1
|
Schellekens P, Van Loon E, Coemans M, Meyts I, Vennekens R, Kuypers D, Mekahli D, Bammens B. Leukopenia in autosomal dominant polycystic kidney disease: a single-center cohort of kidney transplant candidates with post-transplantation follow-up. Clin Kidney J 2023; 16:2578-2586. [PMID: 38046014 PMCID: PMC10689124 DOI: 10.1093/ckj/sfad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 12/05/2023] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) has occasionally been associated with lower peripheral white blood cell (WBC) counts. This study aimed to investigate the peripheral blood cell counts in a large cohort of kidney transplant recipients before and after kidney transplantation and its potential impact on post-transplant outcomes. Methods This was a retrospective study with long-term follow-up data of 2090 patients who underwent a first kidney transplantation in the Leuven University Hospitals, of whom 392 had ADPKD. Results In total, 2090 patients who underwent a first kidney transplantation in the Leuven University Hospitals were included, of whom 392 had ADPKD. Both pre- and post-transplantation, ADPKD patients had significantly lower total WBC counts, and more specifically lower neutrophil, lymphocyte and eosinophil counts compared with the non-ADPKD patients. This observation was independent of potential confounders such as level of inflammation, smoking habit, vitamins and pre-transplant medication. Overall survival and kidney transplant survival were significantly better in ADPKD vs non-ADPKD transplant recipients and a longer time to first infection was observed. However, no association between blood cell counts and outcome differences was found. Conclusions In conclusion, this large single-center study reports a strong and independent association between ADPKD and lower peripheral WBC counts both before and after kidney transplantation. Considering the role of inflammation in disease progression, further investigation into the role of WBC in ADPKD is needed.
Collapse
Affiliation(s)
- Pieter Schellekens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Cellular and Molecular Medicine, PKD Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals of Leuven, Leuven, Belgium
| | - Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals of Leuven, Leuven, Belgium
| | - Maarten Coemans
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Department of Pediatrics, Pediatric Immunology, University Hospitals of Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Department of Cellular and Molecular Medicine, VIB Centre for Brain and Disease Research, Laboratory of Ion Channel Research, KU Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals of Leuven, Leuven, Belgium
| | - Djalila Mekahli
- Department of Cellular and Molecular Medicine, PKD Research Group, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, University Hospitals of Leuven, Leuven, Belgium
| | - Bert Bammens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals of Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Formica V, Riondino S, Morelli C, Guerriero S, D'Amore F, Di Grazia A, Del Vecchio Blanco G, Sica G, Arkenau HT, Monteleone G, Roselli M. HIF2α, Hepcidin and their crosstalk as tumour-promoting signalling. Br J Cancer 2023; 129:222-236. [PMID: 37081189 PMCID: PMC10338631 DOI: 10.1038/s41416-023-02266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
Not all aspects of the disruption of iron homeostasis in cancer have been fully elucidated. Iron accumulation in cancer cells is frequent for many solid tumours, and this is often accompanied by the contemporary rise of two key iron regulators, HIF2α and Hepcidin. This scenario is different from what happens under physiological conditions, where Hepcidin parallels systemic iron concentrations while HIF2α levels are inversely associated to Hepcidin. The present review highlights the increasing body of evidence for the pro-tumoral effect of HIF2α and Hepcidin, discusses the possible imbalance in HIF2α, Hepcidin and iron homeostasis during cancer, and explores therapeutic options relying on these pathways as anticancer strategies.
Collapse
Affiliation(s)
- Vincenzo Formica
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy.
| | - Silvia Riondino
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Cristina Morelli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
- PhD Program in Systems and Experimental Medicine (XXXV cycle), University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Simona Guerriero
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Federica D'Amore
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Antonio Di Grazia
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | | | - Giuseppe Sica
- Department of Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | - Giovanni Monteleone
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mario Roselli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| |
Collapse
|
4
|
Clinkenbeard E. Fibroblast Growth Factor 23 Bone Regulation and Downstream Hormonal Activity. Calcif Tissue Int 2023; 113:4-20. [PMID: 37306735 DOI: 10.1007/s00223-023-01092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/01/2023] [Indexed: 06/13/2023]
Abstract
Mineral homeostasis of calcium and phosphate levels is one critical component to the maintenance of bone mineral density (BMD) and strength. Diseases that disrupt calcium and phosphate balanced have highlighted not only the role these minerals play in overall bone homeostasis, but also the factors, hormones and downstream transporters, responsible for mineral metabolism. The key phosphaturic hormone elucidated from studying rare heritable disorders of hypophosphatemia is Fibroblast Growth Factor 23 (FGF23). FGF23 is predominantly secreted from bone cells in an effort to maintain phosphate balance by directly controlling renal reabsorption and indirectly affecting intestinal uptake of this mineral. Multiple factors have been shown to enhance bone mRNA expression; however, FGF23 can also undergo proteolytic cleavage to control secretion of the biologically active form of the hormone. The review focuses specifically on the regulation of FGF23 and its secretion from bone as well as its hormonal actions under physiological and disease conditions.
