1
|
Ranđelović D, Jakovljević K, Šinžar-Sekulić J, Kuzmič F, Šilc U. Recognising the role of ruderal species in restoration of degraded lands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173104. [PMID: 38729357 DOI: 10.1016/j.scitotenv.2024.173104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Ruderal plants are an important component of plant communities that develop on the range of anthropogenically degraded lands. Yet they were highly neglected and not recognised as desirable for restoration purposes. The aim of this study was to analyse the potential for using ruderal species in restoration processes and to identify preliminary criteria for species selection that could be included in ecological restoration of degraded man-made habitats under future conditions of increased human disturbance and climate changes. The desirable characteristics of the species depend primarily on the type of habitat to be restored, with plant height, specific leaf area, rooting depth and seed characteristics being the most important traits. The recognised ecosystem services of the species analysed show that the provisioning and regulating services are well represented, particularly erosion control, pollination, phytoremediation and other soil quality improvements. Most of the dominant and diagnostic ruderal species from the man-made habitats of the north-western Balkan Peninsula are sensitive to climate change and their potential distribution range is expected to decrease at the European scale. Higher certain ecological indicator values, as well as values for disturbance severity, frequency and soil disturbance indices were found for species that are expected to increase their range. Ruderal species are becoming increasingly important for restoration purposes, as the focus shifts to the significance of early successional species. The inclusion of ruderal species in the restoration of degraded sites should be based on criteria such as: non-invasiveness, plant traits favourable for colonisation (height, SLA, seed traits, rooting depth), values of ecological and disturbance indices, provision of ecosystem services, and change of distribution range under changing climate conditions.
Collapse
Affiliation(s)
- Dragana Ranđelović
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Franchet d'Esperey Boulevard 86, Belgrade, Serbia.
| | - Ksenija Jakovljević
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, Belgrade, Serbia.
| | - Jasmina Šinžar-Sekulić
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, Belgrade, Serbia.
| | - Filip Kuzmič
- ZRC SAZU, Jovan Hadži Institute of Biology, Novi trg 2, Ljubljana, Slovenia.
| | - Urban Šilc
- ZRC SAZU, Jovan Hadži Institute of Biology, Novi trg 2, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Li J, Li X, Zhang C, Zhou Q, Chen S. Phylogeographic analysis reveals extensive genetic variation of native grass Elymus nutans (Poaceae) on the Qinghai-Tibetan plateau. FRONTIERS IN PLANT SCIENCE 2024; 15:1349641. [PMID: 38529066 PMCID: PMC10961384 DOI: 10.3389/fpls.2024.1349641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
Introduction Elymus nutans holds ecological and pastoral significance due to its adaptability and nutritional value, the Qinghai-Tibet Plateau (QTP) is a key hub for its genetic diversity. To conserve and harness its genetic resources in highland ecosystems, a thorough assessment is vital. However, a comprehensive phylogeographic exploration of E. nutans is lacking. The objective of this study was to unravel the genetic diversity, adaptation, and phylogenetics of E. nutans populations. Methods Encompassing 361 individuals across 35 populations, the species' genetic landscape and dynamic responses to diverse environments were decoded by using four chloroplast DNA (cpDNA) sequences and nine microsatellite markers derived from the transcriptome. Results and discussion This study unveiled a notable degree of genetic diversity in E. nutans populations at nuclear (I = 0.46, He = 0.32) and plastid DNA levels (Hd = 0.805, π = 0.67). Analysis via AMOVA highlighted genetic variation predominantly within populations. Despite limited isolation by distance (IBD), the Mekong-Salween Divide (MSD) emerged as a significant factor influencing genetic differentiation and conserving diversity. Furthermore, correlations were established between external environmental factors and effective alleles of three EST-SSRs (EN5, EN57 and EN80), potentially linked to glutathione S-transferases T1 or hypothetical proteins, affecting adaptation. This study deepens the understanding of the intricate relationship between genetic diversity, adaptation, and environmental factors within E. nutans populations on the QTP. The findings shed light on the species' evolutionary responses to diverse ecological conditions and contribute to a broader comprehension of plant adaptation mechanisms.
