1
|
Wang Y, Liu Y, Long M, Dong Y, Li L, Zhou X. Nanoparticles target M2 macrophages to silence kallikrein-related peptidase 12 for the treatment of tuberculosis and drug-resistant tuberculosis. Acta Biomater 2024; 188:358-373. [PMID: 39305944 DOI: 10.1016/j.actbio.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024]
Abstract
Matrix metalloproteinases (MMPs) are involved in the breakdown of lung extracellular matrix and the consequent release of Mycobacterium tuberculosis into the airways. Recent studies indicate that kallikrein-related peptidase 12 (KLK12) regulate MMP-1 and MMP-9, suggesting that targeting the KLK12 gene could be a promising tuberculosis (TB) treatment. To maximise therapeutic potential, this strategy of silencing KLK12 needs to be delivered to the pathogenic cell population while preserving the immunoprotective and tissue homeostatic functions of other lung macrophages. Our research found that KLK12 is highly expressed in M2 macrophages, leading us to design mannose-based bovine serum albumin nanoparticles (MBNPs) for delivering siRNA to silence KLK12 in these cells. The results of in vitro experiments showed that MBNPs could accurately enter M2 macrophages and sustainably release KLK12-siRNA with the help of mannose and mannose receptor targeting. The results of the in vivo experiments showed that MBNPs could reach the lungs within 1 h after intraperitoneal injection and peaked at 6 h. MBNPs increased collagen fibre content in the lungs by decreasing the levels of KLK12/MMPs thereby limiting the progression of TB. Importantly, MBNPs provided greater alleviation of pulmonary TB symptoms and reduced bacterial load in both TB and drug-resistant TB models. These findings provide an alternative and effective option for the treatment of TB, especially when drug resistance occurs. STATEMENT OF SIGNIFICANCE: RNA interference using small interfering RNA (siRNA) can target various genes and has potential for treating diseases such as tuberculosis (TB). However, siRNAs are unstable in the blood and within cells. This study presents bovine serum albumin nanoparticles encapsulating KLK12-siRNA (BNPs) synthesized via desolvation. A mannose layer was added (MBNPs) to target mannose receptors on M2 macrophages, facilitating endocytosis. The low pH-responsive MBNPs enhance lysosomal escape for siRNA delivery, downregulating the KLK12 pathway. Tests confirmed that MBNPs effectively inhibited Mycobacterium bovis proliferation, reduced granulomas, and decreased inflammation in a mouse model. This research aims to reduce antibiotic use, shorten treatment duration, and provide a novel TB treatment option.
Collapse
Affiliation(s)
- Yuanzhi Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yiduo Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Meizhen Long
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuhui Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lin Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiangmei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Jain S, Singh M, Sarhan M, Damiba N, Singh A, Villabona-Rueda A, Meza ON, Chen X, Ordonez A, D'Alessio F, Aboagye E, Carroll L. Proapoptotic Bcl-2 inhibitor as host directed therapy for pulmonary tuberculosis. RESEARCH SQUARE 2024:rs.3.rs-4926508. [PMID: 39281866 PMCID: PMC11398574 DOI: 10.21203/rs.3.rs-4926508/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Mycobacterium tuberculosis establishes within host cells by inducing anti-apoptotic Bcl-2 family proteins, triggering necrosis, inflammation, and fibrosis. Here, we demonstrate that navitoclax, an orally bioavailable, small-molecule Bcl-2 inhibitor, significantly improves pulmonary tuberculosis (TB) treatments as a host-directed therapy. Addition of navitoclax to standard TB treatments at human equipotent dosing in mouse models of TB, inhibits Bcl-2 expression, leading to improved bacterial clearance, reduced tissue damage / fibrosis and decreased extrapulmonary bacterial dissemination. Using immunohistochemistry and flow cytometry, we show that navitoclax induces apoptosis in several immune cells, including CD68 + and CD11b + cells. Finally, positron emission tomography (PET) in live animals using novel, clinically translatable biomarkers for apoptosis (18F-ICMT-11) and fibrosis (18F-FAPI-74) demonstrates that navitoclax significantly increases apoptosis and reduces fibrosis in pulmonary tissues, which are confirmed using post-mortem studies. Our studies suggest that proapoptotic drugs such as navitoclax can improve pulmonary TB treatments, and should be evaluated in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Alok Singh
- Johns Hopkins University School of Medicine
| | | | | | - Xueyi Chen
- Johns Hopkins University School of Medicine
| | | | | | | | | |
Collapse
|
3
|