Collapse
Affiliation(s)
- Erica Clinkenbeard
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, 635 Barnhill Drive MS 5023, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Hamza E, Vallejo-Mudarra M, Ouled-Haddou H, García-Caballero C, Guerrero-Hue M, Santier L, Rayego-Mateos S, Larabi IA, Alvarez JC, Garçon L, Massy ZA, Choukroun G, Moreno JA, Metzinger L, Meuth VML. Indoxyl sulfate impairs erythropoiesis at BFU-E stage in chronic kidney disease. Cell Signal 2023; 104:110583. [PMID: 36596353 DOI: 10.1016/j.cellsig.2022.110583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Chronic kidney disease (CKD) is a global health condition characterized by a progressive deterioration of kidney function. It is associated with high serum levels of uremic toxins (UT), such as Indoxyl Sulfate (IS), which may participate in the genesis of several uremic complications. Anemia is one of the major complications in CKD patients that contribute to cardiovascular disease, increase morbi-mortality, and is associated with a deterioration of kidney failure in these patients. Our study aimed to characterize the impact of IS on CKD-related erythropoiesis. Using cellular and pre-clinical models, we studied cellular and molecular effects of IS on the growth and differentiation of erythroid cells. First, we examined the effect of clinically relevant concentrations of IS (up to 250 μM) in the UT7/EPO cell line. IS at 250 μM increased apoptosis of UT7/EPO cells at 48 h compared to the control condition. We confirmed this apoptotic effect of IS in erythropoiesis in human primary CD34+ cells during the later stages of erythropoiesis. Then, in IS-treated human primary CD34+ cells and in a (5/6 Nx) mice model, a blockage at the burst-forming unit-erythroid (BFU-E) stage of erythropoiesis was also observed. Finally, IS deregulates a number of erythropoietic related genes such as GATA-1, Erythropoietin-Receptor (EPO-R), and β-globin. Our findings suggest that IS could affect cell viability and differentiation of erythroid progenitors by altering erythropoiesis and contributing to the development of anemia in CKD.
Collapse
Affiliation(s)
- Eya Hamza
- HEMATIM UR 4666, C.U.R.S, University of Picardie Jules Verne, CEDEX 1, 80025, Amiens, France
| | - Mercedes Vallejo-Mudarra
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Hakim Ouled-Haddou
- HEMATIM UR 4666, C.U.R.S, University of Picardie Jules Verne, CEDEX 1, 80025, Amiens, France
| | - Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Laure Santier
- HEMATIM UR 4666, C.U.R.S, University of Picardie Jules Verne, CEDEX 1, 80025, Amiens, France
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Islam Amine Larabi
- Service de Pharmacologie-Toxicologie, Groupe Hospitalier Universitaires AP-HP, Paris-Saclay, Hôpital Raymond Poincaré, FHU Sepsis, 92380 Garches, France; MasSpecLab, Plateforme de spectrométrie de masse, Inserm U-1173, Université Paris Saclay (Versailles Saint Quentin-en-Yvelines), 78180 Montigny-le-Bretonneux, France
| | - Jean-Claude Alvarez
- Service de Pharmacologie-Toxicologie, Groupe Hospitalier Universitaires AP-HP, Paris-Saclay, Hôpital Raymond Poincaré, FHU Sepsis, 92380 Garches, France; MasSpecLab, Plateforme de spectrométrie de masse, Inserm U-1173, Université Paris Saclay (Versailles Saint Quentin-en-Yvelines), 78180 Montigny-le-Bretonneux, France
| | - Loïc Garçon
- HEMATIM UR 4666, C.U.R.S, University of Picardie Jules Verne, CEDEX 1, 80025, Amiens, France; Service d'Hématologie Biologique, Centre Hospitalier Universitaire, Amiens, France
| | - Ziad A Massy
- Centre for Research in Epidemiology and Population Health (CESP), University Paris-Saclay, University Versailles-Saint Quentin, Inserm UMRS 1018, Clinical Epidemiology Team, Villejuif, France; Department of Nephrology, CHU Ambroise Paré, APHP, 92104 Boulogne Billancourt, Paris Cedex, France
| | - Gabriel Choukroun
- Department of Nephrology Dialysis Transplantation, Amiens University Medical Center, F-80000 Amiens, France; MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80000 Amiens, France
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
| | - Laurent Metzinger
- HEMATIM UR 4666, C.U.R.S, University of Picardie Jules Verne, CEDEX 1, 80025, Amiens, France.
| | - Valérie Metzinger-Le Meuth
- HEMATIM UR 4666, C.U.R.S, University of Picardie Jules Verne, CEDEX 1, 80025, Amiens, France; INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), UFR SMBH, University Sorbonne Paris Nord, 93000 Bobigny, France
| |
Collapse
|
6
|
Li K, Gao L, Zhou S, Ma YR, Xiao X, Jiang Q, Kang ZH, Liu ML, Liu TX. Erythropoietin promotes energy metabolism to improve LPS-induced injury in HK-2 cells via SIRT1/PGC1-α pathway. Mol Cell Biochem 2023; 478:651-663. [PMID: 36001204 DOI: 10.1007/s11010-022-04540-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Acute kidney injury (AKI) is one of frequent complications of sepsis with high mortality. Mitochondria is the center of energy metabolism participating in the pathogenesis of sepsis-associated AKI, and SIRT1/PGC1-α signaling pathway plays a crucial role in the modulation of energy metabolism. Erythropoietin (EPO) exerts protective functions on chronic kidney disease. We aimed to assess the effects of EPO on cell damage and energy metabolism in a cell model of septic AKI. Renal tubular epithelial cells HK-2 were treated with LPS and human recombinant erythropoietin (rhEPO). Cell viability was detected by CCK-8 and mitochondrial membrane potential was determined using JC-1 fluorescent probe. Then the content of ATP, ADP and NADPH, as well as lactic acid, were measured for the assessment of energy metabolism. Oxidative stress was evaluated by detecting the levels of ROS, MDA, SOD and GSH. Pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1β, were measured with ELISA. Moreover, qRT-PCR and western blot were performed to detect mRNA and protein expressions. shSIRT1 was used to knockdown SIRT1, while EX527 and SR-18292 were applied to inhibit SIRT1 and PGC1-α, respectively, to investigate the regulatory mechanism of rhEPO on inflammatory injury and energy metabolism. In LPS-exposed HK-2 cells, rhEPO attenuated cell damage, inflammation and abnormal energy metabolism, as indicated by the elevated cell viability, the inhibited oxidative stress, cell apoptosis and inflammation, as well as the increased mitochondrial membrane potential and energy metabolism. However, these protective effects induced by rhEPO were reversed after SIRT1 or PGC1-α inhibition. EPO activated SIRT1/PGC1-α pathway to alleviate LPS-induced abnormal energy metabolism and cell damage in HK-2 cells. Our study suggested that rhEPO played a renoprotective role through SIRT1/PGC1-α pathway, which supported its therapeutic potential in septic AKI.
