1
|
Raheja Y, Singh V, Sharma G, Tsang A, Chadha BS. A thermostable and inhibitor resistant β-glucosidase from Rasamsonia emersonii for efficient hydrolysis of lignocellulosics biomass. Bioprocess Biosyst Eng 2024; 47:567-582. [PMID: 38470501 DOI: 10.1007/s00449-024-02988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The present study reports a highly thermostable β-glucosidase (GH3) from Rasamsonia emersonii that was heterologously expressed in Pichia pastoris. Extracellular β-glucosidase was purified to homogeneity using single step affinity chromatography with molecular weight of ~ 110 kDa. Intriguingly, the purified enzyme displayed high tolerance to inhibitors mainly acetic acid, formic acid, ferulic acid, vanillin and 5-hydroxymethyl furfural at concentrations exceeding those present in acid steam pretreated rice straw slurry used for hydrolysis and subsequent fermentation in 2G ethanol plants. Characteristics of purified β-glucosidase revealed the optimal activity at 80 °C, pH 5.0 and displayed high thermostability over broad range of temperature 50-70 °C with maximum half-life of ~ 60 h at 50 °C, pH 5.0. The putative transglycosylation activity of β-glucosidase was appreciably enhanced in the presence of methanol as an acceptor. Using the transglycosylation ability of β-glucosidase, the generated low cost mixed glucose disaccharides resulted in the increased induction of R. emersonii cellulase under submerged fermentation. Scaling up the recombinant protein production at fermenter level using temporal feeding approach resulted in maximal β-glucosidase titres of 134,660 units/L. Furthermore, a developed custom made enzyme cocktail consisting of cellulase from R. emersonii mutant M36 supplemented with recombinant β-glucosidase resulted in significantly enhanced hydrolysis of pretreated rice straw slurry from IOCL industries (India). Our results suggest multi-faceted β-glucosidase from R. emersonii can overcome obstacles mainly high cost associated enzyme production, inhibitors that impair the sugar yields and thermal inactivation of enzyme.
Collapse
Affiliation(s)
- Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Varinder Singh
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | | |
Collapse
|
2
|
Durbha SR, Siromani N, Jaldhani V, Krishnakanth T, Thuraga V, Neeraja CN, Subrahmanyam D, Sundaram RM. Dynamics of starch formation and gene expression during grain filling and its possible influence on grain quality. Sci Rep 2024; 14:6743. [PMID: 38509120 PMCID: PMC10954615 DOI: 10.1038/s41598-024-57010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
In rice, grain filling is a crucial stage where asynchronous filling of the pollinated spikelet's of the panicle occurs. It can influence both grain quality and yield. In rice grain, starch is the dominant component and contains amylose and amylopectin. Amylose content is the chief cooking quality parameter, however, rice varieties having similar amylose content varied in other parameters. Hence, in this study, a set of varieties varying in yield (04) and another set (12) of varieties that are similar in amylose content with variation in gel consistency and alkali spreading value were used. Panicles were collected at various intervals and analysed for individual grain weight and quantities of amylose and amylopectin. Gas exchange parameters were measured in varieties varying in yield. Upper branches of the panicles were collected from rice varieties having similar amylose content and were subjected to gene expression analysis with fourteen gene specific primers of starch synthesis. Results indicate that grain filling was initiated simultaneously in multiple branches. Amylose and amylopectin quantities increased with the increase in individual grain weight. However, the pattern of regression lines of amylose and amylopectin percentages with increase in individual grain weight varied among the varieties. Gas exchange parameters like photosynthetic rate, stomatal conductance, intercellular CO2 and transpiration rate decreased with the increase in grain filling period in both good and poor yielding varieties. However, they decreased more in poor yielders. Expression of fourteen genes varied among the varieties and absence of SBE2b can be responsible for medium or soft gel consistency.
Collapse
Affiliation(s)
- Sanjeeva Rao Durbha
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India.
| | - N Siromani
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - V Jaldhani
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - T Krishnakanth
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - Vishnukiran Thuraga
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - C N Neeraja
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - D Subrahmanyam
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - R M Sundaram
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| |
Collapse
|
3
|
George NM, Hany-Ali G, Abdelhaliem E, Abdel-Haleem M. Alleviating the drought stress and improving the plant resistance properties of Triticum aestivum via biopriming with aspergillus fumigatus. BMC PLANT BIOLOGY 2024; 24:150. [PMID: 38418956 PMCID: PMC10900732 DOI: 10.1186/s12870-024-04840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Wheat (Triticum aestivum L.) is one of the most widely grown and vital cereal crops, containing a high percentage of basic nutrients such as carbohydrates and proteins. Drought stress is one of the most significant limitations on wheat productivity. Due to climate change influences plant development and growth, physiological processes, grain quality, and yield. Drought stress has elicited a wide range of plant responses, namely physiological and molecular adaptations. Biopriming is one of the recent attempts to combat drought stress. Mitigating the harmful impact of abiotic stresses on crops by deploying extreme-habitat-adapted symbiotic microbes. The purpose of this study was to see how biopriming Triticum aestivum grains affected the effects of inoculating endophytic fungi Aspergillus fumigatus ON307213 isolated from stressed wheat plants in four model agricultural plants (Gemmiza-7, Sids-1, Sakha8, and Giza 168). And its viability in reducing drought stress through the use of phenotypic parameters such as root and shoot fresh and dry weight, shoot and root length, and so on. On a biochemical and physiological level, enzymatic parameters such as catalase and superoxidase dismutase are used. Total phenolics, flavonoids, and photosynthetic pigments are non-enzymatic parameters. Making use of molecular techniques such as reverse transcriptase polymerase chain reaction (RT-PCR). RESULTS It has been found that using Aspergillus fumigatus as a biological biopriming tool can positively impact wheat plants experiencing drought stress. The total biomass of stressed wheat plants that had been bio-primed rose by more than 40% as compared to wheat plants that had not been bio-primed. A. fumigatus biopriming either increased or decreased the amount of enzymatic and non-enzymatic substances on biochemical scales, aside from the noticeable increase in photosynthetic pigment that occurs in plants that have been bio-primed and stressed. Drought-resistant genes show a biopriming influence in gene expression. CONCLUSIONS This is the first paper to describe the practicality of a. fumigatus biopriming and its effect on minimizing the degrading effects of drought through water limitation. It suggests the potential applications of arid habitat-adapted endophytes in agricultural systems.
Collapse
Affiliation(s)
- Nelly Michel George
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Gehad Hany-Ali
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ekram Abdelhaliem
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed Abdel-Haleem
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
4
|
Ammar A, Ali Z, Saddique MAB, Habib-Ur-Rahman M, Ali I. Upregulation of TaHSP90A transcripts enhances heat tolerance and increases grain yield in wheat under changing climate conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23275. [PMID: 38326233 DOI: 10.1071/fp23275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Plants have certain adaptation mechanisms to combat temperature extremes and fluctuations. The heat shock protein (HSP90A) plays a crucial role in plant defence mechanisms under heat stress. In silico analysis of the eight TaHSP90A transcripts showed diverse structural patterns in terms of intron/exons, domains, motifs and cis elements in the promoter region in wheat. These regions contained cis elements related to hormones, biotic and abiotic stress and development. To validate these findings, two contrasting wheat genotypes E-01 (thermo-tolerant) and SHP-52 (thermo-sensitive) were used to evaluate the expression pattern of three transcripts TraesCS2A02G033700.1, TraesCS5B02G258900.3 and TraesCS5D02G268000.2 in five different tissues at five different temperature regimes. Expression of TraesCS2A02G033700.1 was upregulated (2-fold) in flag leaf tissue after 1 and 4h of heat treatment in E-01. In contrast, SHP-52 showed downregulated expression after 1h of heat treatment. Additionally, it was shown that under heat stress, the increased expression of TaHSP90A led to an increase in grain production. As the molecular mechanism of genes involved in heat tolerance at the reproductive stage is mostly unknown, these results provide new insights into the role of TaHSP90A transcripts in developing phenotypic plasticity in wheat to develop heat-tolerant cultivars under the current changing climate scenario.