Collapse
Affiliation(s)
- Jin Li
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
| | - Xinda Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Changbing Zhang
- Institute of Grass Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
| | - Shiyong Chen
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| |
Collapse
|
3
|
Franzoni J, Astuti G, Peruzzi L. Weak Genetic Isolation and Putative Phenotypic Selection in the Wild Carnation Dianthus virgineus (Caryophyllaceae). BIOLOGY 2023; 12:1355. [PMID: 37887065 PMCID: PMC10604185 DOI: 10.3390/biology12101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
By relating genetic divergence at neutral loci, phenotypic variation, and geographic and environmental distances, it is possible to dissect micro-evolutionary scenarios involving natural selection and neutral evolution. In this work, we tested the patterns of intraspecific genetic and phenotypic variation along an elevational gradient, using Dianthus virgineus as study system. We genotyped genome-wide SNPs through ddRAD sequencing and quantified phenotypic variation through multivariate morphological variation. We assessed patterns of variation by testing the statistical association between genetic, phenotypic, geographic, and elevational distances and explored the role of genetic drift and selection by comparing the Fst and Pst of morphometric traits. We revealed a weak genetic structure related to geographic distance among populations, but we excluded the predominant role of genetic drift acting on phenotypic traits. A high degree of phenotypic differentiation with respect to genetic divergence at neutral loci allowed us to hypothesize the effect of selection, putatively fuelled by changing conditions at different sites, on morphological traits. Thus, natural selection acting despite low genetic divergence at neutral loci can be hypothesized as a putative driver explaining the observed patterns of variation.
Collapse
Affiliation(s)
- Jacopo Franzoni
- PLANTSEED Lab, Department of Biology, University of Pisa, 56127 Pisa, Italy;
| | - Giovanni Astuti
- Botanic Garden and Museum, University of Pisa, 56126 Pisa, Italy;
| | - Lorenzo Peruzzi
- PLANTSEED Lab, Department of Biology, University of Pisa, 56127 Pisa, Italy;
| |
Collapse
|
4
|
Ievinsh G. Halophytic Clonal Plant Species: Important Functional Aspects for Existence in Heterogeneous Saline Habitats. PLANTS (BASEL, SWITZERLAND) 2023; 12:1728. [PMID: 37111952 PMCID: PMC10144567 DOI: 10.3390/plants12081728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Plant modularity-related traits are important ecological determinants of vegetation composition, dynamics, and resilience. While simple changes in plant biomass resulting from salt treatments are usually considered a sufficient indicator for resistance vs. susceptibility to salinity, plants with a clonal growth pattern show complex responses to changes in environmental conditions. Due to physiological integration, clonal plants often have adaptive advantages in highly heterogeneous or disturbed habitats. Although halophytes native to various heterogeneous habitats have been extensively studied, no special attention has been paid to the peculiarities of salt tolerance mechanisms of clonal halophytes. Therefore, the aim of the present review is to identify probable and possible halophytic plant species belonging to different types of clonal growth and to analyze available scientific information on responses to salinity in these species. Examples, including halophytes with different types of clonal growth, will be analyzed, such as based on differences in the degree of physiological integration, ramet persistence, rate of clonal expansion, salinity-induced clonality, etc.