Jhilta A, Jadhav K, Singh R, Ray E, Kumar A, Singh AK, Verma RK. Breaking the Cycle: Matrix Metalloproteinase Inhibitors as an Alternative Approach in Managing Tuberculosis Pathogenesis and Progression. ACS Infect Dis 2024; 10:2567-2583. [PMID: 39038212 DOI: 10.1021/acsinfecdis.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Mycobacterium tuberculosis (Mtb) has long posed a significant challenge to global public health, resulting in approximately 1.6 million deaths annually. Pulmonary tuberculosis (TB) instigated by Mtb is characterized by extensive lung tissue damage, leading to lesions and dissemination within the tissue matrix. Matrix metalloproteinases (MMPs) exhibit endopeptidase activity, contributing to inflammatory tissue damage and, consequently, morbidity and mortality in TB patients. MMP activities in TB are intricately regulated by various components, including cytokines, chemokines, cell receptors, and growth factors, through intracellular signaling pathways. Primarily, Mtb-infected macrophages induce MMP expression, disrupting the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs), thereby impairing extracellular matrix (ECM) deposition in the lungs. Recent research underscores the significance of immunomodulatory factors in MMP secretion and granuloma formation during Mtb pathogenesis. Several studies have investigated both the activation and inhibition of MMPs using endogenous MMP inhibitors (i.e., TIMPs) and synthetic inhibitors. However, despite their promising pharmacological potential, few MMP inhibitors have been explored for TB treatment as host-directed therapy. Scientists are exploring novel strategies to enhance TB therapeutic regimens by suppressing MMP activity to mitigate Mtb-associated matrix destruction and reduce TB induced lung inflammation. These strategies include the use of MMP inhibitor molecules alone or in combination with anti-TB drugs. Additionally, there is growing interest in developing novel formulations containing MMP inhibitors or MMP-responsive drug delivery systems to suppress MMPs and release drugs at specific target sites. This review summarizes MMPs' expression and regulation in TB, their role in immune response, and the potential of MMP inhibitors as effective therapeutic targets to alleviate TB immunopathology.
Collapse
Affiliation(s)
- Agrim Jhilta
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Krishna Jadhav
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Eupa Ray
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India 226014
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India 282004
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| |
Collapse
|
4
|
Lu HJ, Guo D, Wei QQ. Potential of Neuroinflammation-Modulating Strategies in Tuberculous Meningitis: Targeting Microglia. Aging Dis 2024; 15:1255-1276. [PMID: 37196131 PMCID: PMC11081169 DOI: 10.14336/ad.2023.0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/11/2023] [Indexed: 05/19/2023] Open
Abstract
Tuberculous meningitis (TBM) is the most severe complication of tuberculosis (TB) and is associated with high rates of disability and mortality. Mycobacterium tuberculosis (M. tb), the infectious agent of TB, disseminates from the respiratory epithelium, breaks through the blood-brain barrier, and establishes a primary infection in the meninges. Microglia are the core of the immune network in the central nervous system (CNS) and interact with glial cells and neurons to fight against harmful pathogens and maintain homeostasis in the brain through pleiotropic functions. However, M. tb directly infects microglia and resides in them as the primary host for bacillus infections. Largely, microglial activation slows disease progression. The non-productive inflammatory response that initiates the secretion of pro-inflammatory cytokines and chemokines may be neurotoxic and aggravate tissue injuries based on damages caused by M. tb. Host-directed therapy (HDT) is an emerging strategy for modulating host immune responses against diverse diseases. Recent studies have shown that HDT can control neuroinflammation in TBM and act as an adjunct therapy to antibiotic treatment. In this review, we discuss the diverse roles of microglia in TBM and potential host-directed TB therapies that target microglia to treat TBM. We also discuss the limitations of applying each HDT and suggest a course of action for the near future.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Institute of Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Daji Guo
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| |
Collapse
|
5
|
Krug S, Gupta M, Kumar P, Feller L, Ihms EA, Kang BG, Srikrishna G, Dawson TM, Dawson VL, Bishai WR. Inhibition of host PARP1 contributes to the anti-inflammatory and antitubercular activity of pyrazinamide. Nat Commun 2023; 14:8161. [PMID: 38071218 PMCID: PMC10710439 DOI: 10.1038/s41467-023-43937-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The antibiotic pyrazinamide (PZA) is a cornerstone of tuberculosis (TB) therapy that shortens treatment durations by several months despite being only weakly bactericidal. Intriguingly, PZA is also an anti-inflammatory molecule shown to specifically reduce inflammatory cytokine signaling and lesion activity in TB patients. However, the target and clinical importance of PZA's host-directed activity during TB therapy remain unclear. Here, we identify the host enzyme Poly(ADP-ribose) Polymerase 1 (PARP1), a pro-inflammatory master regulator strongly activated in TB, as a functionally relevant host target of PZA. We show that PZA inhibits PARP1 enzymatic activity in macrophages and in mice where it reverses TB-induced PARP1 activity in lungs to uninfected levels. Utilizing a PZA-resistant mutant, we demonstrate that PZA's immune-modulatory effects are PARP1-dependent but independent of its bactericidal activity. Importantly, PZA's bactericidal efficacy is impaired in PARP1-deficient mice, suggesting that immune modulation may be an integral component of PZA's antitubercular activity. In addition, adjunctive PARP1 inhibition dramatically reduces inflammation and lesion size in mice and may be a means to reduce lung damage and shorten TB treatment duration. Together, these findings provide insight into PZA's mechanism of action and the therapeutic potential of PARP1 inhibition in the treatment of TB.