Collapse
Affiliation(s)
- Ali Ammar
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 6000, Pakistan
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 6000, Pakistan; and Department of Plant Breeding & Genetics, University of Agriculture, Faisalabad 38000, Pakistan; and Programs and Projects Department, Islamic Organization for Food Security, Astana 019900, Kazakhstan
| | | | | | - Imtiaz Ali
- Regional Agricultural Research Institute, Bahawalpur 63100. Pakistan
| |
Collapse
|
5
|
Anwaar S, Jabeen N, Ahmad KS, Shafique S, Irum S, Ismail H, Khan SU, Tahir A, Mehmood N, Gleason ML. Cloning of maize chitinase 1 gene and its expression in genetically transformed rice to confer resistance against rice blast caused by Pyricularia oryzae. PLoS One 2024; 19:e0291939. [PMID: 38227608 PMCID: PMC10791007 DOI: 10.1371/journal.pone.0291939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/05/2023] [Indexed: 01/18/2024] Open
Abstract
Fungal pathogens are one of the major reasons for biotic stress on rice (Oryza sativa L.), causing severe productivity losses every year. Breeding for host resistance is a mainstay of rice disease management, but conventional development of commercial resistant varieties is often slow. In contrast, the development of disease resistance by targeted genome manipulation has the potential to deliver resistant varieties more rapidly. The present study reports the first cloning of a synthetic maize chitinase 1 gene and its insertion in rice cv. (Basmati 385) via Agrobacterium-mediated transformation to confer resistance to the rice blast pathogen, Pyricularia oryzae. Several factors for transformation were optimized; we found that 4-week-old calli and an infection time of 15 minutes with Agrobacterium before colonization on co-cultivation media were the best-suited conditions. Moreover, 300 μM of acetosyringone in co-cultivation media for two days was exceptional in achieving the highest callus transformation frequency. Transgenic lines were analyzed using molecular and functional techniques. Successful integration of the gene into rice lines was confirmed by polymerase chain reaction with primer sets specific to chitinase and hpt genes. Furthermore, real-time PCR analysis of transformants indicated a strong association between transgene expression and elevated levels of resistance to rice blast. Functional validation of the integrated gene was performed by a detached leaf bioassay, which validated the efficacy of chitinase-mediated resistance in all transgenic Basmati 385 plants with variable levels of enhanced resistance against the P. oryzae. We concluded that overexpression of the maize chitinase 1 gene in Basmati 385 improved resistance against the pathogen. These findings will add new options to resistant germplasm resources for disease resistance breeding. The maize chitinase 1 gene demonstrated potential for genetic improvement of rice varieties against biotic stresses in future transformation programs.
Collapse
Affiliation(s)
- Sadaf Anwaar
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Nyla Jabeen
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Khawaja Shafique Ahmad
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Saima Shafique
- Department of Plant Breeding and Molecular Genetics, University of Poonch Rawalakot, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Samra Irum
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Siffat Ullah Khan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ateeq Tahir
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Nasir Mehmood
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Mark L. Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
6
|
Su Y, Li B, Liang W, Wen H, Wei W. The complete chloroplast genome of Orthosiphon aristatus (Blume) Miq. (Lamiaceae). Mitochondrial DNA B Resour 2024; 9:79-82. [PMID: 38222982 PMCID: PMC10786424 DOI: 10.1080/23802359.2023.2301012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024] Open
Abstract
Orthosiphon aristatus (Blume) Miq. 1858 is a Lamiaceae plant. It is mainly found in southern China. It is an excellent medicinal plant. The complete chloroplast genome of O. aristatus is 152,155 bp in length, with an average depth of 287×, and the GC content was 37.86%, a large single-copy (LSC) region of 83,098 bp, a small single-copy (SSC) region of 17,665 bp, and an inverted repeats (IRs) region of 25,696 bp make up the genome's typical tetragonal shape. In addition, the genome consisted of 128 genes, including 85 protein-coding genes, 35 transfer RNA (tRNA), and eight ribosomal RNA (rRNA) genes. A monophyletic group was established by O. aristatus and 13 plants from five genera of Lamiaceae, according to the phylogenetic tree. In contrast, an isolated monophyletic group was formed by the alien plant Cinnamomum aromaticum. The ML tree bootstrap value was relatively high, and O. aristatus was most closely related to Ocimum tenuiflorum and Ocimum basilicum. This study can help with species identification and phylogenetic analysis within O. aristatus and Lamiaceae species.
Collapse
Affiliation(s)
- Yongjing Su
- Faculty of Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Bing Li
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wenwen Liang
- Faculty of Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Haicheng Wen
- Faculty of Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Wei
- Faculty of Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
7
|
Liaqat S, Ali Z, Saddique MAB, Ikram RM, Ali I. Comparative transcript abundance of gibberellin oxidases genes in two barley ( Hordeum vulgare) genotypes with contrasting lodging resistance under different regimes of water deficit. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23246. [PMID: 38252957 DOI: 10.1071/fp23246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Barley (Hordeum vulgare ) is the world's fourth most important cereal crop, and is particularly well adapted to harsh environments. However, lodging is a major productivity constraint causing 13-65% yield losses. Gibberellic acid (GA) homeostatic genes such as HvGA20ox, HvGA3ox and HvGA2ox are responsible for changes in plant phenotype for height and internodal length that contribute towards lodging resistance. This study explored the expression of different HvGAox transcripts in two contrasting barley genotypes (5-GSBON-18, lodging resistant; and 5-GSBON-70, lodging sensitive), which were sown both under controlled (hydroponic, completely randomised factorial design) and field conditions (split-plot, completely randomised block design) with two irrigation treatments (normal with three irrigation events; and water deficit with one irrigation event). In the hydroponic experiment, expression analysis was performed on seedlings at 0, ¾, 1½, 3 and 6h after application of treatment. In the field experiment, leaf, shoot nodes and internodes were sampled. Downregulation of HvGA20ox.1 transcript and 2-fold upregulation of HvGA2ox.2 transcript were observed in 5-GSBON-18 under water deficit conditions. This genotype also showed a significant reduction in plant height (18-20%), lodging (<10%), and increased grain yield (15-18%) under stress. Utilisation of these transcripts in barley breeding has the potential to reduce plant height, lodging and increased grain yield.
Collapse
Affiliation(s)
- Shoaib Liaqat
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 60000, Pakistan
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 60000, Pakistan; and Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan; and Programs and Projects Department, Islamic Organization for Food Security, Astana, Kazakhstan
| | | | - Rao Muhammad Ikram
- Department of Agronomy, MNS University of Agriculture, Multan 60000, Pakistan
| | - Imtiaz Ali
- Regional Agricultural Research Institute, Bahawalpur 63100, Pakistan
| |
Collapse
|
8
|
Wu L, Meng F, Su X, Chen N, Peng D, Xing S. Transcriptomic responses to cold stress in Dendrobium huoshanense C.Z. Tang et S.J. Cheng. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1633-1646. [PMID: 38162923 PMCID: PMC10754796 DOI: 10.1007/s12298-023-01385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2024]
Abstract
Dendrobium huoshanense C.Z. Tang et S.J. Cheng is a perennial epiphytic herb of the family Orchidaceae. The main metabolites of D. huoshanense include polysaccharides and flavonoids. Low temperature is the main environmental factor that limits the growth and development of plants. However, changes that occur at the molecular level in response to low temperatures in D. huoshanense are poorly understood. We performed a transcriptome analysis at two time points of 0 d (control group) and 7 d (cold stress group) under culture of D. huoshanense at 4 °C. A total of 37.63 Gb transcriptomic data were generated using the MGI 2000 platform. These reads were assembled into 170,754 transcripts and 23,724 differentially expressed genes (DEGs) were obtained. Pathway analysis indicated that "flavonoid biosynthesis," "anthocyanin biosynthesis," "flavone and flavonol biosynthesis," and "plant hormone signal transduction" might play a vital role in the response of D. huoshanense to cold stress. Several important pathway genes were identified to be altered under cold stress, such as genes encoding polysaccharides, flavonoids, and plant hormone-signaling transduction kinase. In addition, the content of mannose and total flavonoids increased under cold stress. Twelve DEGs related to polysaccharides, flavonoid, and hormone pathways were selected from the transcriptome data for validation with real-time quantitative PCR (RT-qPCR). Our results provide a transcriptome database and candidate genes for further study of the response of D. huoshanense to cold stress. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01385-7.
Collapse
Affiliation(s)
- Liping Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Department of Pharmacy, Tongling Municipal Hospital, Tongling, 244000 China
| | - Fei Meng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012 China
| | - Xinglong Su
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Na Chen
- Institute of Health and Medicine, Joint Research Center for Chinese Herbal Medicine of Anhui, Hefei Comprehensive National Science Center, Bozhou, 236800 China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012 China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230038 China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012 China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012 China
| |
Collapse
|
9
|
Li G, Manzoor MA, Wang G, Chen C, Song C. Comparative analysis of KNOX genes and their expression patterns under various treatments in Dendrobium huoshanense. FRONTIERS IN PLANT SCIENCE 2023; 14:1258533. [PMID: 37860241 PMCID: PMC10582715 DOI: 10.3389/fpls.2023.1258533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Introduction KNOX plays a pivotal role in governing plant growth, development, and responses to diverse abiotic and biotic stresses. However, information on the relationship between the KNOX gene family and expression levels under different treatments in Dendrobium is still limited. Methods To address this problem, we first used bioinformatics methods and revealed the presence of 19 KNOX genes distributed among 13 chromosomes in the Dendrobium huoshanense genome. Through an analysis of phylogenetic relationships, these genes were classified into three distinct clades: class I, class II, and class M. Our investigation included promoter analysis, revealing various cis-acting elements associated with hormones, growth and development, and abiotic stress responses. Additionally, qRT-PCR experiments were conducted to assess the expression patterns of DhKNOX genes under different treatments, including ABA, MeJA, SA, and drought. Results The results demonstrated differential expression of DhKNOX genes in response to these treatments, thereby highlighting their potential roles in stress adaptation. Discussion Overall, our results contribute important insights for further investigations into the functional characterization of the Dendrobium KNOX gene family, shedding light on their roles in plant development and stress responses.