Collapse
Affiliation(s)
- Kan Li
- Department of Nephrology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Li Gao
- Department of Gynaecology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Sen Zhou
- Department of Nephrology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Yan-Rong Ma
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Xiao Xiao
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Qian Jiang
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Zhi-Hong Kang
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Ming-Long Liu
- Department of Nephrology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Tian-Xi Liu
- Department of Nephrology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
7
|
Nguyen HTT, Radwanska M, Magez S. Tipping the balance between erythroid cell differentiation and induction of anemia in response to the inflammatory pathology associated with chronic trypanosome infections. Front Immunol 2022; 13:1051647. [PMID: 36420267 PMCID: PMC9676970 DOI: 10.3389/fimmu.2022.1051647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Infection caused by extracellular single-celled trypanosomes triggers a lethal chronic wasting disease in livestock and game animals. Through screening of 10 Trypanosoma evansi field isolates, exhibiting different levels of virulence in mice, the current study identifies an experimental disease model in which infection can last well over 100 days, mimicking the major features of chronic animal trypanosomosis. In this model, despite the well-controlled parasitemia, infection is hallmarked by severe trypanosomosis-associated pathology. An in-depth scRNA-seq analysis of the latter revealed the complexity of the spleen macrophage activation status, highlighting the crucial role of tissue resident macrophages (TRMs) in regulating splenic extramedullary erythropoiesis. These new data show that in the field of experimental trypanosomosis, macrophage activation profiles have so far been oversimplified into a bi-polar paradigm (M1 vs M2). Interestingly, TRMs exert a double-sided effect on erythroid cells. On one hand, these cells express an erythrophagocytosis associated signature. On another hand, TRMs show high levels of Vcam1 expression, known to support their interaction with hematopoietic stem and progenitor cells (HSPCs). During chronic infection, the latter exhibit upregulated expression of Klf1, E2f8, and Gfi1b genes, involved in erythroid differentiation and extramedullary erythropoiesis. This process gives rise to differentiation of stem cells to BFU-e/CFU-e, Pro E, and Baso E subpopulations. However, infection truncates progressing differentiation at the orthochromatic erythrocytes level, as demonstrated by scRNAseq and flow cytometry. As such, these cells are unable to pass to the reticulocyte stage, resulting in reduced number of mature circulating RBCs and the occurrence of chronic anemia. The physiological consequence of these events is the prolonged poor delivery of oxygen to various tissues, triggering lactic acid acidosis and the catabolic breakdown of muscle tissue, reminiscent of the wasting syndrome that is characteristic for the lethal stage of animal trypanosomosis.
Collapse
Affiliation(s)
- Hang Thi Thu Nguyen
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stefan Magez
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
8
|
Van den Eynde J, Jacquemyn X, Cloet N, Noé D, Gillijns H, Lox M, Gsell W, Himmelreich U, Luttun A, McCutcheon K, Janssens S, Oosterlinck W. Arteriovenous Fistulae in Chronic Kidney Disease and the Heart: Physiological, Histological, and Transcriptomic Characterization of a Novel Rat Model. J Am Heart Assoc 2022; 11:e027593. [PMID: 36205249 DOI: 10.1161/jaha.122.027593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Arteriovenous fistulae (AVFs) are the gold standard for vascular access in those requiring hemodialysis but may put an extra hemodynamic stress on the cardiovascular system. The complex interactions between the heart, kidney, and AVFs remain incompletely understood. Methods and Results We characterized a novel rat model of five-sixths partial nephrectomy (NX) and AVFs. NX induced increases in urea, creatinine, and hippuric acid. The addition of an AVF (AVF+NX) further increased urea and a number of uremic toxins such as trimethylamine N-oxide and led to increases in cardiac index, left and right ventricular volumes, and right ventricular mass. Plasma levels of uremic toxins correlated well with ventricular morphology and function. Heart transcriptomes identified altered expression of 8 genes following NX and 894 genes following AVF+NX, whereas 290 and 1431 genes were altered in the kidney transcriptomes, respectively. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed gene expression changes related to cell division and immune activation in both organs, suppression of ribosomes and transcriptional activity in the heart, and altered renin-angiotensin signaling as well as chronodisruption in the kidney. All except the latter were worsened in AVF+NX compared with NX. Conclusions Inflammation and organ dysfunction in chronic kidney disease are exacerbated following AVF creation. Furthermore, our study provides important information for the discovery of novel biomarkers and therapeutic targets in the management of cardiorenal syndrome.
Collapse
Affiliation(s)
| | | | - Nicolas Cloet
- Department of Cardiovascular Sciences KU Leuven Leuven Belgium
| | - Dries Noé
- Department of Cardiovascular Sciences KU Leuven Leuven Belgium
| | - Hilde Gillijns
- Department of Cardiovascular Sciences KU Leuven Leuven Belgium
| | - Marleen Lox
- Department of Cardiovascular Sciences KU Leuven Leuven Belgium
| | - Willy Gsell
- MoSAIC, Biomedical MRI, Department of Imaging and Pathology KU Leuven Leuven Belgium
| | - Uwe Himmelreich
- MoSAIC, Biomedical MRI, Department of Imaging and Pathology KU Leuven Leuven Belgium
| | - Aernout Luttun
- Department of Cardiovascular Sciences KU Leuven Leuven Belgium.,Endothelial Cell Biology Unit, Center for Molecular and Vascular Biology KU Leuven Leuven Belgium
| | - Keir McCutcheon
- Department of Cardiology Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle University Newcastle United Kingdom
| | - Stefan Janssens
- Department of Cardiovascular Sciences KU Leuven Leuven Belgium.,Department of Cardiovascular Diseases University Hospitals Leuven Leuven Belgium
| | - Wouter Oosterlinck
- Department of Cardiovascular Sciences KU Leuven Leuven Belgium.,Department of Cardiovascular Diseases University Hospitals Leuven Leuven Belgium
| |
Collapse
|
9
|
Qin Q, Liu Y, Yang Z, Aimaijiang M, Ma R, Yang Y, Zhang Y, Zhou Y. Hypoxia-Inducible Factors Signaling in Osteogenesis and Skeletal Repair. Int J Mol Sci 2022; 23:ijms231911201. [PMID: 36232501 PMCID: PMC9569554 DOI: 10.3390/ijms231911201] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sufficient oxygen is required to maintain normal cellular and physiological function, such as a creature’s development, breeding, and homeostasis. Lately, some researchers have reported that both pathological hypoxia and environmental hypoxia might affect bone health. Adaptation to hypoxia is a pivotal cellular event in normal cell development and differentiation and in pathological settings such as ischemia. As central mediators of homeostasis, hypoxia-inducible transcription factors (HIFs) can allow cells to survive in a low-oxygen environment and are essential for the regulation of osteogenesis and skeletal repair. From this perspective, we summarized the role of HIF-1 and HIF-2 in signaling pathways implicated in bone development and skeletal repair and outlined the molecular mechanism of regulation of downstream growth factors and protein molecules such as VEGF, EPO, and so on. All of these present an opportunity for developing therapies for bone regeneration.