Collapse
Affiliation(s)
- Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| |
Collapse
|
5
|
Kosová V, Latzel V, Hadincová V, Münzbergová Z. Effect of DNA methylation, modified by 5-azaC, on ecophysiological responses of a clonal plant to changing climate. Sci Rep 2022; 12:17262. [PMID: 36241768 PMCID: PMC9568541 DOI: 10.1038/s41598-022-22125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/10/2022] [Indexed: 01/06/2023] Open
Abstract
Epigenetic regulation of gene expression is expected to be an important mechanism behind phenotypic plasticity. Whether epigenetic regulation affects species ecophysiological adaptations to changing climate remains largely unexplored. We compared ecophysiological traits between individuals treated with 5-azaC, assumed to lead to DNA demethylation, with control individuals of a clonal grass originating from and grown under different climates, simulating different directions and magnitudes of climate change. We linked the ecophysiological data to proxies of fitness. Main effects of plant origin and cultivating conditions predicted variation in plant traits, but 5-azaC did not. Effects of 5-azaC interacted with conditions of cultivation and plant origin. The direction of the 5-azaC effects suggests that DNA methylation does not reflect species long-term adaptations to climate of origin and species likely epigenetically adjusted to the conditions experienced during experiment set-up. Ecophysiology translated to proxies of fitness, but the intensity and direction of the relationships were context dependent and affected by 5-azaC. The study suggests that effects of DNA methylation depend on conditions of plant origin and current climate. Direction of 5-azaC effects suggests limited role of epigenetic modifications in long-term adaptation of plants. It rather facilitates fast adaptations to temporal fluctuations of the environment.
Collapse
Affiliation(s)
- Veronika Kosová
- grid.4491.80000 0004 1937 116XDepartment of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vít Latzel
- grid.418095.10000 0001 1015 3316Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| | - Věroslava Hadincová
- grid.418095.10000 0001 1015 3316Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| | - Zuzana Münzbergová
- grid.4491.80000 0004 1937 116XDepartment of Botany, Faculty of Science, Charles University, Prague, Czech Republic ,grid.418095.10000 0001 1015 3316Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| |
Collapse
|
6
|
Thakur D, Münzbergová Z. Rhizome trait scaling relationships are modulated by growth conditions and are linked to plant fitness. ANNALS OF BOTANY 2022; 129:529-540. [PMID: 35180294 PMCID: PMC9007095 DOI: 10.1093/aob/mcac023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Rhizomes are important organs allowing many clonal plants to persist and reproduce under stressful climates with longer rhizomes, indicating enhanced ability of the plants to spread vegetatively. We do not, however, know either how rhizome construction costs change with increasing length or how they vary with environmental conditions. METHODS We analysed the rhizome length vs. mass scaling relationship, the plasticity in the scaling relationships, their genetic basis and how scaling relationships are linked to plant fitness. We used data from 275 genotypes of a clonal grass Festuca rubra originating from 11 localities and cultivated under four contrasting climates. Data were analysed using standard major axis regression, mixed-effect regression models and a structural equation model. KEY RESULTS Rhizome construction costs increased (i.e. lower specific rhizome length) with increasing length. The trait scaling relationships were modulated by cultivation climate, and its effects also interacted with the climate of origin of the experimental plants. With increasing length, increasing moisture led to a greater increase in rhizome construction costs. Plants with lower rhizome construction costs showed significantly higher fitness. CONCLUSIONS This study suggests that rhizome scaling relationships are plastic, but also show genetic differentiation and are linked to plant fitness. Therefore, to persist under variable environments, modulation in scaling relationships could be an important plant strategy.