Collapse
Affiliation(s)
- Guohui Li
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyu Wang
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Cunwu Chen
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Cheng Song
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
10
|
Aizaz M, Lubna, Ahmad W, Khan I, Asaf S, Bilal S, Jan R, Asif S, Waqas M, Khan AL, Kim KM, AL-Harrasi A. Exploring the potential of halotolerant bacteria from coastal regions to mitigate salinity stress in wheat: physiological, molecular, and biochemical insights. FRONTIERS IN PLANT SCIENCE 2023; 14:1224731. [PMID: 37810397 PMCID: PMC10556533 DOI: 10.3389/fpls.2023.1224731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Salinity stress, a significant global abiotic stress, is caused by various factors such as irrigation with saline water, fertilizer overuse, and drought conditions, resulting in reduced agricultural production and sustainability. In this study, we investigated the use of halotolerant bacteria from coastal regions characterized by high salinity as a solution to address the major environmental challenge of salinity stress. To identify effective microbial strains, we isolated and characterized 81 halophilic bacteria from various sources, such as plants, rhizosphere, algae, lichen, sea sediments, and sea water. We screened these bacterial strains for their plant growth-promoting activities, such as indole acetic acid (IAA), phosphate solubilization, and siderophore production. Similarly, the evaluation of bacterial isolates through bioassay revealed that approximately 22% of the endophytic isolates and 14% of rhizospheric isolates exhibited a favorable influence on seed germination and seedling growth. Among the tested isolates, GREB3, GRRB3, and SPSB2 displayed a significant improvement in all growth parameters compared to the control. As a result, these three isolates were utilized to evaluate their efficacy in alleviating the negative impacts of salt stress (150 mM, 300 mM, and seawater (SW)) on the growth of wheat plants. The result showed that shoot length significantly increased in plants inoculated with bacterial isolates up to 15% (GREB3), 16% (GRRB3), and 24% (SPSB2), respectively, compared to the control. The SPSB2 strain was particularly effective in promoting plant growth and alleviating salt stress. All the isolates exhibited a more promotory effect on root length than shoot length. Under salt stress conditions, the GRRB3 strain significantly impacted root length, leading to a boost of up to 6%, 5%, and 3.8% at 150 mM, 300 mM, and seawater stress levels, respectively. The bacterial isolates also positively impacted the plant's secondary metabolites and antioxidant enzymes. The study also identified the WDREB2 gene as highly upregulated under salt stress, whereas DREB6 was downregulated. These findings demonstrate the potential of beneficial microbes as a sustainable approach to mitigate salinity stress in agriculture.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Waqar Ahmad
- Department of Engineering Technology, University of Houston, Sugar Land, TX, United States
| | - Ibrahim Khan
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Waqas
- Department of Agriculture Extension, Government of Khyber Pakhtunkhwa, Mardan, Pakistan
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, United States
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ahmed AL-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
11
|
Choi H, Jo Y, Cho WK. In Silico Virome Analysis of Chinese Narcissus Transcriptomes Reveals Diverse Virus Species and Genetic Diversity at Different Flower Development Stages. BIOLOGY 2023; 12:1094. [PMID: 37626980 PMCID: PMC10452245 DOI: 10.3390/biology12081094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Viromes of Chinese narcissus flowers were explored using transcriptome data from 20 samples collected at different flower development stages. Quality controlled raw data underwent de novo assembly, resulting in 5893 viral contigs that matched the seven virus species. The most abundant viruses were narcissus common latent virus (NCLV), narcissus yellow stripe virus (NYSV), and narcissus mottling-associated virus (NMaV). As flower development stages advanced, white tepal plants showed an increase in the proportion of viral reads, while the variation in viral proportion among yellow tepal plants was relatively small. Narcissus degeneration virus (NDV) dominated the white tepal samples, whereas NDV and NYSV prevailed in the yellow tepal samples. Potyviruses, particularly NDV, are the primary infectious viruses. De novo assembly generated viral contigs for five viruses, yielding complete genomes for NCLV, NDV, narcissus late season yellow virus (NLSYV), and NYSV. Phylogenetic analysis revealed genetic diversity, with distinct NCLV, NMaV, NDV, NLSYV, and NYSV groups. This study provides valuable insights into the viromes and genetic diversity of viruses in Chinese narcissus flowers.
Collapse
Affiliation(s)
- Hoseong Choi
- Plant Health Center, Seoul National University, Seoul 08826, Republic of Korea;
| | - Yeonhwa Jo
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
12
|
Khanum P, Khan AA, Khan IA, Ghaffar A, Khan Z. TPD1-like Gene as a Suitable Marker for Early Sex Determination in Date Palm ( Phoenix dactylifera L.). Genes (Basel) 2023; 14:genes14040907. [PMID: 37107665 PMCID: PMC10137359 DOI: 10.3390/genes14040907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Date palm (Phoenix dactylifera L.) is a considerably beneficial and economically profitable fruit crop. Female date palm plants produce fruit that is rich in fiber and sugar. Date palm is propagated by two means: suckers and seed. The propagation of date palm through seeds is very necessary for germplasm conservation and breeding. The late reproductive age (4-5 years) and dioecious nature of date palm make genetic improvement and breeding difficult. Early sex determination is the only way to improve breeding by selecting experimental male and female plants at the seedling stage. The primers for Tapetum Determinant 1 (TPD1-like) were designed using Amplify software. The DNA amplification of selected date palm suckers of three genotypes (Ajwa, Amber, and Medjool) was observed through PCR. Expression profiling of selected genotypes was carried out through semi-q PCR and RT-PCR by using the cDNA of suckers and unknown seedlings. Different in silico analyses were performed for the gene and protein characterization and identification of cis-acting elements in the promoter region. The promoter was identified along with the protein's properties and functionality. The expression of TPD1-like gene was found in the leaves of three selected genotypes of male sucker and in some plants of selected unknown seedlings that are considered male plants, and no expression was observed in female suckers and unknown seedlings that are considered female plants. The findings suggested that the TPD1-like gene has the potential for sex differentiation at the seedling stage, as the TPD1-like gene is essential to the specialization of tapetal cells and plays a critical role in plant reproduction.
Collapse
Affiliation(s)
- Plosha Khanum
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan 60000, Pakistan
| | - Asif Ali Khan
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan 60000, Pakistan
| | - Iqrar Ahmad Khan
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Abdul Ghaffar
- Department of Agronomy, MNS-University of Agriculture, Multan 60000, Pakistan
| | - Zulqurnain Khan
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan 60000, Pakistan
| |
Collapse
|
13
|
Bilal S, Khan T, Asaf S, Khan NA, Saad Jan S, Imran M, Al-Rawahi A, Khan AL, Lee IJ, Al-Harrasi A. Silicon-Induced Morphological, Biochemical and Molecular Regulation in Phoenix dactylifera L. under Low-Temperature Stress. Int J Mol Sci 2023; 24:ijms24076036. [PMID: 37047009 PMCID: PMC10094002 DOI: 10.3390/ijms24076036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Climate changes abruptly affect optimum growth temperatures, leading to a negative influence on plant physiology and productivity. The present study aimed to investigate the extent of low-temperature stress effects on date palm growth and physiological indicators under the exogenous application of silicon (Si). Date palm seedlings were treated with Si (1.0 mM) and exposed to different temperature regimes (5, 15, and 30 °C). It was observed that the application of Si markedly improved fresh and dry biomass, photosynthetic pigments (chlorophyll and carotenoids), plant morphology, and relative water content by ameliorating low-temperature-induced oxidative stress. Low-temperature stress (5 and 15 °C), led to a substantial upregulation of ABA-signaling-related genes (NCED-1 and PyL-4) in non Si treated plants, while Si treated plants revealed an antagonistic trend. However, jasmonic acid and salicylic acid accumulation were markedly elevated in Si treated plants under stress conditions (5 and 15 °C) in comparison with non Si treated plants. Interestingly, the upregulation of low temperature stress related plant plasma membrane ATPase (PPMA3 and PPMA4) and short-chain dehydrogenases/reductases (SDR), responsible for cellular physiology, stomatal conductance and nutrient translocation under silicon applications, was observed in Si plants under stress conditions in comparison with non Si treated plants. Furthermore, a significant expression of LSi-2 was detected in Si plants under stress, leading to the significant accumulation of Si in roots and shoots. In contrast, non Si plants demonstrated a low expression of LSi-2 under stress conditions, and thereby, reduced level of Si accumulation were observed. Less accumulation of oxidative stress was evident from the expression of superoxide dismutase (SOD) and catalase (CAT). Additionally, Si plants revealed a significant exudation of organic acids (succinic acid and citric acid) and nutrient accumulation (K and Mg) in roots and shoots. Furthermore, the application of Si led to substantial upregulation of the low temperature stress related soybean cold regulated gene (SRC-2) and ICE-1 (inducer of CBF expression 1), involved in the expression of CBF/DREB (C-repeat binding factor/dehydration responsive element binding factor) gene family under stress conditions in comparison with non Si plants. The current research findings are crucial for exploring the impact on morpho-physio-biochemical attributes of date palms under low temperature and Si supplementation, which may provide an efficient strategy for growing plants in low-temperature fields.