Collapse
|
10
|
Moszyńska A, Jaśkiewicz M, Serocki M, Cabaj A, Crossman DK, Bartoszewska S, Gebert M, Dąbrowski M, Collawn JF, Bartoszewski R. The hypoxia-induced changes in miRNA-mRNA in RNA-induced silencing complexes and HIF-2 induced miRNAs in human endothelial cells. FASEB J 2022; 36:e22412. [PMID: 35713587 DOI: 10.1096/fj.202101987r] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 11/11/2022]
Abstract
The cellular adaptive response to hypoxia relies on the expression of hypoxia-inducible factors (HIFs), HIF-1 and HIF-2. HIFs regulate global gene expression changes during hypoxia that are necessary for restoring oxygen homeostasis and promoting cell survival. In the early stages of hypoxia, HIF-1 is elevated, whereas at the later stages, HIF-2 becomes the predominant form. What governs the transition between the two HIFs (the HIF switch) and the role of miRNAs in this regulation are not completely clear. Genome-wide expression studies on the miRNA content of RNA-induced silencing complexes (RISC) in HUVECs exposed to hypoxia compared to the global miRNA-Seq analysis revealed very specific differences between these two populations. We analyzed the miRNA and mRNA composition of RISC at 2 h (mainly HIF-1 driven), 8 h (HIF-1 and HIF-2 elevated), and 16 h (mainly HIF-2 driven) in a gene ontology context. This allowed for determining the direct impact of the miRNAs in modulating the cellular signaling pathways involved in the hypoxic adaptive response. Our results indicate that the miRNA-mRNA RISC components control the adaptive responses, and this does not always rely on the miRNA transcriptional elevations during hypoxia. Furthermore, we demonstrate that the hypoxic levels of the vast majority of HIF-1-dependent miRNAs (including miR-210-3p) are also HIF-2 dependent and that HIF-2 governs the expression of 11 specific miRNAs. In summary, the switch from HIF-1 to HIF-2 during hypoxia provides an important level of miRNA-driven control in the adaptive pathways in endothelial cells.
Collapse
Affiliation(s)
- Adrianna Moszyńska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Maciej Jaśkiewicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Serocki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksandra Cabaj
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - David K Crossman
- Department of Genetics, The UAB Genomics Core Facility, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gebert
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Michał Dąbrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
11
|
Funk F, Weber K, Nyffenegger N, Fuchs JA, Barton A. Tissue biodistribution of intravenous iron-carbohydrate nanomedicines differs between preparations with varying physicochemical characteristics in an anemic rat model. Eur J Pharm Biopharm 2022; 174:56-76. [PMID: 35337966 DOI: 10.1016/j.ejpb.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/24/2022] [Accepted: 03/18/2022] [Indexed: 11/04/2022]
Abstract
Intravenously administered iron-carbohydrate preparations are a structurally heterogenous class of nanomedicines. Iron biodistribution to target tissues is greatly affected by the physicochemical characteristics of these nanoparticles. Some regulatory agencies have recommended performing studies in animal models for biodistribution characterization and bioequivalence evaluation. In the present work, a systematic comparison of iron exposure, tissue biodistribution and pharmacodynamics of four intravenous iron-carbohydrates in anemic CD rats was conducted. A pilot study was performed to establish the anemic rat model, followed by a control study to evaluate the pharmacokinetics (serum iron, biodistribution) and pharmacodynamics (hematological parameters) in healthy and anemic controls and anemic rats receiving ferric carboxymaltose (FCM). The same parameters were then evaluated in a comparative study in anemic rats receiving FCM, iron sucrose (IS), iron isomaltoside 1000 (IIM), and iron dextran (ID). Despite similar serum iron profiles observed across the investigated nanomedicines, tissue iron biodistribution varied markedly between the individual intravenous iron-carbohydrate complexes. Tissue iron repletion differences were also confirmed by histopathology. These results suggest that employing serum iron profiles as a surrogate for tissue biodistribution may be erroneous. The variability observed in tissue biodistribution may indicate different pharmacodynamic profiles and warrants further study.
