1
|
Rodriguez EA, Yamamoto BK. Toxic Effects of Methamphetamine on Perivascular Health: Co-morbid Effects of Stress and Alcohol Use Disorders. Curr Neuropharmacol 2021; 19:2092-2107. [PMID: 34344290 PMCID: PMC9185763 DOI: 10.2174/1570159x19666210803150023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Methamphetamine (Meth) abuse presents a global problem and commonly occurs with stress and/or alcohol use disorders. Regardless, the biological causes and consequences of these comorbidities are unclear. Whereas the mechanisms of Meth, stress, and alcohol abuse have been examined individually and well-characterized, these processes overlap significantly and can impact the neural and peripheral consequences of Meth. This review focuses on the deleterious cardio- and cerebrovascular effects of Meth, stress, alcohol abuse, and their comorbid effects on the brain and periphery. Points of emphasis are on the composition of the blood-brain barrier and their effects on the heart and vasculature. The autonomic nervous system, inflammation, and oxidative stress are specifically highlighted as common mediators of the toxic consequences to vascular and perivascular health. A significant portion of the Meth abusing population also presents with stress and alcohol use disorders, prompting a need to understand the mechanisms underlying their comorbidities. Little is known about their possible convergent effects. Therefore, the purpose of this critical review is to identify shared mechanisms of Meth, chronic stress, and alcohol abuse that contributes to the dysfunction of vascular health and underscores the need for studies that directly address their interactions.
Collapse
Affiliation(s)
- Eric A. Rodriguez
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bryan K. Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Jeremic JN, Jakovljevic VL, Zivkovic VI, Srejovic IM, Bradic JV, Milosavljevic IM, Mitrovic SL, Jovicic NU, Bolevich SB, Svistunov AA, Tyagi SC, Jeremic NS. Garlic Derived Diallyl Trisulfide in Experimental Metabolic Syndrome: Metabolic Effects and Cardioprotective Role. Int J Mol Sci 2020; 21:ijms21239100. [PMID: 33265949 PMCID: PMC7730157 DOI: 10.3390/ijms21239100] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 01/03/2023] Open
Abstract
This study aimed to examine the effects of diallyl trisulfide (DATS), the most potent polysulfide derived from garlic, on metabolic syndrome and myocardial function in rats with metabolic syndrome (MetS). For that purpose, we used 36 male Wistar albino rats divided into control rats, rats with MetS and MetS rats treated with 40 mg/kg of DATS every second day for 3 weeks. In the first part, we studied the impact of DATS on MetS control and found that DATS significantly raised H2S, decreased homocysteine and glucose levels and enhanced lipid and antioxidative, while reducing prooxidative parameters. Additionally, this polysulfide improved cardiac function. In the second part, we investigated the impact of DATS on ex vivo induced ischemia/reperfusion (I/R) heart injury and found that DATS consumption significantly improved cardiodynamic parameters and prevented oxidative and histo-architectural variation in the heart. In addition, DATS significantly increased relative gene expression of eNOS, SOD-1 and -2, Bcl-2 and decreased relative gene expression of NF-κB, IL-17A, Bax, and caspases-3 and -9. Taken together, the data show that DATS can effectively mitigate MetS and have protective effects against ex vivo induced myocardial I/R injury in MetS rat.
Collapse
Affiliation(s)
- Jovana N. Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.N.J.); (J.V.B.); (I.M.M.)
| | - Vladimir Lj. Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (V.L.J.); (V.I.Z.); (I.M.S.)
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8, 119991 Moscow, Russia;
| | - Vladimir I. Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (V.L.J.); (V.I.Z.); (I.M.S.)
| | - Ivan M. Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (V.L.J.); (V.I.Z.); (I.M.S.)
| | - Jovana V. Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.N.J.); (J.V.B.); (I.M.M.)
| | - Isidora M. Milosavljevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.N.J.); (J.V.B.); (I.M.M.)
| | - Slobodanka Lj. Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia;
| | - Nemanja U. Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia;
| | - Sergey B. Bolevich
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8, 119991 Moscow, Russia;
| | - Andrey A. Svistunov
- Research Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8-2, 119991 Moscow, Russia;
| | - Suresh C. Tyagi
- Department of Physiology, School of Medicine, University of Louisville, 500 S Preston Street, Louisville, KY 40202, USA;
| | - Nevena S. Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.N.J.); (J.V.B.); (I.M.M.)