Collapse
Affiliation(s)
- Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Taimoor Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Nasir Ali Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Syed Saad Jan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Imran
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
| | - In-Jung Lee
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
14
|
Khalid MA, Ali Z, Tahir MHN, Ghaffar A, Ahmad J. Genetic Effects of GA-Responsive Dwarfing Gene Rht13 on Plant Height, Peduncle Length, Internodal Length and Grain Yield of Wheat under Drought Stress. Genes (Basel) 2023; 14:genes14030699. [PMID: 36980971 PMCID: PMC10048141 DOI: 10.3390/genes14030699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Reduction in plant height is generally associated with an increase in lodging resistance, drought tolerance and grain yield of wheat worldwide. Historically, a significant increase in grain yield was observed through the introduction of semi-dwarf wheat varieties utilizing the gibberellic acid-insensitive Rht genes (Rht1 or Rht2). The gibberellic acid sensitive (GA-sensitive) reduced height (Rht) genes are available that are alternatives to gibberellic acid insensitive (GA-insensitive) Rht genes, having a neutral effect on coleoptile length seedling vigor suggesting their potential in using alone or in combination with GA-insensitive Rht genes to improve grain yield and drought tolerance in wheat. This study was conducted to evaluate parents and F1 crosses under drought stress. The crossing was done using line × tester mating design, comprising eight lines and five testers having different GA-sensitive and GA-insensitive Rht genes. Parents and F1 crosses were sown in the field under RCBD with three replications in normal and drought stress. Data were recorded for morpho-physiological traits. The mean comparison showed significant differences among parents and hybrids for most of the studies’ traits. The general combining ability showed that line 1 is the good general combiner for days to heading, lodging (%), plant height, peduncle length, internodal length and days to maturity under normal conditions while L5 was the good general cobiner for chlorophyll contents and stomatal conductance both under normal and drought stress. The spcaicfic combing ability estimases showed that the cross L1 × T1 was best for days to heading, lodging (%), plant height and internodal length both under normal and drought stress. F1 hybrids showed a significant reduction in plant height (18–25%), peduncle length (20–28%) and increased grain yield (15–18%) under drought stress. Expression analysis showed upregulation of Rht13 at the middle part of the peduncle internode under drought stress. From the expression analysis, five crosses were selected, and their segregating population was raised and space-plated. Rht13 genes reduced plant height (−30 to −45%), peduncle length (−30 to −53%), peduncle internode length (−28% to −48%), increased spike length (+20% to +50%), number of grains per spike (+17 to +26%) and grain yield per plant (+29% to +50%) compared to Rht1 gene. These results suggested the possibility of using the GA-sensitive Rht13 gene for the development of high-yielding and drought-tolerant wheat varieties.
Collapse
Affiliation(s)
- Muhammad Arslan Khalid
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 66000, Pakistan
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 66000, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
- Programs and Projects Department, Islamic Organization for Food Security, Astana 019900, Kazakhstan
- Correspondence: ; Tel.: +92-300-684-2206
| | | | - Abdul Ghaffar
- Department of Agronomy, MNS University of Agriculture, Multan 66000, Pakistan
| | - Javed Ahmad
- Wheat Research Institute, Ayub Agricultural Research Institute Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
15
|
Aizaz M, Ahmad W, Asaf S, Khan I, Saad Jan S, Salim Alamri S, Bilal S, Jan R, Kim KM, Al-Harrasi A. Characterization of the Seed Biopriming, Plant Growth-Promoting and Salinity-Ameliorating Potential of Halophilic Fungi Isolated from Hypersaline Habitats. Int J Mol Sci 2023; 24:ijms24054904. [PMID: 36902334 PMCID: PMC10003710 DOI: 10.3390/ijms24054904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Salinity stress is one of the major abiotic factors limiting crop yield in arid and semi-arid regions. Plant growth-promoting fungi can help plants thrive in stressful conditions. In this study, we isolated and characterized 26 halophilic fungi (endophytic, rhizospheric, and soil) from the coastal region of Muscat, Oman, for plant growth-promoting activities. About 16 out of 26 fungi were found to produce IAA, and about 11 isolates (MGRF1, MGRF2, GREF1, GREF2, TQRF4, TQRF5, TQRF5, TQRF6, TQRF7, TQRF8, TQRF2) out of 26 strains were found to significantly improve seed germination and seedling growth of wheat. To evaluate the effect of the above-selected strains on salt tolerance in wheat, we grew wheat seedlings in 150 mM, 300 mM NaCl and SW (100% seawater) treatments and inoculated them with the above strains. Our findings showed that fungal strains MGRF1, MGRF2, GREF2, and TQRF9 alleviate 150 mM salt stress and increase shoot length compared to their respective control plants. However, in 300 mM stressed plants, GREF1 and TQRF9 were observed to improve shoot length. Two strains, GREF2 and TQRF8, also promoted plant growth and reduced salt stress in SW-treated plants. Like shoot length, an analogous pattern was observed in root length, and different salt stressors such as 150 mM, 300 mM, and SW reduced root length by up to 4%, 7.5%, and 19.5%, respectively. Three strains, GREF1, TQRF7, and MGRF1, had higher catalase (CAT) levels, and similar results were observed in polyphenol oxidase (PPO), and GREF1 inoculation dramatically raised the PPO level in 150 mM salt stress. The fungal strains had varying effects, with some, such as GREF1, GREF2, and TQRF9, showing a significant increase in protein content as compared to their respective control plants. Under salinity stress, the expression of DREB2 and DREB6 genes was reduced. However, the WDREB2 gene, on the other hand, was shown to be highly elevated during salt stress conditions, whereas the opposite was observed in inoculated plants.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Waqar Ahmad
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ibrahim Khan
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Syed Saad Jan
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Safiya Salim Alamri
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: (K.-M.K.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
- Correspondence: (K.-M.K.); (A.A.-H.)
| |
Collapse
|
16
|
Dive A, Singhal R, Srivastava S, Shukre K, James D, Shetty S. Isolation and functional characterization of novel isoprene synthase from Artocarpus heterophyllus (jackfruit). 3 Biotech 2023; 13:24. [PMID: 36573156 PMCID: PMC9789294 DOI: 10.1007/s13205-022-03441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Isoprene, a Natural Volatile Organic Compound (NVOC) is one of the chief by-products of plant metabolism with important applications in the synthesis of rubber and pharmaceuticals as a platform molecule. Isoprene was obtained earlier from petroleum sources; however, to synthesise it new fermentation-based strategies are being adopted. Bioinformatics tools were utilised to isolate the Isoprene Synthase (IspS) gene which converts the precursors Isopentenyl Diphosphate (IPP) and Dimethylallyl Diphosphate (DMAPP) into isoprene. Metabolic engineering strategies were to synthesise an isoprene-producing recombinant clone derived from Artocarpus heterophyllus (jackfruit). The functional characterization was done using the overexpression of the isoprene synthase gene in an Escherichia coli BL21 host. The recombinant clone, ISPS_GBL_001 (submitted to GenBank, National Centre for Biotechnology Information or NCBI) was used for fermentation in the batch and fed-batch mode to produce isoprene. Isoprene productivity of 0.08 g/g dextrose was obtained via the fed-batch mode maintaining the process parameters at optimum. The quantification and confirmation of isoprene was done using gas chromatography (GC) and GC-mass spectrometry (GC-MS) of the extracted sample, respectively. This study makes significant contribution to the ongoing research on bio-isoprene synthesis by highlighting a novel plant source of the IspS gene followed by, its successful expression in a recombinant host, validated by fermentation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03441-7.