Collapse
Affiliation(s)
- Felix Funk
- Vifor Pharma Group, Vifor Pharma Management Ltd, 8152 Glattbrugg, Switzerland.
| | - Klaus Weber
- AnaPath GmbH, 4625 Oberbuchsiten, Switzerland.
| | - Naja Nyffenegger
- Vifor Pharma Group, Vifor Pharma Management Ltd, 8152 Glattbrugg, Switzerland.
| | | | - Amy Barton
- Relypsa Inc., a Vifor Group Company, Redwood City, CA 94063, USA.
| |
Collapse
|
12
|
Wang B, Li ZL, Zhang YL, Wen Y, Gao YM, Liu BC. Hypoxia and chronic kidney disease. EBioMedicine 2022; 77:103942. [PMID: 35290825 PMCID: PMC8921539 DOI: 10.1016/j.ebiom.2022.103942] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is an inherent pathophysiological characteristic of chronic kidney disease (CKD), which is closely associated with the development of renal inflammation and fibrosis, as well as CKD-related complications such as anaemia, cardiovascular events, and sarcopenia. This review outlined the characteristics of oxygen supply in the kidney, changes in oxygen metabolism and factors leading to hypoxia in CKD. Mechanistically, we discussed how hypoxia contributes to renal injury as well as complications associated with CKD. Furthermore, we also discussed the potential therapeutic approaches that target chronic hypoxia, as well as the challenges in the study of oxygen homeostasis imbalance in CKD.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi-Lin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yue-Ming Gao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
13
|
Gurevich E, Segev Y, Landau D. Growth Hormone and IGF1 Actions in Kidney Development and Function. Cells 2021; 10:cells10123371. [PMID: 34943879 PMCID: PMC8699155 DOI: 10.3390/cells10123371] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 01/17/2023] Open
Abstract
Growth hormone (GH) exerts multiple effects on different organs including the kidneys, either directly or via its main mediator, insulin-like-growth factor-1 (IGF-1). The GH/IGF1 system plays a key role in normal kidney development, glomerular hemodynamic regulation, as well as tubular water, sodium, phosphate, and calcium handling. Transgenic animal models demonstrated that GH excess (and not IGF1) may lead to hyperfiltration, albuminuria, and glomerulosclerosis. GH and IGF-1 play a significant role in the early development of diabetic nephropathy, as well as in compensatory kidney hypertrophy after unilateral nephrectomy. Chronic kidney disease (CKD) and its complications in children are associated with alterations in the GH/IGF1 axis, including growth retardation, related to a GH-resistant state, attributed to impaired kidney postreceptor GH-signaling and chronic inflammation. This may explain the safety of prolonged rhGH-treatment of short stature in CKD.
Collapse
Affiliation(s)
- Evgenia Gurevich
- Department of Nephrology, Schneider Children’s Medical Center of Israel, 14 Kaplan Street, Petach Tikva 4920235, Israel;
| | - Yael Segev
- Shraga Segal Department of Microbiology and Immunology, Ben Gurion University, Beer Sheva 8410501, Israel;
| | - Daniel Landau
- Department of Nephrology, Schneider Children’s Medical Center of Israel, 14 Kaplan Street, Petach Tikva 4920235, Israel;
- Sackler School of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-3925-3651
| |
Collapse
|
14
|
Cytopenia in autosomal dominant polycystic kidney disease (ADPKD): merely an association or a disease-related feature with prognostic implications? Pediatr Nephrol 2021; 36:3505-3514. [PMID: 33502599 DOI: 10.1007/s00467-021-04937-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/03/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is associated with distinct cytopenias in observational studies; the most consistent and strongest association is seen with alternations in the lymphocytic lineages. Although the underlying mechanism of these associations is unclear, it has been hypothesized to be secondary to sequestration of white blood cells in cystic organs, or related to the uremic environment in chronic kidney disease (CKD). However, since mutations in PKD1 or -2 affect several immunomodulating pathways, cytopenia may well be an unrecognized extrarenal manifestation of ADPKD. Furthermore, many important questions on the clinical implications of this finding and the effect on the disease course in these patients are unanswered. In this review article, we provide an overview of the current evidence on cytopenia in ADPKD and explore the underlying mechanisms of this association and its potential prognostic implications. Based on the current literature, we hypothesize that polycystin deficiency can disturb immune cell homeostasis and that cytopenia is thus an intrinsic feature of ADPKD, related to genetic factors. Taken together, these findings warrant further investigation to establish the exact etiology and role of cytopenia in patients with ADPKD.
Collapse
|
15
|
Zhang R, Wang SY, Yang F, Ma S, Lu X, Kan C, Zhang JB. Crosstalk of fibroblast growth factor 23 and anemia-related factors during the development and progression of CKD (Review). Exp Ther Med 2021; 22:1159. [PMID: 34504604 PMCID: PMC8393509 DOI: 10.3892/etm.2021.10593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 03/08/2021] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) plays an important role in the development of chronic kidney disease-mineral bone disorder (CKD-MBD). Abnormally elevated levels of 1,25-dihydroxyvitamin D cause osteocytes to secrete FGF23, which subsequently induces phosphaturia. Recent studies have reported that iron deficiency, erythropoietin (EPO) and hypoxia regulate the pathways responsible for FGF23 production. However, the molecular mechanisms underlying the interactions between FGF23 and anemia-related factors are not yet fully understood. The present review discusses the associations between FGF23, iron, EPO and hypoxia-inducible factors (HIFs), and their impact on FGF23 bioactivity, focusing on recent studies. Collectively, these findings propose interactions between FGF23 gene expression and anemia-related factors, including iron deficiency, EPO and HIFs. Taken together, these results suggest that FGF23 bioactivity is closely associated with the occurrence of CKD-related anemia and CKD-MBD.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Nephrology, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Song-Yan Wang
- Department of Nephrology, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Fan Yang
- Department of Nephrology, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Shuang Ma
- Department of Nephrology, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Xu Lu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130000, P.R. China
| | - Chao Kan
- Department of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130000, P.R. China
| | - Jing-Bin Zhang
- Department of Nephrology, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
16
|
Experimental modulation of Interleukin 1 shows its key role in chronic kidney disease progression and anemia. Sci Rep 2021; 11:6288. [PMID: 33737665 PMCID: PMC7973507 DOI: 10.1038/s41598-021-85778-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
Inflammation in chronic kidney disease (CKD) is mostly due to activation of the innate immune system, in which Interleukin-1 (IL-1) is a key player. Anemia of CKD may also be due to erythropoietin (EPO) resistance, clinically associated with inflammation. IL-1 receptor antagonist knockout (RaKO) mice show arthritis and excessive inflammation. Inhibition of IL-1 was shown to be beneficial in many inflammatory conditions, but its role in CKD and anemia is unknown. Here, we report that enhanced inflammation in RaKO mice with CKD provoked both higher degrees of renal insufficiency and anemia in comparison to wild-type CKD, in association with a downregulation of renal hypoxia inducible factor-2 (HIF2) as well as decreased bone marrow EPO-receptor (EPOR) and transferrin receptor (TFR). In contrast, administration of P2D7KK, an anti-IL1b monoclonal antibody, to CKD mice results in a lower grade of systemic inflammation, better renal function and blunted anemia. The latter was associated with upregulation of renal HIF-2α, bone marrow EPO-R and TFR. Altogether, this supports the key role of inflammation, and IL-1 particularly, in CKD progression and anemia. Novel treatments to reduce inflammation through this and other pathways, may improve renal function, attenuate the anemic state or increase the response to exogenous EPO.