Collapse
Affiliation(s)
- Dinesh Thakur
- Institute of Botany, Czech Academy of Sciences, Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany, Czech Academy of Sciences, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
Kosová V, Hájek T, Hadincová V, Münzbergová Z. The importance of ecophysiological traits in response of Festuca rubra to changing climate. PHYSIOLOGIA PLANTARUM 2022; 174:e13608. [PMID: 34837234 DOI: 10.1111/ppl.13608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Knowledge of the ability of plants to respond to climate change via phenotypic plasticity or genetic adaptation in ecophysiological traits and of the link of these traits to fitness is still limited. We studied the clonal grass Festuca rubra from 11 localities representing factorially crossed gradients of temperature and precipitation and cultivated them in growth chambers simulating temperature and moisture regime in the four extreme localities. We measured net photosynthetic rate, Fv /Fm , specific leaf area, osmotic potential and stomatal density and length and tested their relationship to proxies of fitness. We found strong phenotypic plasticity in photosynthetic traits and genetic differentiation in stomatal traits. The effects of temperature and moisture interacted (either as conditions of origin or growth chambers), as were effects of growth and origin. The relationships between the ecophysiological and fitness-related traits were significant but weak. Phenotypic plasticity and genetic differentiation of the species indicate the potential ability of F. rubra to adapt to novel climatic conditions. The most important challenge for the plants seems to be increasing moisture exposing plants to hypoxia. However, the plants have the potential to respond to increased moisture by changes in stomatal size and density and adjustments of osmotic potential. Changes in ecophysiological traits translate into variation in plant fitness, but the selection on the traits is relatively weak and depends on actual conditions. Despite the selection, the plants do not show strong local adaptation and local adaptation is thus likely not restricting species ability to adjust to novel conditions.
Collapse
Affiliation(s)
- Veronika Kosová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Hájek
- Institute of Botany, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | | - Zuzana Münzbergová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Münzbergová Z, Vandvik V, Hadincová V. Evolutionary Rescue as a Mechanism Allowing a Clonal Grass to Adapt to Novel Climates. FRONTIERS IN PLANT SCIENCE 2021; 12:659479. [PMID: 34079569 PMCID: PMC8166245 DOI: 10.3389/fpls.2021.659479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Filing gaps in our understanding of species' abilities to adapt to novel climates is a key challenge for predicting future range shifts and biodiversity loss. Key knowledge gaps are related to the potential for evolutionary rescue in response to climate, especially in long-lived clonally reproducing species. We illustrate a novel approach to assess the potential for evolutionary rescue using a combination of reciprocal transplant experiment in the field to assess performance under a changing climate and independent growth chamber assays to assess growth- and physiology-related plant trait maxima and plasticities of the same clones. We use a clonal grass, Festuca rubra, as a model species. We propagated individual clones and used them in a transplant experiment across broad-scale temperature and precipitation gradients, simulating the projected direction of climate change in the region. Independent information on trait maxima and plasticities of the same clones was obtained by cultivating them in four growth chambers representing climate extremes. Plant survival was affected by interaction between plant traits and climate change, with both trait plasticities and maxima being important for adaptation to novel climates. Key traits include plasticity in extravaginal ramets, aboveground biomass, and osmotic potential. The direction of selection in response to a given climatic change detected in this study mostly contradicted the natural trait clines indicating that short-term selection pressure as identified here does not match long-term selection outcomes. Long-lived clonal species exposed to different climatic changes are subjected to consistent selection pressures on key traits, a necessary condition for adaptation to novel conditions. This points to evolutionary rescue as an important mechanism for dealing with climate change in these species. Our experimental approach may be applied also in other model systems broadening our understanding of evolutionary rescue. Such knowledge cannot be easily deduced from observing the existing field clines.