Collapse
Affiliation(s)
- Amol Dive
- Institute of Chemical Technology, Matunga, Mumbai, India
- Godavari Biorefineries Ltd., Mahape, Navi Mumbai, India
| | - Rekha Singhal
- Institute of Chemical Technology, Matunga, Mumbai, India
| | | | - Kedar Shukre
- Godavari Biorefineries Ltd., Mahape, Navi Mumbai, India
| | - Deepak James
- Godavari Biorefineries Ltd., Mahape, Navi Mumbai, India
| | - Sneha Shetty
- Godavari Biorefineries Ltd., Mahape, Navi Mumbai, India
| |
Collapse
|
17
|
Molecular Detection of Southern Tomato Amalgavirus Prevalent in Tomatoes and Its Genomic Characterization with Global Evolutionary Dynamics. Viruses 2022; 14:v14112481. [PMID: 36366579 PMCID: PMC9693158 DOI: 10.3390/v14112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Southern tomato amalgavirus (STV) is a cryptic pathogen that is abundant in tomato production fields and intensifies the resurgence of tomato yellow stunt disease (ToYSD), together with other phytoviruses. Here, we mapped the geographical and genomic diversity, phylogenetics, and evolutionary dynamics of STV. We found that STV prevailed across China and Pakistan, with a maximum average rate of infection of 43.19% in Beijing, China, and 40.08% in Punjab, Pakistan. Subsequently, we amplified, cloned, and annotated the complete genome sequences of STV isolates from Solanum lycopersicum L. in China (OP548653 and OP548652) and Pakistan (MT066231) using Sanger and next-generation sequencing (NGS). These STV isolates displayed close evolutionary relationships with others from Asia, America, and Europe. Whole-genome-based molecular diversity analysis showed that STV populations had 33 haplotypes with a gene diversity (Hd) of 0.977 and a nucleotide diversity (π) of 0.00404. The genetic variability of RNA-dependent RNA-polymerase (RdRp) was higher than that of the putative coat protein (CP) p42. Further analysis revealed that STV isolates were likely to be recombinant but with a lower-to-moderate level of confidence. With a variable distribution pattern of positively and negatively selected sites, negative selection pressure predominantly acted on p42 and RdRp. These findings elaborated on the molecular variability and evolutionary trends among STV populations across major tomato-producing regions of the world.
Collapse
|
18
|
Khan T, Bilal S, Asaf S, Alamri SS, Imran M, Khan AL, Al-Rawahi A, Lee IJ, Al-Harrasi A. Silicon-Induced Tolerance against Arsenic Toxicity by Activating Physiological, Anatomical and Biochemical Regulation in Phoenix dactylifera (Date Palm). PLANTS 2022; 11:plants11172263. [PMID: 36079645 PMCID: PMC9459973 DOI: 10.3390/plants11172263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022]
Abstract
Arsenic is a toxic metal abundantly present in agricultural, industrial, and pesticide effluents. To overcome arsenic toxicity and ensure safety for plant growth, silicon (Si) can play a significant role in its mitigation. Here, we aim to investigate the influence of silicon on date palm under arsenic toxicity by screening antioxidants accumulation, hormonal modulation, and the expression profile of abiotic stress-related genes. The results showed that arsenic exposure (As: 1.0 mM) significantly retarded growth attributes (shoot length, root length, fresh weight), reduced photosynthetic pigments, and raised reactive species levels. Contrarily, exogenous application of Si (Na2SiO3) to date palm roots strongly influenced stress mitigation by limiting the translocation of arsenic into roots and shoots as compared with the arsenic sole application. Furthermore, an enhanced accumulation of polyphenols (48%) and increased antioxidant activities (POD: 50%, PPO: 75%, GSH: 26.1%, CAT: 51%) resulted in a significant decrease in superoxide anion (O2•−: 58%) and lipid peroxidation (MDA: 1.7-fold), in silicon-treated plants, compared with control and arsenic-treated plants. The Si application also reduced the endogenous abscisic acid (ABA: 38%) under normal conditions, and salicylic acid (SA: 52%) and jasmonic acid levels (JA: 62%) under stress conditions as compared with control and arsenic. Interestingly, the genes; zeaxanthin epoxidase (ZEP) and 9-cis-epoxycarotenoid dioxygenase (NCED-1) involved in ABA biosynthesis were upregulated by silicon under arsenic stress. Likewise, Si application also upregulated gene expression of plant plasma membrane ATPase (PMMA-4), aluminum-activated malate transporter (ALMT) responsible for maintaining cellular physiology, stomatal conductance, and short-chain dehydrogenases/reductases (SDR) involved in nutrients translocation. Hence, the study demonstrates the remarkable role of silicon in supporting growth and inducing arsenic tolerance by increasing antioxidant activities and endogenous hormones in date palm. The outcomes of our study can be employed in further studies to better understand arsenic tolerance and decode mechanism.
Collapse
Affiliation(s)
- Taimoor Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Correspondence: (S.B.); (A.L.K.); (A.A.-H.)
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Safiya Salim Alamri
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Imran
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Korea
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
- Correspondence: (S.B.); (A.L.K.); (A.A.-H.)
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - In-Jung Lee
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Korea
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Correspondence: (S.B.); (A.L.K.); (A.A.-H.)
| |
Collapse
|
19
|
Gao L, Wang F, Hou T, Geng C, Xu T, Han B, Liu D. Dendrobium huoshanense C.Z.Tang et S.J.Cheng: A Review of Its Traditional Uses, Phytochemistry, and Pharmacology. Front Pharmacol 2022; 13:920823. [PMID: 35903345 PMCID: PMC9315951 DOI: 10.3389/fphar.2022.920823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/30/2022] [Indexed: 01/29/2023] Open
Abstract
Dendrobium huoshanense, a traditional medicinal and food homologous plant, belongs to the family Orchidaceae and has a long history of medicinal use. It is reported that the stem of D. huoshanense has a variety of bioactive ingredients such as polysaccharides, flavonoids, sesquiterpenes, phenols, etc. These bioactive ingredients make D. huoshanense remarkable for its pharmacological effects on anti-tumor, immunomodulation, hepatoprotective, antioxidant, and anticataract activities. In recent years, its rich pharmacological activities have attracted extensive attention. However, there is no systematic review focusing on the chemical compositions and pharmacological effects of D. huoshanense. Therefore, the present review aims to summarize current research on the chemical compositions and pharmacological activities of D. huoshanense. This study provides valuable references and promising ideas for further investigations of D. huoshanense.
Collapse
Affiliation(s)
- Leilei Gao
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu’an, China
- *Correspondence: Leilei Gao, ; Bangxing Han, ; Dong Liu,
| | - Fang Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu’an, China
| | - Tingting Hou
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Chunye Geng
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Tao Xu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu’an, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu’an, China
- *Correspondence: Leilei Gao, ; Bangxing Han, ; Dong Liu,
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu’an, China
- *Correspondence: Leilei Gao, ; Bangxing Han, ; Dong Liu,
| |
Collapse
|
20
|
Wani UM, Wani ZA, Koul AM, Amin A, Shah BA, Farooq F, Qadri RA. Isolation of high-quality RNA for high throughput applications from secondary metabolite-rich Crocus sativus L. BMC Res Notes 2022; 15:214. [PMID: 35725612 PMCID: PMC9208216 DOI: 10.1186/s13104-022-06095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Objective Isolating high-quality RNA is a basic requirement while performing high throughput sequencing, microarray, and various other molecular investigations. However, it has been quite challenging to isolate RNA with absolute purity from plants like Crocus sativus that are rich in secondary metabolites, polysaccharides, and other interfering compounds which often irreversibly co-precipitate with the RNA. While many methods have been proposed for RNA extraction including CTAB, TriZol, and SDS-based methods, which invariably yield less and poor quality RNA and hence it necessitated the isolation of high-quality RNA suitable for high throughput applications. Results In the present study we made certain adjustments to the available protocols including modifications in the extraction buffer itself and the procedure employed. Our method led to the isolation of clear and non-dispersive total RNA with an RNA Integrity Number (RIN) value greater than 7.5. The quality of the RNA was further assessed by qPCR-based amplification of mRNA and mature miRNAs such as Cs-MIR166c and Cs-MIR396a. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06095-z.
Collapse
Affiliation(s)
- Umer Majeed Wani
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India
| | - Zubair Ahmad Wani
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India
| | - Aabid M Koul
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India
| | - Asif Amin
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India
| | - Basit Amin Shah
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India
| | - Faizah Farooq
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India
| | - Raies A Qadri
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, 190 006, Jammu and Kashmir, India.
| |
Collapse
|
21
|
Cárdenas Espinosa MJ, Schmidgall T, Wagner G, Kappelmeyer U, Schreiber S, Heipieper HJ, Eberlein C. An optimized method for RNA extraction from the polyurethane oligomer degrading strain Pseudomonas capeferrum TDA1 growing on aromatic substrates such as phenol and 2,4-diaminotoluene. PLoS One 2021; 16:e0260002. [PMID: 34780548 PMCID: PMC8592408 DOI: 10.1371/journal.pone.0260002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/30/2021] [Indexed: 11/18/2022] Open
Abstract
Bacterial degradation of xenobiotic compounds is an intense field of research already for decades. Lately, this research is complemented by downstream applications including Next Generation Sequencing (NGS), RT-PCR, qPCR, and RNA-seq. For most of these molecular applications, high-quality RNA is a fundamental necessity. However, during the degradation of aromatic substrates, phenolic or polyphenolic compounds such as polycatechols are formed and interact irreversibly with nucleic acids, making RNA extraction from these sources a major challenge. Therefore, we established a method for total RNA extraction from the aromatic degrading Pseudomonas capeferrum TDA1 based on RNAzol® RT, glycogen and a final cleaning step. It yields a high-quality RNA from cells grown on TDA1 and on phenol compared to standard assays conducted in the study. To our knowledge, this is the first report tackling the problem of polyphenolic compound interference with total RNA isolation in bacteria. It might be considered as a guideline to improve total RNA extraction from other bacterial species.
