponding OPS, in the same condition, reduced fungus growth by 65%, and 75%, respectively. Furthermore, the purified LPS and OPS significantly reduced the growth of M. phaseolina already at 100 μg plug-1 compared to the crude LPS. The structure of the O-chain is unique among the bacterial LPS and this is the first time that both the antifungal activity of a bacterial LPS and its corresponding O-chain were described.
Collapse
Affiliation(s)
- Evelina L Zdorovenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| | - Andrey S Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Stefany Castaldi
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Federico M Muzio
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas-Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| | - Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas-Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy.
| |
Collapse
|
16
|
Matuszewska M, Maciąg T, Rajewska M, Wierzbicka A, Jafra S. The carbon source-dependent pattern of antimicrobial activity and gene expression in Pseudomonas donghuensis P482. Sci Rep 2021; 11:10994. [PMID: 34040089 PMCID: PMC8154892 DOI: 10.1038/s41598-021-90488-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas donghuensis P482 is a tomato rhizosphere isolate with the ability to inhibit growth of bacterial and fungal plant pathogens. Herein, we analysed the impact of the carbon source on the antibacterial activity of P482 and expression of the selected genes of three genomic regions in the P482 genome. These regions are involved in the synthesis of pyoverdine, 7-hydroxytropolone (7-HT) and an unknown compound ("cluster 17") and are responsible for the antimicrobial activity of P482. We showed that the P482 mutants, defective in these regions, show variations and contrasting patterns of growth inhibition of the target pathogen under given nutritional conditions (with glucose or glycerol as a carbon source). We also selected and validated the reference genes for gene expression studies in P. donghuensis P482. Amongst ten candidate genes, we found gyrB, rpoD and mrdA the most stably expressed. Using selected reference genes in RT-qPCR, we assessed the expression of the genes of interest under minimal medium conditions with glucose or glycerol as carbon sources. Glycerol was shown to negatively affect the expression of genes necessary for 7-HT synthesis. The significance of this finding in the light of the role of nutrient (carbon) availability in biological plant protection is discussed.
Collapse
Affiliation(s)
- Marta Matuszewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Tomasz Maciąg
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Aldona Wierzbicka
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
17
|
Ferreiro MD, Gallegos MT. Distinctive features of the Gac-Rsm pathway in plant-associated Pseudomonas. Environ Microbiol 2021; 23:5670-5689. [PMID: 33939255 DOI: 10.1111/1462-2920.15558] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 02/04/2023]
Abstract
Productive plant-bacteria interactions, either beneficial or pathogenic, require that bacteria successfully sense, integrate and respond to continuously changing environmental and plant stimuli. They use complex signal transduction systems that control a vast array of genes and functions. The Gac-Rsm global regulatory pathway plays a key role in controlling fundamental aspects of the apparently different lifestyles of plant beneficial and phytopathogenic Pseudomonas as it coordinates adaptation and survival while either promoting plant health (biocontrol strains) or causing disease (pathogenic strains). Plant-interacting Pseudomonas stand out for possessing multiple Rsm proteins and Rsm RNAs, but the physiological significance of this redundancy is not yet clear. Strikingly, the components of the Gac-Rsm pathway and the controlled genes/pathways are similar, but the outcome of its regulation may be opposite. Therefore, identifying the target mRNAs bound by the Rsm proteins and their mode of action (repression or activation) is essential to explain the resulting phenotype. Some technical considerations to approach the study of this system are also given. Overall, several important features of the Gac-Rsm cascade are now understood in molecular detail, particularly in Pseudomonas protegens CHA0, but further questions remain to be solved in other plant-interacting Pseudomonas.
Collapse
Affiliation(s)
- María-Dolores Ferreiro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
18
|
Moffat AD, Elliston A, Patron NJ, Truman AW, Carrasco Lopez JA. A biofoundry workflow for the identification of genetic determinants of microbial growth inhibition. Synth Biol (Oxf) 2021; 6:ysab004. [PMID: 33623825 PMCID: PMC7889406 DOI: 10.1093/synbio/ysab004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 11/20/2022] Open
Abstract
Biofoundries integrate high-throughput software and hardware platforms with synthetic biology approaches to enable the design, execution and analyses of large-scale experiments. The unique and powerful combination of laboratory infrastructure and expertise in molecular biology and automation programming, provide flexible resources for a wide range of workflows and research areas. Here, we demonstrate the applicability of biofoundries to molecular microbiology, describing the development and application of automated workflows to identify the genetic basis of growth inhibition of the plant pathogen Streptomyces scabies by a Pseudomonas strain isolated from a potato field. Combining transposon mutagenesis with automated high-throughput antagonistic assays, the workflow accelerated the screening of 2880 mutants to correlate growth inhibition with a biosynthetic gene cluster within 2 weeks.