Collapse
|
17
|
Weng X, Chen H, Yu Q, Xu G, Meng Y, Yan X, McConell G, Lin W. Intermittent Hypoxia Exposure Can Prevent Reductions in Hemoglobin Concentration After Intense Exercise Training in Rats. Front Physiol 2021; 12:627708. [PMID: 33679440 PMCID: PMC7935520 DOI: 10.3389/fphys.2021.627708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/01/2021] [Indexed: 11/21/2022] Open
Abstract
Intense exercise training can induce low concentrations of hemoglobin, which may be followed by maladaptation. Therefore, it is important for athletes to prevent low concentrations of hemoglobin during intense exercise training. In this study, we explored whether different protocols of intermittent hypoxic exposure (IHE, normobaric hypoxia, 14.5% O2) could prevent the exercise training-induced reduction in hemoglobin concentration in rats. Six-week-old male Sprague-Dawley rats were subjected to progressive intense treadmill exercise training over three weeks followed by three weeks of training with IHE after exercise. IHE lasted either 1 h, 2 h, or 1 h + 1 h (separated by a 3-h interval) after the exercise sessions. Hematological parameters, including hemoglobin concentration [(Hb)], red blood cells (RBCs), and hematocrit (Hct), and both renal and serum erythropoietin (EPO) were examined. We found that intense exercise training significantly reduced [Hb], RBCs, Hct, food intake and body weight (P < 0.01). Analysis of reticulocyte hemoglobin content (CHr) and reticulocyte counts in the serum of the rats suggested that this reduction was not due to iron deficiency or other cofounding factors. The addition of IHE after the intense exercise training sessions significantly alleviated the reduction in [Hb], RBCs, and Hct (P < 0.05) without an obvious impact on either food intake or body weight (P > 0.05). Increase in reticulocyte count in the rats from the IHE groups (P < 0.05 or P < 0.01) suggests that IHE promotes erythropoiesis to increase the hemoglobin concentration. Furthermore, the addition of IHE after the intense exercise training sessions also significantly increased the concentration of renal EPO (P < 0.05), although the increase of the serum EPO level was statistically insignificant (P > 0.05). The different IHE protocols were similarly effective at increasing renal EPO and preventing the training-induced decreases in [Hb], RBCs, and Hct. Collectively, this study suggests that IHE may be used as a new strategy to prevent intense exercise training-induced reductions in [Hb], and deserves future exploration in athletes.
Collapse
Affiliation(s)
- Xiquan Weng
- Department of Exercise Biochemistry, College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Hao Chen
- Department of Exercise Biochemistry, College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Qun Yu
- College of Sport, Yancheng Teachers University, Yancheng, China
| | - Guoqing Xu
- Department of Exercise Biochemistry, College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Yan Meng
- Department of Exercise Biochemistry, College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Xu Yan
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Australia Institute for Musculoskeletal Sciences, Melbourne, VIC, Australia
| | - Glenn McConell
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Wentao Lin
- Department of Exercise Biochemistry, College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| |
Collapse
|
18
|
Mei H, Wu N, Huang X, Cui Z, Xu J, Yang X, Zeng F, Wang K. Possible mechanisms by which silkworm faeces extract ameliorates adenine-induced renal anaemia in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113448. [PMID: 33022342 DOI: 10.1016/j.jep.2020.113448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/15/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Silkworm faeces are the dry faeces of the insect Bombyx mori (Linnaeus) and have historically been used in traditional Chinese medicine to treat blood deficiency and rheumatic pain. Silkworm faeces extract (SFE) is derived from silkworm faeces. AIM OF THE STUDY Clinical observations of patients in the Department of Nephrology have shown that SFE effectively improves renal anaemia. However, the molecular mechanism remains unclear. This article mainly explores the regulatory effects of SFE on erythropoietin (EPO) and hepcidin to identify the molecular mechanism of SFE. MATERIALS AND METHODS A rat model of renal anaemia was established by feeding rats food containing 0.75% adenine. SFE was orally administered to the rats, while recombinant human erythropoietin (rhEPO) was used as a positive control drug. Haematological parameters and inflammation levels were compared between rats from each group, and pathological kidney sections from each rat were observed. The serum EPO and hepcidin levels were detected using enzyme-linked immunosorbent assay (ELISA) kits, while Western blot analyses were performed to detect the levels of proteins involved in the EPO-related hypoxia-inducible factor 2α (HIF-2α)/prolyl hydroxylase 2 (PHD2) signalling pathway and hepcidin-related BMP6/SMAD4 and interleukin-6 (IL-6)/STAT3 signalling pathways. RESULTS SFE significantly ameliorated haematological parameters, renal function, and inflammation levels in the rats. A mechanistic study showed that SFE promoted EPO expression by upregulating HIF-2α expression and inhibiting the expression of NF-κB and GATA2 both in vivo and in vitro. In particular, SFE inhibited PHD2 expression, resulting in a decrease in the enzymatic reaction of HIF-2α to increase EPO expression. Furthermore, SFE inhibited hepcidin expression by blocking the BMP6/SMAD4 and IL-6/STAT3 pathways. CONCLUSIONS SFE regulated iron metabolism by inhibiting hepcidin and simultaneously promoted EPO synthesis to improve renal anaemia in rats.