Collapse
Affiliation(s)
- Stefanie Krug
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manish Gupta
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pankaj Kumar
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laine Feller
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth A Ihms
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bong Gu Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Geetha Srikrishna
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
7
|
Dwivedi V, Gautam S, Beamer G, Stromberg PC, Headley CA, Turner J. IL-10 Modulation Increases Pyrazinamide's Antimycobacterial Efficacy against Mycobacterium tuberculosis Infection in Mice. Immunohorizons 2023; 7:412-420. [PMID: 37279084 PMCID: PMC10580111 DOI: 10.4049/immunohorizons.2200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/03/2023] [Indexed: 06/08/2023] Open
Abstract
Mechanisms to shorten the duration of tuberculosis (TB) treatment include new drug formulations or schedules and the development of host-directed therapies (HDTs) that better enable the host immune system to eliminate Mycobacterium tuberculosis. Previous studies have shown that pyrazinamide, a first-line antibiotic, can also modulate immune function, making it an attractive target for combinatorial HDT/antibiotic therapy, with the goal to accelerate clearance of M. tuberculosis. In this study, we assessed the value of anti-IL-10R1 as an HDT along with pyrazinamide and show that short-term anti-IL-10R1 blockade during pyrazinamide treatment enhanced the antimycobacterial efficacy of pyrazinamide, resulting in faster clearance of M. tuberculosis in mice. Furthermore, 45 d of pyrazinamide treatment in a functionally IL-10-deficient environment resulted in sterilizing clearance of M. tuberculosis. Our data suggest that short-term IL-10 blockade with standard TB drugs has the potential to improve clinical outcome by reducing the treatment duration.
Collapse
Affiliation(s)
- Varun Dwivedi
- Disease Intervention & Prevention Program, Texas Biomedical Research Institute, San Antonio, TX
| | - Shalini Gautam
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX
| | - Gillian Beamer
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX
| | - Paul C. Stromberg
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State Institute, Columbus, OH
| | - Colwyn A. Headley
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX
| | - Joanne Turner
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
8
|
Singh S, Allwood BW, Chiyaka TL, Kleyhans L, Naidoo CC, Moodley S, Theron G, Segal LN. Immunologic and imaging signatures in post tuberculosis lung disease. Tuberculosis (Edinb) 2022; 136:102244. [PMID: 36007338 PMCID: PMC10061373 DOI: 10.1016/j.tube.2022.102244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 11/25/2022]
Abstract
Post Tuberculosis Lung Disease (PTLD) affects millions of tuberculosis survivors and is a global health burden. The immune mechanisms that drive PTLD are complex and have historically been under investigated. Here, we discuss two immune-mediated paradigms that could drive human PTLD. We review the characteristics of a fibrotic granuloma that favors the development of PTLD via an abundance of T-helper-2 and T-regulatory cells and an upregulation of TGF-β mediated collagen deposition. Next, we discuss the post-primary tuberculosis paradigm and the complex mixture of caseous pneumonia, cavity formation and fibrosis that can also lead to PTLD. We review the delicate balance between cellular subsets and cytokines of the innate and adaptive immune system in conjunction with host-derived proteases that can perpetuate the parenchymal lung damage seen in PTLD. Next, we discuss the role of novel host directed therapies (HDT) to limit the development of PTLD and in particular, the recent repurposing of established medications such as statins, metformin and doxycycline. Finally, we review the emerging role of novel imaging techniques as a non-invasive modality for the early recognition of PTLD. While access to computed tomography imaging is unlikely to be available widely in countries with a high TB burden, its use in research settings can help phenotype PTLD. Due to a lack of disease-specific biomarkers and controlled clinical trials, there are currently no evidence-based recommendations for the management of PTLD. It is likely that an integrated antifibrotic strategy that could simultaneously target inflammatory and pro-fibrotic pathways will probably emerge as a successful way to treat this complex condition. In a disease spectrum as wide as PTLD, a single immunologic or radiographic marker may not be sufficient and a combination is more likely to be a successful surrogate that could aid in the development of successful HDTs.