Collapse
Affiliation(s)
- Zuzana Münzbergová
- Institute of Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Vigdis Vandvik
- Department of Biological Sciences and Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | | |
Collapse
|
9
|
Ye H, Wang Z, Hou H, Wu J, Gao Y, Han W, Ru W, Sun G, Wang Y. Localized environmental heterogeneity drives the population differentiation of two endangered and endemic Opisthopappus Shih species. BMC Ecol Evol 2021; 21:56. [PMID: 33858342 PMCID: PMC8050911 DOI: 10.1186/s12862-021-01790-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/08/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Climate heterogeneity not only indirectly shapes the genetic structures of plant populations, but also drives adaptive divergence by impacting demographic dynamics. The variable localized climates and topographic complexity of the Taihang Mountains make them a major natural boundary in Northern China that influences the divergence of organisms distributed across this region. Opisthopappus is an endemic genus of the Taihang Mountains that includes only two spatially partitioned species Opisthopappus longilobus and Opisthopappus taihangensis. For this study, the mechanisms behind the genetic variations in Opisthopappus populations were investigated. RESULTS Using SNP and InDel data coupled with geographic and climatic information, significant genetic differentiation was found to exist either between Opisthopappus populations or two species. All studied populations were divided into two genetic groups with the differentiation of haplotypes between the groups. At approximately 17.44 Ma of the early Miocene, O. taihangensis differentiated from O. longilobus under differing precipitation regimes due to the intensification of the Asian monsoon. Subsequently, intraspecific divergence might be induced by the dramatic climatic transformation from the mid- to late Miocene. During the Pleistocene period, the rapid uplift of the Taihang Mountains coupled with violent climatic oscillations would further promote the diversity of the two species. Following the development of the Taihang Mountains, its complex topography created geographical and ecological heterogeneity, which could lead to spatiotemporal isolation between the Opisthopappus populations. Thus the adaptive divergence might occur within these intraspecific populations in the localized heterogeneous environment of the Taihang Mountains. CONCLUSIONS The localized environmental events through the integration of small-scale spatial effects impacted the demographic history and differentiation mechanism of Opisthopappus species in the Taihang Mountains. The results provide useful information for us to understand the ecology and evolution of organisms in the mountainous environment from population and species perspective.
Collapse
Affiliation(s)
- Hang Ye
- College of Life Science, Shanxi Normal University, Linfen, China
| | - Zhi Wang
- College of Life Science, Shanxi Normal University, Linfen, China
| | - Huimin Hou
- College of Life Science, Shanxi Normal University, Linfen, China
| | - Jiahui Wu
- College of Life Science, Shanxi Normal University, Linfen, China
- Changzhi University, Changzhi, China
| | - Yue Gao
- College of Life Science, Shanxi Normal University, Linfen, China
| | - Wei Han
- College of Life Science, Shanxi Normal University, Linfen, China
| | | | - Genlou Sun
- Saint Mary's University, Halifax, Canada
| | - Yiling Wang
- College of Life Science, Shanxi Normal University, Linfen, China.
| |
Collapse
|
10
|
Stojanova B, Koláříková V, Šurinová M, Klápště J, Hadincová V, Münzbergová Z. Evolutionary potential of a widespread clonal grass under changing climate. J Evol Biol 2019; 32:1057-1068. [DOI: 10.1111/jeb.13507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/27/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Bojana Stojanova
- Department of Botany Faculty of Science Charles University Prague Czech Republic
- Institute of Botany Academy of Sciences of the Czech Republic Průhonice Czech Republic
- Department of Biology and Ecology Faculty of Science Institute of Environmental Technologies University of Ostrava Ostrava Czech Republic
| | - Veronika Koláříková
- Department of Botany Faculty of Science Charles University Prague Czech Republic
| | - Maria Šurinová
- Department of Botany Faculty of Science Charles University Prague Czech Republic
- Institute of Botany Academy of Sciences of the Czech Republic Průhonice Czech Republic
| | - Jaroslav Klápště
- Scion (New Zealand Forest Research Institute Ltd.) Rotorua New Zealand
| | - Věroslava Hadincová
- Institute of Botany Academy of Sciences of the Czech Republic Průhonice Czech Republic
| | - Zuzana Münzbergová