Collapse
Affiliation(s)
| | - Tabea Schmidgall
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Georg Wagner
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Uwe Kappelmeyer
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Stephan Schreiber
- Department Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hermann J. Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Christian Eberlein
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
22
|
Carpinetti PDA, Fioresi VS, Ignez da Cruz T, de Almeida FAN, Canal D, Ferreira A, Ferreira MFDS. Efficient method for isolation of high-quality RNA from Psidium guajava L. tissues. PLoS One 2021; 16:e0255245. [PMID: 34310664 PMCID: PMC8312961 DOI: 10.1371/journal.pone.0255245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
Acquiring high-quality RNA in sufficient amounts is crucial in plant molecular biology and genetic studies. Several methods for RNA extraction from plants are available in the literature, mainly due to the great biochemical diversity present in each species and tissue, which can complicate or prevent the extraction. Psidium guajava (Myrtaceae family) is a perennial fruit tree of medicinal and economic value; nevertheless, only a few molecular studies are available for the species. One reason is the difficulty in obtaining RNA due to the content of the samples, which are rich in polyphenols, polysaccharides, and secondary metabolites. Furthermore, there are few studies available for the isolation of RNA from guava or Psidium samples, which hampers advances in the study of the genus. Here, quality and yields of RNA isolates were compared using six extraction protocols: two protocols based on the application of cetyltrimethylammonium bromide (CTAB) lysis buffer, one protocol which uses the TRIzol reagent, one which applies guanidine thiocyanate lysis buffer followed by organic phase extraction, and two commercial kits (PureLink RNA Mini Kit and RNeasy Plant Mini Kit). The CTAB-based method provided the highest RNA yields and quality for five different tissues (flower bud, immature leaf, young leaf, mature leaf, and root), genotypes, and stress conditions. For the most efficient protocol, the average yield of RNA from guava leaves was 203.06 μg/g of tissue, and the A260/A280 and A260/A230 ratios were 2.1 and 2.2, respectively. RT-qPCR analysis demonstrated that the purity of the samples was sufficient for molecular biology experiments. CTAB-based methods for RNA isolation were found to be the most efficient, providing the highest RNA yields and quality for tissues from P. guajava. Additionally, they were compatible for downstream RNA-based applications, besides being simple and cost-effective.
Collapse
Affiliation(s)
- Paola de Avelar Carpinetti
- Laboratory of Genetics and Plant Improvement, Department of Agronomy, Centre for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alegre, ES, Brazil
| | - Vinicius Sartori Fioresi
- Laboratory of Genetics and Plant Improvement, Department of Agronomy, Centre for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alegre, ES, Brazil
| | - Thais Ignez da Cruz
- Laboratory of Genetics and Plant Improvement, Department of Agronomy, Centre for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alegre, ES, Brazil
| | - Francine Alves Nogueira de Almeida
- Laboratory of Genetics and Plant Improvement, Department of Agronomy, Centre for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alegre, ES, Brazil
| | - Drielli Canal
- Laboratory of Genetics and Plant Improvement, Department of Agronomy, Centre for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alegre, ES, Brazil
| | - Adésio Ferreira
- Laboratory of Genetics and Plant Improvement, Department of Agronomy, Centre for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alegre, ES, Brazil
| | - Marcia Flores da Silva Ferreira
- Laboratory of Genetics and Plant Improvement, Department of Agronomy, Centre for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alegre, ES, Brazil
- * E-mail:
| |
Collapse
|
23
|
Lv Y, Tong X, Zhang P, Yu N, Gui S, Han R, Ge D. Comparative Transcriptomic Analysis on White and Blue Flowers of Platycodon grandiflorus to Elucidate Genes Involved in the Biosynthesis of Anthocyanins. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2811. [PMID: 34825015 PMCID: PMC8590723 DOI: 10.30498/ijb.2021.239899.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Platycodon grandiflorus has long been used in Northeast Asia as a food and folk medicine to treat various diseases. The intense blue color of P. grandiflorus corolla is its characteristic feature. OBJECTIVES By comparing deep transcriptomic data of P. grandiflorus and its white cultivar, we intended to elucidate the molecular mechanisms concerning the biosynthesis of anthocyanins in this plant. MATERIAL AND METHODS We sampled blue mature flowers (PgB) and yellow young buds (PgY) of P. grandiflorus. Meanwhile, mature flowers (PgW) of P. grandiflorus white cultivar were also collected for RNA extraction and next-generation sequencing. After high-throughput sequencing, Trinity software was applied for de novo assembly and the resultant 49934 unigenes were subjected for expression analysis and annotation against NR, KEGG, UniProt, and Pfam databases. RESULTS In all, 32.77 Gb raw data were generated and the gene expression profile for the flowers of P. grandiflorus was constructed. Pathway enrichment analysis demonstrated that genes involved in flavone and flavonol biosynthesis were differently expressed. CONCLUSIONS The extremely low expression of flavonoid-3',5'-hydroxylase in PgY and PgW was regarded as the reason for the formation of its white cultivar. Our findings provided useful information for further studies into the biosynthetic mechanism of anthocyanins.
Collapse
Affiliation(s)
- Yanping Lv
- School of Pharmacy, Anhui University of Chinese Medicine; Hefei 230012, China
| | - Xiaohui Tong
- School of Life Sciences, Anhui University of Chinese Medicine; Hefei 230012, China
| | - Pengfei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine; Hefei 230012, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine; Hefei 230012, China
| | - Shuangying Gui
- School of Pharmacy, Anhui University of Chinese Medicine; Hefei 230012, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine; Hefei 230012, China
| | - Dezhu Ge
- Department of Research and Development, Anhui Jiren Pharmaceutical Company; Bozhou 236800, China
| |
Collapse
|
24
|
Yi Y, Liu L, Zhou W, Peng D, Han R, Yu N. Characterization of GMPP from Dendrobium huoshanense yielding GDP-D-mannose. Open Life Sci 2021; 16:102-107. [PMID: 33817303 PMCID: PMC7988358 DOI: 10.1515/biol-2021-0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/10/2023] Open
Abstract
Dendrobium huoshanense has been used for centuries in China and its polysaccharides are the main active components in treating loss of body fluids resulting from fever and asthenic symptoms. However, the biosynthetic pathway of polysaccharides in D. huoshanense remains to be elucidated. In this study, we obtained a guanosine diphosphate (GDP)-mannose pyrophosphorylase (DhGMPP) from D. huoshanense and characterized its function to catalyze the conversion of α-D-mannose-phosphate to GDP-D-mannose involved in the production of polysaccharides. DhGMPP, with the open reading frame of 1,245 bp, was isolated from RNA-Seq data of D. huoshanense. Phylogenetic analysis as well as sequence characterization suggested its involvement in the biosynthesis of GDP-D-mannose. In vitro enzyme assay demonstrated that GMPP encoded a pyrophosphorylase that converted α-D-mannose-phosphate and GTP into GDP-D-mannose. Identification of DhGMPP could provide more insights into the mechanism concerning polysaccharide biosynthesis in D. huoshanense and be utilized for enhancing polysaccharide accumulation through metabolic engineering.
Collapse
Affiliation(s)
- Yuqi Yi
- School of Pharmacy, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Yaohai District, Hefei 230012, China
| | - Lulu Liu
- Department of Research and Development, Shanghai Zenith Pharmaceutical Technology Co. Ltd.; Shanghai 201199, China
| | - Wenyan Zhou
- Department of Research and Development, Hefei Yifan Biopharmaceutical Co. Ltd.; Hefei 230061, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Yaohai District, Hefei 230012, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Yaohai District, Hefei 230012, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Yaohai District, Hefei 230012, China
| |
Collapse
|
25
|
Huh SU. New function of Hypoxia-responsive unknown protein in enhanced resistance to biotic stress. PLANT SIGNALING & BEHAVIOR 2021; 16:1868131. [PMID: 33369516 PMCID: PMC7889266 DOI: 10.1080/15592324.2020.1868131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Submergence and waterlogging lead to significant reductions in crop productivity and trigger dramatic changes in gene expression of plant biotic/abiotic stress response. Several of the host factors are involved in low-oxygen stress that is induced by endogenous reactive oxygen species (ROS) accumulation. Hypoxia-response unknown protein (HUP) has been found as a host factor of hypoxia screening but HUPs function largely is unknown. In this study, we found the Arabidopsis HUP26 gene which was conserved in different plant species and responded to various oxidative stress. HUP26 promoter analysis showed GUS activity in root and leaf tissues was significantly responsive to oxidative stress. HUP26-GFP is predominantly located in the cytoplasmic region. HUP26 overexpression results in altered enhanced pathogenesis-related gene 1 gene expression and reduced ion leakage levels compared with hup26 knockout and WT plants after inoculation with Pst DC3000. HUP26 overexpression transgenic plants showed improved resistance to Pst DC3000, but hup26 knockout plants exhibited increased susceptibility. Collectively, these results indicate that HUP26 plays important role in responses to various oxidative stress and confers biotic stress resistance. Engineering of HUP26 gene expression may represent a strategy to enhance biotic stress resistance of crops.