Collapse
Affiliation(s)
- Alaster D Moffat
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Adam Elliston
- Department of Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, UK
| | - Nicola J Patron
- Department of Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, UK
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Jose A Carrasco Lopez
- Department of Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, UK
| |
Collapse
|
19
|
Amacker N, Gao Z, Agaras BC, Latz E, Kowalchuk GA, Valverde CF, Jousset A, Weidner S. Biocontrol Traits Correlate With Resistance to Predation by Protists in Soil Pseudomonads. Front Microbiol 2020; 11:614194. [PMID: 33384680 PMCID: PMC7769776 DOI: 10.3389/fmicb.2020.614194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Root-colonizing bacteria can support plant growth and help fend off pathogens. It is clear that such bacteria benefit from plant-derived carbon, but it remains ambiguous why they invest in plant-beneficial traits. We suggest that selection via protist predation contributes to recruitment of plant-beneficial traits in rhizosphere bacteria. To this end, we examined the extent to which bacterial traits associated with pathogen inhibition coincide with resistance to protist predation. We investigated the resistance to predation of a collection of Pseudomonas spp. against a range of representative soil protists covering three eukaryotic supergroups. We then examined whether patterns of resistance to predation could be explained by functional traits related to plant growth promotion, disease suppression and root colonization success. We observed a strong correlation between resistance to predation and phytopathogen inhibition. In addition, our analysis highlighted an important contribution of lytic enzymes and motility traits to resist predation by protists. We conclude that the widespread occurrence of plant-protective traits in the rhizosphere microbiome may be driven by the evolutionary pressure for resistance against predation by protists. Protists may therefore act as microbiome regulators promoting native bacteria involved in plant protection against diseases.
Collapse
Affiliation(s)
- Nathalie Amacker
- Ecology and Biodiversity Group, Institute of Environmental Biology, University of Utrecht, Utrecht, Netherlands
| | - Zhilei Gao
- Ecology and Biodiversity Group, Institute of Environmental Biology, University of Utrecht, Utrecht, Netherlands
| | - Betina C. Agaras
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Departamento de Ciencia y Tecnología, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Ellen Latz
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - George A. Kowalchuk
- Ecology and Biodiversity Group, Institute of Environmental Biology, University of Utrecht, Utrecht, Netherlands
| | - Claudio F. Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Departamento de Ciencia y Tecnología, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Alexandre Jousset
- Ecology and Biodiversity Group, Institute of Environmental Biology, University of Utrecht, Utrecht, Netherlands
| | - Simone Weidner
- Ecology and Biodiversity Group, Institute of Environmental Biology, University of Utrecht, Utrecht, Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
| |
Collapse
|
20
|
Sperling J, MacDonald Z, Normandeau J, Merrill E, Sperling F, Magor K. Within-population diversity of bacterial microbiomes in winter ticks (Dermacentor albipictus). Ticks Tick Borne Dis 2020; 11:101535. [DOI: 10.1016/j.ttbdis.2020.101535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
|
21
|
Montaña S, Vilacoba E, Fernandez JS, Traglia GM, Sucari A, Pennini M, Iriarte A, Centron D, Melano RG, Ramírez MS. Genomic analysis of two Acinetobacter baumannii strains belonging to two different sequence types (ST172 and ST25). J Glob Antimicrob Resist 2020; 23:154-161. [PMID: 32966912 DOI: 10.1016/j.jgar.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVES Acinetobacter baumannii is an opportunistic nosocomial pathogen that is the main focus of attention in clinical settings owing to its intrinsic ability to persist in the hospital environment and its capacity to acquire determinants of resistance and virulence. Here we present the genomic sequencing, molecular characterisation and genomic comparison of two A. baumannii strains belonging to two different sequence types (STs), one sporadic and one widely distributed in our region. METHODS Whole-genome sequencing (WGS) of Ab42 and Ab376 was performed using Illumina MiSeq-I and the genomes were assembled with SPAdes. ARG-ANNOT, CARD-RGI, ISfinder, PHAST, PlasmidFinder, plasmidSPAdes and IslandViewer were used to analyse both genomes. RESULTS Genome analysis revealed that Ab42 belongs to ST172, an uncommon ST, whilst Ab376 belongs to ST25, a widely distributed ST. Molecular characterisation showed the presence of two antibiotic resistance genes in Ab42 and nine in Ab376. No insertion sequences were detected in Ab42, however 22 were detected in Ab376. Moreover, two prophages were found in Ab42 and three in Ab376. In addition, a CRISPR-cas type I-Fb and two plasmids, one of which harboured an AbGRI1-like island, were found in Ab376. CONCLUSIONS We present WGS analysis of twoA. baumannii strains belonging to two different STs. These findings allowed us to characterise a previously undescribed ST (ST172) and provide new insights to the widely studied ST25.