Collapse
Affiliation(s)
- Hao Mei
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Huazhong University of Science and Technology, No. 13, Hongkong Road, 430030, Wuhan, China
| | - Niuniu Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Cui
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingya Xu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Huazhong University of Science and Technology, No. 13, Hongkong Road, 430030, Wuhan, China
| | - Xiawen Yang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Huazhong University of Science and Technology, No. 13, Hongkong Road, 430030, Wuhan, China
| | - Fang Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Huazhong University of Science and Technology, No. 13, Hongkong Road, 430030, Wuhan, China.
| |
Collapse
|
19
|
Yucel K, Aydin I, Erdem SS. Hypoxia induced factor-1α levels in patients undergoing adenoidectomy. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 81:34-38. [PMID: 33226863 DOI: 10.1080/00365513.2020.1849786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Among the most common causes of nasal congestion in childhood is adenoid hypertrophy (AH) which leads to hypoxia. In this study, we studied plasma concentrations of hypoxia induced factor-1α (HIF-1α) in children undergoing adenoidectomy. The study included a total of 86 participants: 39 patients with AH and 47 healthy individuals. Serum HIF-1α levels (ng/mL) were measured by ELISA. HIF-1α concentrations were compared to the adenoid-nasopharyngeal ratio (ANR) of patients with AH, as recorded in the medical records. We found significantly higher concentrations of HIF-1α (0.30 ± 0.47 ng/mL) in patients with AH as compared to healthy controls (0.24 ± 0.07 ng/mL, p = .011). HIF-1α levels were not significantly different regarding gender between patients with AH (p = .77) and in the control group (p = .97). In patients with AH, there was a moderately significant positive correlation between HIF-1α levels and Hb (p = .000), (correlation coefficient r = 0.542). There was a positive correlation between HIF-1α and ANR in patients with AH (p = .005, r = 0.439). This study indicates that AH increases HIF-1α levels. We also observed a moderately significant positive correlation between HIF-1α and ANR in patients with AH. HIF-1α levels are a potential biomarker for hypoxia in patients with AH.
Collapse
Affiliation(s)
- Kamile Yucel
- Medical Biochemistry, KTO Karatay University School of Health Sciences, Konya, Turkey
| | - Isa Aydin
- Department of Otorhinolaryngology, Konya Education and Research Hospital, Konya, Turkey
| | - Said Sami Erdem
- Department of Biochemistry, Konya Education and Research Hospital, Konya, Turkey
| |
Collapse
|
20
|
Packer M. Mutual Antagonism of Hypoxia-Inducible Factor Isoforms in Cardiac, Vascular, and Renal Disorders. ACTA ACUST UNITED AC 2020; 5:961-968. [PMID: 33015417 PMCID: PMC7524787 DOI: 10.1016/j.jacbts.2020.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia-inducible factor (HIF)-1α and HIF-2α promote cellular adaptation to acute hypoxia, but during prolonged activation, these isoforms exert mutually antagonistic effects on the redox state and on proinflammatory pathways. Sustained HIF-1α signaling can increase oxidative stress, inflammation, and fibrosis, actions that are opposed by HIF-2α. Imbalances in the interplay between HIF-1α and HIF-2α may contribute to the progression of chronic heart failure, atherosclerotic and hypertensive vascular disorders, and chronic kidney disease. These disorders are characterized by activation of HIF-1α and suppression of HIF-2α, which are potentially related to mitochondrial and peroxisomal dysfunction and suppression of the redox sensor, sirtuin-1. Hypoxia mimetics can potentiate HIF-1α and/or HIF-2α; ideally, such agents should act preferentially to promote HIF-2α while exerting little effect on or acting to suppress HIF-1α. Selective activation of HIF-2α can be achieved with drugs that: 1) inhibit isoform-selective prolyl hydroxylases (e.g., cobalt chloride and roxadustat); or 2) promote the actions of the redox sensor, sirtuin-1 (e.g., sodium-glucose cotransporter 2 inhibitors). Selective HIF-2α signaling through sirtuin-1 activation may explain the effect of sodium-glucose cotransporter 2 inhibitors to simultaneously promote erythrocytosis and ameliorate the development of cardiomyopathy and nephropathy.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas.,Imperial College, London, United Kingdom
| |
Collapse
|
21
|
5/6 nephrectomy induces different renal, cardiac and vascular consequences in 129/Sv and C57BL/6JRj mice. Sci Rep 2020; 10:1524. [PMID: 32001792 PMCID: PMC6992698 DOI: 10.1038/s41598-020-58393-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/10/2020] [Indexed: 02/08/2023] Open
Abstract
Experimental models of cardiovascular diseases largely depend on the genetic background. Subtotal 5/6 nephrectomy (5/6 Nx) is the most frequently used model of chronic kidney disease (CKD) in rodents. However, in mice, cardiovascular consequences of 5/6 Nx are rarely reported in details and comparative results between strains are scarce. The present study detailed and compared the outcomes of 5/6 Nx in the 2 main strains of mice used in cardiovascular and kidney research, 129/Sv and C57BL/6JRj. Twelve weeks after 5/6 Nx, CKD was demonstrated by a significant increase in plasma creatinine in both 129/Sv and C57BL/6JRj male mice. Polyuria and kidney histological lesions were more pronounced in 129/Sv than in C57BL/6JRj mice. Increase in albuminuria was significant in 129/Sv but not in C57BL/6JRj mice. Both strains exhibited an increase in systolic blood pressure after 8 weeks associated with decreases in cardiac systolic and diastolic function. Heart weight increased significantly only in 129/Sv mice. Endothelium-dependent mesenteric artery relaxation to acetylcholine was altered after 5/6 Nx in C57BL/6JRj mice. Marked reduction of endothelium-dependent vasodilation to increased intraluminal flow was demonstrated in both strains after 5/6 Nx. Cardiovascular and kidney consequences of 5/6 Nx were more pronounced in 129/Sv than in C57BL/6JRj mice.