Collapse
Affiliation(s)
- Sung Un Huh
- Department of Biology, Kunsan National University, Gunsan, Republic of Korea
- CONTACT Sung Un Huh Department of Biology, Kunsan National University, Gunsan54150, Republic of Korea
| |
Collapse
|
26
|
Gaafar ARZ, Al-Qurainy F, Alshameri A, Khan S, Nadeem M, Tarroum M, Alansi S, Shaikhaldein HO, Salih AM, Arrak Alenezi N. High RNA quality extracted from the tolerant crop Cyamopsis tetragonoloba (L.) despite possession of low RNA integrity number. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1910567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
| | - Fahad Al-Qurainy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Aref Alshameri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salim Khan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Nadeem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Tarroum
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Alansi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hassan O. Shaikhaldein
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdalrhaman M. Salih
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Norah Arrak Alenezi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
A rapid RNA extraction method from oil palm tissues suitable for reverse transcription quantitative real-time PCR (RT-qPCR). 3 Biotech 2020; 10:530. [PMID: 33214977 DOI: 10.1007/s13205-020-02514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022] Open
Abstract
Cetyltrimethylammonium bromide (CTAB) is the preferred detergent in RNA extraction of oil palm tissues. However, the CTAB-based protocol is time-consuming. In this study, a combination of the CTAB-based method and silica-based purification reduced the extraction time from two days to five hours. Quality of total RNA from 27 different tissues of oil palm was shown to have an RNA integrity number (RIN) value of more than seven. The extracted RNA was evaluated by RT-qPCR using three reference oil palm genes (GRAS, CYP2, and SLU7) and three putative mesocarp-specific transcripts annotated as WRKY DNA-binding protein 70 (WRKY-70), metallothionein (MT) and pentatricopeptide repeat (PPR) genes. Tissue-specific expression profiling across complete developmental stages of mesocarp and vegetative tissues was determined in this study. Overall, the RNA extraction protocol described here is rapid, simple and yields good quality RNAs from oil palm tissues.
Collapse
|
28
|
A universal method for high-quality RNA extraction from plant tissues rich in starch, proteins and fiber. Sci Rep 2020; 10:16887. [PMID: 33037299 PMCID: PMC7547072 DOI: 10.1038/s41598-020-73958-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
Using existing protocols, RNA extracted from seeds rich in starch often results in poor quality RNA, making it inappropriate for downstream applications. Though some methods are proposed for extracting RNA from plant tissue rich in starch and other polysaccharides, they invariably yield less and poor quality RNA. In order to obtain high yield and quality RNA from seeds and other plant tissues including roots a modified SDS-LiCl method was compared with existing methods, including TRIZOL kit (Invitrogen), Plant RNeasy mini kit (Qiagen), Furtado (2014) method, and CTAB-LiCl method. Modifications in the extraction buffer and solutions used for RNA precipitation resulted in a robust method for extracting RNA in seeds and roots, where extracting quality RNA is challenging. The modified SDS-LiCl method revealed intense RNA bands through gel electrophoresis and a nanodrop spectrophotometer detected ratios of ≥ 2 and 1.8 for A260/A230 and A260/A280, respectively. The absence of starch co-precipitation during RNA extraction resulted in enhanced yield and quality of RNA with RIN values of 7-9, quantified using a bioanalyzer. The high-quality RNA obtained was demonstrated to be suitable for downstream applications, such as cDNA synthesis, gene amplification, and RT-qPCR. The method was also effective in extracting RNA from seeds of other cereals including field-grown sorghum and corn. The modified SDS-LiCl method is a robust and highly reproducible RNA extraction method for plant tissues rich in starch and other secondary metabolites. The modified SDS-LiCl method successfully extracted high yield and quality RNA from mature, developing, and germinated seeds, leaves, and roots exposed to different abiotic stresses.
Collapse
|
29
|
Dutta S, Muthusamy V, Chhabra R, Zunjare RU, Hossain F. Two-step method for isolation of high-quality RNA from stored seeds of maize rich in starch. 3 Biotech 2020; 10:433. [PMID: 32999811 DOI: 10.1007/s13205-020-02424-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022] Open
Abstract
A modified SDS-Trizol method was optimized for isolation of total RNA from the stored maize seeds at regular interval of one month for 4 months. Use of SDS extraction buffer before the use of Trizol reduced the co-precipitation problem associated with high carbohydrate content in the seed. Recorded mean RNA yield from seeds across the storage intervals was 978.6 ± 65.46 ng/µl. Average spectrophotometric values (A 260/280) of isolated RNA varied from 1.974 ± 0.033 to 1.998 ± 0.022. Attempts to isolate RNA from green leaves using Trizol method also ensured comparable quality and quantity of the isolated RNA. RNA yield from fresh leaves was recorded 1008.2 ± 77.088 ng/µl which is slightly higher than the mean RNA yield from seeds across months. Observed mean A 260/280 values of isolated RNA were 1.984 ± 0.030. DNase treatment further improved the A 260/280 ratio in both seeds (2.003 ± 0.006) and leaves (2.012 ± 0.037). High quality and quantity along with integrity of the isolated RNA was ensured through downstream analysis after RNA extraction such as first-strand cDNA synthesis and normal PCR. Extraction of RNA from the stored seeds using modified SDS-based Trizol method and from fresh leaves using Trizol method opened new possibility of understanding role of key genes involving developmental steps especially in the stored seeds.
Collapse
Affiliation(s)
- Suman Dutta
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Vignesh Muthusamy
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Rashmi Chhabra
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Rajkumar U Zunjare
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Firoz Hossain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
30
|
Khan AL, Asaf S, Khan A, Khan A, Imran M, Al-Harrasi A, Lee IJ, Al-Rawahi A. Transcriptomic analysis of Dubas bug (Ommatissus lybicus Bergevin) infestation to Date Palm. Sci Rep 2020; 10:11505. [PMID: 32661358 PMCID: PMC7359322 DOI: 10.1038/s41598-020-67438-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 06/08/2020] [Indexed: 01/03/2023] Open
Abstract
Date palm (Phoenix dactylifera L.) and its fruit possess sociocultural, health and economic importance in Middle East. The date palm plantations are prone to Dubas bug (DB; Ommatissus lybicus DeBergevin; Homoptera: Tropiduchidae) attacks that severely damages the tree's growth and reduces fruit production. However, the transcriptome related datasets are not known to understand how DB activates physiological and gene regulatory mechanisms during infestation. Hence, we performed RNA-Seq of leaf infected with or without DB to understand the molecular responses of date palm seedlings. Before doing that, we noticed that DB infestation significantly increase superoxide anion and malondialdehyde production to two-folds as compared to healthy control. Stress-responsive genes such as proline transporter 2, NADP-dependent glyceraldehyde and superoxide dismutase were found significantly upregulated in infected seedlings. The infection repercussions were also revealed by significantly higher contents of endogenous phytohormonal signaling of jasmonic acid (JA) and salicylic acid (SA) compared with control. These findings persuaded to dig out intrinsic mechanisms and gene regulatory networks behind DB infestation to date palm by RNA-Seq analysis. Transcriptome analysis revealed upregulation of 6,919 genes and down-regulation of 2,695 genes in leaf during the infection process. The differentially expressed genes were mostly belongs to cellular functions (calcium and MAPK), phytohormones (auxin, gibberellins, abscisic acid, JA and SA), and secondary metabolites (especially coumarinates and gossypol). The data showed that defense responses were aggravated by gene networks involved in hypersensitive responses (PAR1, RIN4, PBS1 etc.). In conclusion, the results revealed that date palm's leaf up-regulates both cellular and phytohormonal determinants, followed by intrinsic hypersensitive responses to counter infestation process by Dubas bug.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Adil Khan
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Arif Khan
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman
| |
Collapse
|
31
|
Khan A, Khan AL, Imran M, Asaf S, Kim YH, Bilal S, Numan M, Al-Harrasi A, Al-Rawahi A, Lee IJ. Silicon-induced thermotolerance in Solanum lycopersicum L. via activation of antioxidant system, heat shock proteins, and endogenous phytohormones. BMC PLANT BIOLOGY 2020; 20:248. [PMID: 32493420 PMCID: PMC7268409 DOI: 10.1186/s12870-020-02456-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 05/21/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Abiotic stresses (e.g., heat or limited water and nutrient availability) limit crop production worldwide. With the progression of climate change, the severity and variation of these stresses are expected to increase. Exogenous silicon (Si) has shown beneficial effects on plant growth; however, its role in combating the negative effects of heat stress and their underlying molecular dynamics are not fully understood. RESULTS Exogenous Si significantly mitigated the adverse impact of heat stress by improving tomato plant biomass, photosynthetic pigments, and relative water content. Si induced stress tolerance by decreasing the concentrations of superoxide anions and malondialdehyde, as well as mitigating oxidative stress by increasing the gene expression for antioxidant enzymes (peroxidases, catalases, ascorbate peroxidases, superoxide dismutases, and glutathione reductases) under stress conditions. This was attributed to increased Si uptake in the shoots via the upregulation of low silicon (SlLsi1 and SlLsi2) gene expression under heat stress. Interestingly, Si stimulated the expression and transcript accumulation of heat shock proteins by upregulating heat transcription factors (Hsfs) such as SlHsfA1a-b, SlHsfA2-A3, and SlHsfA7 in tomato plants under heat stress. On the other hand, defense and stress signaling-related endogenous phytohormones (salicylic acid [SA]/abscisic acid [ABA]) exhibited a decrease in their concentration and biosynthesis following Si application. Additionally, the mRNA and gene expression levels for SA (SlR1b1, SlPR-P2, SlICS, and SlPAL) and ABA (SlNCEDI) were downregulated after exposure to stress conditions. CONCLUSION Si treatment resulted in greater tolerance to abiotic stress conditions, exhibiting higher plant growth dynamics and molecular physiology by regulating the antioxidant defense system, SA/ABA signaling, and Hsfs during heat stress.