Collapse
Affiliation(s)
- Sabrina Montaña
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina; Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Elisabet Vilacoba
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Jennifer S Fernandez
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd, Fullerton, CA 92834-6850, USA
| | - German M Traglia
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República. Montevideo, Uruguay
| | - Adriana Sucari
- Unidad Microbiología, Laboratorio Stamboulian, Buenos Aires, Argentina
| | - Magdalena Pennini
- Unidad Microbiología, Laboratorio Stamboulian, Buenos Aires, Argentina
| | - Andres Iriarte
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República. Montevideo, Uruguay
| | - Daniela Centron
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | | | - María Soledad Ramírez
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd, Fullerton, CA 92834-6850, USA.
| |
Collapse
|
22
|
Pseudomonas donghuensis HYS 7-hydroxytropolone contributes to pathogenicity toward Caenorhabditis elegans and is influenced by pantothenic acid. Biochem Biophys Res Commun 2020; 533:50-56. [PMID: 32921415 DOI: 10.1016/j.bbrc.2020.08.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022]
Abstract
Pseudomonas donghuensis HYS, a bacterial strain identified from Donghu Lake, has tremendous toxicity toward Caenorhabditis elegans and is characterized by high 7-hydroxytropolone siderophore production. Here, the relationship between pathogenic siderophore production and pantothenic acid was evaluated. The pathogenicity of P. donghuensis HYS was illustrated using C. elegans as a host. Based on slow-killing assay findings, a 7-hydroxytropolone deficiency-causing mutation attenuated P. donghuensis HYS pathogenicity, which was restored by the addition of extracted 7-hydroxytropolone. Moreover, data from real-time qPCR analysis and characteristic absorption assays indicated that pantothenic acid deficiency repressed transcriptional levels of orf9, which further reduced 7-hydroxytropolone production. Furthermore, slow-killing assays indicated that panB and pantothenic acid affected the virulence of P. donghuensis. These results indicate that a 7-hydroxytropolone siderophore-producing strain is virulent toward C. elegans. Our findings demonstrate that pantothenic acid is associated with P. donghuensis siderophore production-related pathogenicity.
Collapse
|
23
|
Steiner KK, Parthasarathy A, Wong NH, Cavanaugh NT, Chu J, Hudson AO. Isolation and whole-genome sequencing of Pseudomonas sp. RIT 623, a slow-growing bacterium endowed with antibiotic properties. BMC Res Notes 2020; 13:370. [PMID: 32746897 PMCID: PMC7398229 DOI: 10.1186/s13104-020-05216-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE There is an urgent need for the discovery and/or development of novel antibiotics. We report an exploration of "slow"-growing bacteria, which can be difficult to isolate using rich media as they are usually outcompeted by "fast"-growing bacteria, as potential sources of novel antimicrobials. RESULTS Pseudomonas sp. RIT 623 was isolated using pond water agar from a pond located on the campus of the Rochester Institute of Technology (RIT). The genome was sequenced and analyzed for potential secondary metabolite gene clusters. Bioinformatics analysis revealed 14 putative gene clusters predicted to encode pathways for the anabolism of secondary metabolites. Ethyl acetate extracts from spent growth medium of Pseudomonas sp. RIT 623 were tested against two Gram-negative (E. coli ATCC 25922 and P. aeruginosa ATCC 27853) and two Gram-positive (B. subtilis BGSC 168 and S. aureus ATCC 25923) type strains to assess antibiotic activity. The antibiotic assays demonstrated that extracts of Pseudomonas sp. RIT 623 were able to inhibit the growth of the four strains. The active compound was separated using diethyl ether in a multi-solvent extraction and reverse phase chromatography. The bioactive compound/s were subsequently eluted in two consecutive fractions corresponding to approximately 16-22% acetonitrile, indicative of polar compound/s.