- Department of Physiology, School of Medicine, University of Louisville, 500 S Preston Street, Louisville, KY 40202, USA;
- Correspondence: ; Tel.: +381-64-7019794
| |
Collapse
|
3
|
Pignataro L. Alcohol protects the CNS by activating HSF1 and inducing the heat shock proteins. Neurosci Lett 2019; 713:134507. [PMID: 31541723 DOI: 10.1016/j.neulet.2019.134507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Although alcohol abuse and dependence have profound negative health consequences, emerging evidence suggests that exposure to low/moderate concentrations of ethanol protects multiple organs and systems. In the CNS, moderate drinking decreases the risk of dementia and Alzheimer's disease. This neuroprotection correlates with an increased expression of the heat shock proteins (HSPs). Multiple epidemiological studies revealed an inverse association between ethanol intoxication and traumatic brain injury mortality. In this case, ethanol-induced HSPs limit the inflammatory immune response diminishing cell death and improving the neurobehavioural outcome. Ethanol also protects the brain against ischemic injuries via the HSPs. In our laboratory, we demonstrated that ethanol increased the expression of several HSP genes in neurons and astrocytes by activating the transcription factor, heat shock factor 1 (HSF1). HSF1 induces HSPs that target misfolded proteins for refolding or degradation, increasing the survival chances of the cells. These data indicate that ethanol neuroprotection is mediated by the activation HSF1 and the induction of HSPs.
Collapse
Affiliation(s)
- Leonardo Pignataro
- Columbia University, Department of Anesthesiology, 622 West 168th St., PH 511, New York, NY, 10032, USA; College of Staten Island - City University of New York, 2800 Victory Blvd., Building 1A - 101, Staten Island, NY, 10314, USA.
| |
Collapse
|
4
|
Trautz F, Franke H, Bohnert S, Hammer N, Müller W, Stassart R, Tse R, Zwirner J, Dreßler J, Ondruschka B. Survival-time dependent increase in neuronal IL-6 and astroglial GFAP expression in fatally injured human brain tissue. Sci Rep 2019; 9:11771. [PMID: 31417126 PMCID: PMC6695416 DOI: 10.1038/s41598-019-48145-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/30/2019] [Indexed: 01/31/2023] Open
Abstract
Knowledge on trauma survival time prior to death following a lethal traumatic brain injury (TBI) may be essential for legal purposes. Immunohistochemistry studies might allow to narrow down this survival interval. The biomarkers interleukin-6 (IL-6) and glial fibrillary acidic protein (GFAP) are well known in the clinical setting for their usability in TBI prediction. Here, both proteins were chosen in forensics to determine whether neuronal or glial expression in various brain regions may be associated with the cause of death and the survival time prior to death following TBI. IL-6 positive neurons, glial cells and GFAP positive astrocytes all concordantly increase with longer trauma survival time, with statistically significant changes being evident from three days post-TBI (p < 0.05) in the pericontusional zone, irrespective of its definite cortical localization. IL-6 staining in neurons increases significantly in the cerebellum after trauma, whereas increasing GFAP positivity is also detected in the cortex contralateral to the focal lesion. These systematic chronological changes in biomarkers of pericontusional neurons and glial cells allow for an estimation of trauma survival time. Higher numbers of IL-6 and GFAP-stained cells above threshold values in the pericontusional zone substantiate the existence of fatal traumatic changes in the brain with reasonable certainty.
Collapse
Affiliation(s)
- Florian Trautz
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig, Germany
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty University of Leipzig, Leipzig, Germany
| | - Simone Bohnert
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Niels Hammer
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Department of Orthopedic and Trauma Surgery, University Hospital of Leipzig, Leipzig, Germany.,Fraunhofer IWU, Dresden, Germany
| | - Wolf Müller
- Department of Neuropathology, University Hospital of Leipzig, Leipzig, Germany
| | - Ruth Stassart
- Department of Neuropathology, University Hospital of Leipzig, Leipzig, Germany
| | - Rexson Tse
- Department of Forensic Pathology, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Johann Zwirner
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jan Dreßler
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig, Germany.
| |
Collapse
|