Collapse
Affiliation(s)
- Adil Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Yoon-Ha Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Muhammad Numan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, South Korea
| |
Collapse
|
32
|
Silicon and Gibberellins: Synergistic Function in Harnessing ABA Signaling and Heat Stress Tolerance in Date Palm ( Phoenix dactylifera L.). PLANTS 2020; 9:plants9050620. [PMID: 32413955 PMCID: PMC7285242 DOI: 10.3390/plants9050620] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022]
Abstract
Date palm is one of the most economically vital fruit crops in North African and Middle East countries, including Oman. A controlled experiment was conducted to investigate the integrative effects of silicon (Si) and gibberellic acid (GA3) on date palm growth and heat stress. The exogenous application of Si and GA3 significantly promoted plant growth attributes under heat stress (44 ± 1 °C). The hormonal modulation (abscisic acid [ABA] and salicylic acid [SA]), antioxidant accumulation, and the expression of abiotic stress-related genes were evaluated. Interestingly, heat-induced oxidative stress was markedly reduced by the integrative effects of Si and GA3 when compared to their sole application, with significant reductions in superoxide anions and lipid peroxidation. The reduction of oxidative stress was attributed to the enhancement of polyphenol oxidase, catalase, peroxidase, and ascorbate peroxidase activities as well as the upregulation of their synthesis related genes expression viz. GPX2, CAT, Cyt-Cu/Zn SOD, and glyceraldehyde3-phosphate dehydrogenase gene (GAPDH). The results showed the activation of heat shock factor related genes (especially HsfA3) during exogenous Si and GA3 as compared to the control. Furthermore, the transcript accumulation of ABA signaling-related genes (PYL4, PYL8, and PYR1) were significantly reduced with the combined treatment of Si and GA3, leading to reduced production of ABA and, subsequently, SA antagonism via its increased accumulation. These findings suggest that the combined application of Si and GA3 facilitate plant growth and metabolic regulation, impart tolerance against stress, and offers novel stress alleviating strategies for a green revolution in sustainable food security.
Collapse
|
33
|
Khan A, Kamran M, Imran M, Al-Harrasi A, Al-Rawahi A, Al-Amri I, Lee IJ, Khan AL. Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings. Sci Rep 2019; 9:19788. [PMID: 31874969 PMCID: PMC6930214 DOI: 10.1038/s41598-019-55651-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
Alkalinity is a known threat to crop plant growth and production, yet the role of exogenous silicon (Si) and salicylic acid (SA) application has been largely unexplored. Here, we sought to understand the beneficial impacts of Si and SA on tomato seedlings during high-pH (9.0) stress. Results showed that Si- and SA-treated plants displayed higher biomass, chlorophyll contents, relative leaf water and better root system than none-treated plants under alkaline conditions. Both Si and SA counteracted the alkaline stress-induced oxidative damage by lowering the accumulation of reactive oxygen species and lipid peroxidation. The major antioxidant defence enzyme activities were largely stimulated by Si and SA, and these treatments caused significantly increased K+ and lowered Na+ concentrations in shoot and root under stress. Moreover, Si and SA treatments modulated endogenous SA levels and dramatically decreased abscisic acid levels in both shoot and root. Additionally, key genes involved in Si uptake, SA biosynthesis, the antioxidant defence system and rhizosphere acidification were up-regulated in Si and SA treatments under alkaline conditions. These results demonstrate that Si and SA play critical roles in improving alkaline stress tolerance in tomato seedlings, by modifying the endogenous Na+ and K+ contents, regulating oxidative damage and key genes and modulating endogenous hormone levels. These findings will help to broaden our understanding regarding the physiological and molecular mechanisms associated with the alkaline soil tolerance in plants.
Collapse
Affiliation(s)
- Adil Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Muhammad Kamran
- Plant Transport and Signalling Lab, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Issa Al-Amri
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| |
Collapse
|
34
|
Khairul-Anuar MA, Mazumdar P, Lau SE, Tan TT, Harikrishna JA. High-quality RNA isolation from pigment-rich Dendrobium flowers. 3 Biotech 2019; 9:371. [PMID: 31588395 DOI: 10.1007/s13205-019-1898-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022] Open
Abstract
Isolation of high-quality RNA from Dendrobium flowers is challenging because of the high levels of pigment, polysaccharides, and polyphenols. In the present study, an efficient CTAB method for RNA extraction from the pigment-rich flowers of Dendrobium was optimised. The optimised method yielded high quantities of RNA (10.1-12.9 µg/g). Spectrophotometric values of A260/280 in the range of 2.2 to 2.4 and A260/230 values of 2.0 suggested that the isolated RNA was free of polyphenols, polysaccharides, and protein contaminants. RNA integrity numbers determined by microfluidics were in the range of 7.9-8.9 indicative of intact RNA. In the improved method, the addition of 3 M NaCl and 3% PVP-10 in the extraction buffer, followed by an incubation period of 45 min at 65 °C, eliminated most of the polysaccharides, polyphenolic compounds, and denatured protein. Extraction with phenol:chloroform:isoamyl alcohol (125:24:1) effectively removed pigments from the aqueous phase, while the precipitation of RNA with lithium chloride minimised the co-precipitation of protein, DNA, and polysaccharide and resulted in the extraction of high quality of RNA. The suitability of the RNA for downstream processing was confirmed via RT-PCR amplification of Chalcone synthase gene from cDNA prepared from RNA isolated from different developmental stages of the flower of a Dendrobium hybrid. The present method will be highly useful for the isolation of RNA from pigment, polyphenol, and polysaccharide-rich plant tissues.
Collapse
|
35
|
Liang ZY, Zhang JY, Huang YC, Zhou CJ, Wang YW, Zhou CH, Xing SP, Shun QS, Xu YX, Wei G. Identification of flavonoids in Dendrobium huoshanense and comparison with those in allied species of Dendrobium by TLC, HPLC and HPLC coupled with electrospray ionization multi-stage tandem MS analyses. J Sep Sci 2019; 42:1088-1104. [PMID: 30663861 DOI: 10.1002/jssc.201801021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/10/2018] [Accepted: 12/27/2018] [Indexed: 12/12/2022]
Abstract
Dendrobium huoshanense, a unique species in the genus Orchidaceae, is only found in China and is known as "mihu". Due to the lack of quality control, the use of D. huoshanense in the herbal market has been limited. In this study, methods based on thin-layer chromatography, high-performance liquid chromatography and high-performance liquid chromatography coupled with electrospray ionization multi-stage tandem mass spectrometry were used to identify the flavonoids in D. huoshanense and distinguish this species from other Dendrobium species. Using thin-layer chromatography, a characteristic band was observed for D. huoshanense, and this band was absent from the thin-layer chromatography plates of other Dendrobium species. Then, using high-performance liquid chromatography, nine peaks of flavonoids were observed in the chromatograms of ten batches of D. huoshanense. Ultimately, 22 flavonoids in D. huoshanense were identified by multi-stage tandem mass spectrometry, and 11 of these compounds are being reported from D. huoshanense for the first time. In addition, two compounds both with molecular weights of 710, were identified as being unique to D. huoshanense; one of these compounds, apigenin-6-C-α-L-rhamnosyl-(1→2)-β-D-glucoside-8-C-α-L-arabinoside, was proven to be responsible for the characteristic thin-layer chromatography band of D. huoshanense. These analysis methods can be applied for the identification and quality control of D. Huoshanense.
Collapse
Affiliation(s)
- Zhi-Yun Liang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Jun-Yi Zhang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Yue-Chun Huang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China.,The First Affliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Chu-Juan Zhou
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Ya-Wen Wang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Chun-Hua Zhou
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Shang-Ping Xing
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Qing-Sheng Shun
- Shanghai University of Medicine & Health Sciences, Shanghai, P. R. China
| | - Yi-Xin Xu
- Shanghai University of Medicine & Health Sciences, Shanghai, P. R. China
| | - Gang Wei
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| |
Collapse
|