- Department of Botany Faculty of Science Charles University Prague Czech Republic
- Institute of Botany Academy of Sciences of the Czech Republic Průhonice Czech Republic
| |
Collapse
|
11
|
Kergunteuil A, Humair L, Münzbergová Z, Rasmann S. Plant adaptation to different climates shapes the strengths of chemically mediated tritrophic interactions. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Alan Kergunteuil
- Functional Ecology Laboratory, Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| | - Lauréline Humair
- Functional Ecology Laboratory, Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| | - Zuzana Münzbergová
- Department of Botany, Faculty of Science Charles University Prague Czech Republic
- Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
| | - Sergio Rasmann
- Functional Ecology Laboratory, Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| |
Collapse
|
12
|
Batista MRD, Penha RES, Sofia SH, Klaczko LB. Comparative analysis of adaptive and neutral markers of Drosophila mediopunctata populations dispersed among forest fragments. Ecol Evol 2018; 8:12681-12693. [PMID: 30619573 PMCID: PMC6308856 DOI: 10.1002/ece3.4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 11/26/2022] Open
Abstract
Comparison of adaptive and neutral genetic markers is a valuable approach to characterize the evolutionary consequences of populations living in environments threatened by anthropogenic disturbances, such as forest fragmentation. Shifts in allele frequencies, low genetic variability, and a small effective population size can be considered clear signs of forest fragmentation effects (due to genetic drift) over natural populations, while adaptive responses correlate with environmental variables. Brazilian Atlantic Forest had its landscape drastically reduced and fragmented. Now, several forest remnants are isolated from each other by urban and crop areas. We sampled Drosophila mediopunctata populations from eight forest remnants dispersed on two adjacent geomorphological regions, which are physiognomic and climatically quite distinct. Microsatellite data of inversion-free chromosomes (neutral genetic marker) indicate low structuration among populations suggesting that they were panmictic and greatly influenced by gene flow. Moreover, significant differences in chromosomal inversion frequencies (adaptive genetic marker) among populations and their correlations with climatic and geographical variables indicate that genetic divergence among populations could be an adaptive response to their environment. Nonetheless, we observed a significant difference in inversion frequencies of a population in two consecutive years that may be associated with edge and demographic effects. Also, it may be reflecting seasonal changes of inversion frequencies influenced by great temperature variation due to edge effects. Moreover, the forest fragment size does not affect genetic variation of neutral markers. Our data indicate that despite oscillations in chromosomal inversion frequencies, D. mediopunctata populations from Brazilian Atlantic Forest and their divergence may be driven by adaptive factors to local differences, perhaps because it is a small flying insect easily carried by the wind increasing its migration rates.
Collapse
Affiliation(s)
- Marcos R. D. Batista
- Departamento de Genética, Evolução, Microbiologia e ImunologiaInstituto de Biologia, Universidade Estadual de Campinas – UnicampCampinasSPBrasil
| | - Rafael E. S. Penha
- Departamento de Genética, Evolução, Microbiologia e ImunologiaInstituto de Biologia, Universidade Estadual de Campinas – UnicampCampinasSPBrasil
| | - Silvia H. Sofia
- Departamento de Biologia Geral, Centro de Ciências BiológicasUniversidade Estadual de LondrinaLondrinaPRBrasil
| | - Louis B. Klaczko
- Departamento de Genética, Evolução, Microbiologia e ImunologiaInstituto de Biologia, Universidade Estadual de Campinas – UnicampCampinasSPBrasil
| |
Collapse
|
13
|
Kergunteuil A, Röder G, Rasmann S. Environmental gradients and the evolution of tri-trophic interactions. Ecol Lett 2018; 22:292-301. [DOI: 10.1111/ele.13190] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/14/2018] [Accepted: 10/31/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Alan Kergunteuil
- Functional Ecology Laboratory; Institute of Biology; University of Neuchâtel; rue Emile Argand 11 2000 Neuchâtel Switzerland
| | - Gregory Röder
- Fundamental and Applied Research in Chemical Ecology; Institute of Biology; University of Neuchâtel; rue Emile Argand 11 2000 Neuchâtel Switzerland
| | - Sergio Rasmann
- Functional Ecology Laboratory; Institute of Biology; University of Neuchâtel; rue Emile Argand 11 2000 Neuchâtel Switzerland
| |
Collapse
|