Collapse
Affiliation(s)
- KayLee K. Steiner
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| | - Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| | - Narayan H. Wong
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| | - Nicole T. Cavanaugh
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| | - Jonathan Chu
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| |
Collapse
|
24
|
Sobrero PM, Valverde C. Comparative Genomics and Evolutionary Analysis of RNA-Binding Proteins of the CsrA Family in the Genus Pseudomonas. Front Mol Biosci 2020; 7:127. [PMID: 32754614 PMCID: PMC7366521 DOI: 10.3389/fmolb.2020.00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Gene expression is adjusted according to cellular needs through a combination of mechanisms acting at different layers of the flow of genetic information. At the posttranscriptional level, RNA-binding proteins are key factors controlling the fate of nascent and mature mRNAs. Among them, the members of the CsrA family are small dimeric proteins with heterogeneous distribution across the bacterial tree of life, that act as global regulators of gene expression because they recognize characteristic sequence/structural motifs (short hairpins with GGA triplets in the loop) present in hundreds of mRNAs. The regulatory output of CsrA binding to mRNAs is counteracted in most cases by molecular mimic, non-protein coding RNAs that titrate the CsrA dimers away from the target mRNAs. In γ-proteobacteria, the regulatory modules composed by CsrA homologs and the corresponding antagonistic sRNAs, are mastered by two-component systems of the GacS-GacA type, which control the transcription and the abundance of the sRNAs, thus constituting the rather linear cascade Gac-Rsm that responds to environmental or cellular signals to adjust and coordinate the expression of a set of target genes posttranscriptionally. Within the γ-proteobacteria, the genus Pseudomonas has been shown to contain species with different number of active CsrA (RsmA) homologs and of molecular mimic sRNAs. Here, with the help of the increasing availability of genomic data we provide a comprehensive state-of-the-art picture of the remarkable multiplicity of CsrA lineages, including novel yet uncharacterized paralogues, and discuss evolutionary aspects of the CsrA subfamilies of the genus Pseudomonas, and implications of the striking presence of csrA alleles in natural mobile genetic elements (phages and plasmids).
Collapse
Affiliation(s)
- Patricio Martín Sobrero
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| |
Collapse
|
25
|
Muzio FM, Agaras BC, Masi M, Tuzi A, Evidente A, Valverde C. 7‐hydroxytropolone is the main metabolite responsible for the fungal antagonism of
Pseudomonas donghuensis
strain SVBP6. Environ Microbiol 2020; 22:2550-2563. [DOI: 10.1111/1462-2920.14925] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Federico M. Muzio
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas—Centro de Bioquímica y Microbiología del Suelo. Departamento de Ciencia y TecnologíaUniversidad Nacional de Quilmes—CONICET, Roque Sáenz Peña 352, Bernal B1876BXD Buenos Aires Argentina
| | - Betina C. Agaras
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas—Centro de Bioquímica y Microbiología del Suelo. Departamento de Ciencia y TecnologíaUniversidad Nacional de Quilmes—CONICET, Roque Sáenz Peña 352, Bernal B1876BXD Buenos Aires Argentina
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples Italy
| | - Angela Tuzi
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Naples Italy
| | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas—Centro de Bioquímica y Microbiología del Suelo. Departamento de Ciencia y TecnologíaUniversidad Nacional de Quilmes—CONICET, Roque Sáenz Peña 352, Bernal B1876BXD Buenos Aires Argentina
| |
Collapse
|
26
|
Keshavarz-Tohid V, Vacheron J, Dubost A, Prigent-Combaret C, Taheri P, Tarighi S, Taghavi SM, Moënne-Loccoz Y, Muller D. Genomic, phylogenetic and catabolic re-assessment of the Pseudomonas putida clade supports the delineation of Pseudomonas alloputida sp. nov., Pseudomonas inefficax sp. nov., Pseudomonas persica sp. nov., and Pseudomonas shirazica sp. nov. Syst Appl Microbiol 2019; 42:468-480. [DOI: 10.1016/j.syapm.2019.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 12/21/2022]
|
27
|
Xie G, Zeng M, You J, Xie Z. Pseudomonas donghuensis HYS virulence towards Caenorhabditis elegans is regulated by the Cbr/Crc system. Sci Rep 2019; 9:8772. [PMID: 31217473 PMCID: PMC6584532 DOI: 10.1038/s41598-019-45145-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/03/2019] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas donghuensis HYS is the type strain of a recently identified species, P. donghuensis, which has pathogenic potential with an unclear virulence mechanism. In this study, we used Caenorhabditis elegans as a host to explore the virulence mechanism of P. donghuensis HYS. Based on a correlation between P. donghuensis HYS virulence and its repellence property, we identified 68 potential virulence-related genes, among them the Cbr/Crc system, which regulates the virulence of prokaryotic microorganisms. Slow-killing assays indicated that cbrA, cbrB, or specific sRNA-encoding genes all affected P. donghuensis virulence positively, whereas crc affected it negatively. Transcriptome analyses demonstrated that the Cbr/Crc system played an important role in the pathogenesis of P. donghuensis. In addition, experiments using the worm mutant KU25 pmk-1(km25) showed a correlation between P. donghuensis HYS virulence and the PMK-1/p38 MAPK pathway in C. elegans. In conclusion, our data show that Crc plays a novel role in the Cbr/Crc system, and the P. donghuensis virulence phenotype therefore differs from that of P. aeruginosa. This process also involves C. elegans innate immunity. These findings significantly increase the available information about Cbr/Crc-based virulence mechanisms in the genus Pseudomonas.
Collapse
Affiliation(s)
- Guanfang Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China
| | - Man Zeng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China
| | - Jia You
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China.
| |
Collapse
|