Collapse
|
22
|
Malyszko J, Malyszko JS, Matuszkiewicz-Rowinska J. Hepcidin as a therapeutic target for anemia and inflammation associated with chronic kidney disease. Expert Opin Ther Targets 2019; 23:407-421. [PMID: 30907175 DOI: 10.1080/14728222.2019.1599358] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Anemia is a common manifestation of chronic kidney disease (CKD). The pathogenesis of CKD-associated anemia is multifactorial. Our understanding of the molecular control of iron metabolism has improved dramatically because of the discovery of hepcidin and attempts to introduce new drugs to stimulate erythropoiesis or affect the hepcidin-ferroportin pathway have recently emerged. Areas covered: We examine the possible role of hepcidin in iron metabolism and regulation and the potential therapeutic options involving hepcidin and hepcidin-ferroportin axis in renal anemia treatment. We focus on therapeutic targeting of hepcidin, the hepcidin-ferroportin axis and key molecules such as anti-hepcidin antibodies, spigelmers, and anticalins. We also discuss compounds affecting the bone morphogenetic protein receptor [BMP/BMPR] complex and molecules that influence hepcidin, such as hypoxia-inducible factor 1 stabilizers. Expert opinion: Hepcidin is a key regulator of iron availability and is a potential future therapeutic target for managing anemia that is associated with CKD. There are potential risks and benefits associated with novel sophisticated therapies and there are several novel options on the horizon; however, clinical data are currently limited and need development. Inhibition of hepcidin via various pathways might be a viable adjunctive therapeutic option in other clinical situations.
Collapse
Affiliation(s)
- Jolanta Malyszko
- a Department of Nephrology, Dialysis and Internal Medicine , Warsaw Medical University , Warsaw , Poland
| | - Jacek S Malyszko
- b Department of Nephrology and Transplantology with Dialysis Unit , Medical University , Bialystok , Poland
| | | |
Collapse
|
23
|
Rauth M, Freund P, Orlova A, Grünert S, Tasic N, Han X, Ruan HB, Neubauer HA, Moriggl R. Cell Metabolism Control Through O-GlcNAcylation of STAT5: A Full or Empty Fuel Tank Makes a Big Difference for Cancer Cell Growth and Survival. Int J Mol Sci 2019; 20:E1028. [PMID: 30818760 PMCID: PMC6429193 DOI: 10.3390/ijms20051028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/23/2022] Open
Abstract
O-GlcNAcylation is a post-translational modification that influences tyrosine phosphorylation in healthy and malignant cells. O-GlcNAc is a product of the hexosamine biosynthetic pathway, a side pathway of glucose metabolism. It is essential for cell survival and proper gene regulation, mirroring the metabolic status of a cell. STAT3 and STAT5 proteins are essential transcription factors that can act in a mutational context-dependent manner as oncogenes or tumor suppressors. They regulate gene expression for vital processes such as cell differentiation, survival, or growth, and are also critically involved in metabolic control. The role of STAT3/5 proteins in metabolic processes is partly independent of their transcriptional regulatory role, but is still poorly understood. Interestingly, STAT3 and STAT5 are modified by O-GlcNAc in response to the metabolic status of the cell. Here, we discuss and summarize evidence of O-GlcNAcylation-regulating STAT function, focusing in particular on hyperactive STAT5A transplant studies in the hematopoietic system. We emphasize that a single O-GlcNAc modification is essential to promote development of neoplastic cell growth through enhancing STAT5A tyrosine phosphorylation. Inhibition of O-GlcNAcylation of STAT5A on threonine 92 lowers tyrosine phosphorylation of oncogenic STAT5A and ablates malignant transformation. We conclude on strategies for new therapeutic options to block O-GlcNAcylation in combination with tyrosine kinase inhibitors to target neoplastic cancer cell growth and survival.
Collapse
Affiliation(s)
- Manuel Rauth
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| | - Patricia Freund
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria.
| | | | | | - Xiaonan Han
- Key Laboratory of Human Disease Comparative Medicine, the Ministry of Health, Institute of Laboratory Animal Sciences (ILAS), Beijing 100730, China.
- Chinese Academy of Medical Science (CAMS) and Peking Union Medical College (PUMC), Beijing 100006, China.
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229-3026, USA.
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria.
- Medical University Vienna, Vienna 1090, Austria.
| |
Collapse
|
24
|
Wheeler JA, Clinkenbeard EL. Regulation of Fibroblast Growth Factor 23 by Iron, EPO, and HIF. ACTA ACUST UNITED AC 2019; 5:8-17. [PMID: 31218207 DOI: 10.1007/s40610-019-0110-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of review Fibroblast growth factor-23 (FGF23) is the key hormone produced in bone critical for phosphate homeostasis. Elevated serum phosphorus and 1,25dihydroxyvitaminD stimulates FGF23 production to promote renal phosphate excretion and decrease 1,25dihydroxyvitaminD synthesis. Thus completing the feedback loop and suppressing FGF23. Unexpectedly, studies of common and rare heritable disorders of phosphate handling identified links between iron and FGF23 demonstrating novel regulation outside the phosphate pathway. Recent Findings Iron deficiency combined with an FGF23 cleavage mutation was found to induce the autosomal dominant hypophosphatemic rickets phenotype. Physiological responses to iron deficiency, such as erythropoietin production as well as hypoxia inducible factor activation, have been indicated in regulating FGF23. Additionally, specific iron formulations, used to treat iron deficiency, alter post-translational processing thereby shifting FGF23 protein secretion. Summary Molecular and clinical studies revealed that iron deficiency, through several mechanisms, alters FGF23 at the transcriptional and post-translational level. This review will focus upon the novel discoveries elucidated between iron, its regulators, and their influence on FGF23 bioactivity.
Collapse
Affiliation(s)
- Jonathan A Wheeler
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erica L Clinkenbeard
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|