Collapse
Affiliation(s)
- S Singh
- NYU Langone Translational Lung Biology Laboratory, Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue, MSB 594, New York, NY, USA.
| | - B W Allwood
- Division of Pulmonology, Department of Medicine, Stellenbosch University & Tygerberg Hospital, South Africa.
| | - T L Chiyaka
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - L Kleyhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - C C Naidoo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - S Moodley
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - G Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.
| | - L N Segal
- NYU Langone Translational Lung Biology Laboratory, Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue, MSB 594, New York, NY, USA.
| |
Collapse
|
9
|
The Association between Circulating microRNAs and the Risk of Active Disease Development from Latent Tuberculosis Infection: a Nested Case-Control Study. Microbiol Spectr 2022; 10:e0262521. [PMID: 35435753 PMCID: PMC9241859 DOI: 10.1128/spectrum.02625-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Tuberculosis (TB) remains one of the deadliest communicable diseases. Biomarkers predicting the risk of active disease development from latent tuberculosis infection (LTBI) are urgently needed for precise intervention. This study aimed to identify potential circulating microRNAs (miRNAs) playing such a role in Chinese population. Based on a prospective study aiming to track the development of active TB among rural residents with LTBI, the baseline levels of circulating miRNAs were retrospectively compared between those who developed TB (case group) and those age-gender matched controls remain free of TB (contraol group) during the follow-up. Agilent human miRNA microarray were used to select differently expressed circulating miRNAs and verified by subsequent real-time quantitative PCR (RT-qPCR). Six candidate miRNAs were expressed at statistically significant levels between the two groups at the baseline, as determined by microarray. Following verification among 150 study participants by RT-qPCR, the levels of hsa-miR-16-5p (P < 0.001) and hsa-miR-451a (P < 0.001) were found to be significantly lower in case group compared to control group. The combined areas under curves (AUCs) and precision-recall curves (PRCs) were 0.84, 0.86 and 0.85, 0.87 for hsa-miR-16-5p and hsa-miR-451a, respectively. hsa-miR-451a combined with body mass index (BMI) and prior history of TB presented the best performance, with a sensitivity of 80.82% and an acceptable specificity of 79.22%. After adjusting the two co-variables, the AUC of hsa-miR-451a was 0.78. Circulating levels of hsa-miR-451a showed potential to predict development of active TB from LTBI in a Chinese population. Further studies are warranted to verify these findings in varied study settings. IMPORTANCE Approximately a quarter of the world population are infected with M. tuberculosis and about 5% to 10% of these might develop active disease in their lifetime. Preventive treatment could effectively protect individuals at a high risk of developing active disease from LTBI, and is regarded as a critical component of End TB Strategies. Biomarkers which could accurately identify high-risk population and predict the risk of disease development are urgently needed for developing local guidelines of LTBI management and precise intervention. A nested case-control study was designed to explore possible microRNAs related with TB occurrence based on a previous prospective study, which aimed to track the development of active TB among rural residents with LTBI. The baseline circulating levels of hsa-miR-16-5p and hsa-miR-451a were significantly lower in TB cases compared to those in LTBI controls. Further receiver operator characteristic (ROC) curve analysis found that hsa-miR-451a showed considerable potential to predict the development of active TB from LTBI.
Collapse
|
10
|
Ordonez AA, Abhishek S, Singh AK, Klunk MH, Azad BB, Aboagye EO, Carroll L, Jain SK. Caspase-Based PET for Evaluating Pro-Apoptotic Treatments in a Tuberculosis Mouse Model. Mol Imaging Biol 2021; 22:1489-1494. [PMID: 32232626 DOI: 10.1007/s11307-020-01494-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Despite recent advances in antimicrobial treatments, tuberculosis (TB) remains a major global health threat. Mycobacterium tuberculosis proliferates in macrophages, preventing apoptosis by inducing anti-apoptotic proteins leading to necrosis of the infected cells. Necrosis then leads to increased tissue destruction, reducing the penetration of antimicrobials and immune cells to the areas where they are needed most. Pro-apoptotic drugs could be used as host-directed therapies in TB to improve antimicrobial treatments and patient outcomes. PROCEDURE We evaluated [18F]-ICMT-11, a caspase-3/7-specific positron emission tomography (PET) radiotracer, in macrophage cell cultures and in an animal model of pulmonary TB that closely resembles human disease. RESULTS Cells infected with M. tuberculosis and treated with cisplatin accumulated [18F]-ICMT-11 at significantly higher levels compared with that of controls, which correlated with levels of caspase-3/7 activity. Infected mice treated with cisplatin with increased caspase-3/7 activity also had a higher [18F]-ICMT-11 PET signal compared with that of untreated infected animals. CONCLUSIONS [18F]-ICMT-11 PET could be used as a noninvasive approach to measure intralesional pro-apoptotic responses in situ in pulmonary TB models and support the development of pro-apoptotic host-directed therapies for TB.
Collapse
Affiliation(s)
- Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sudhanshu Abhishek
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alok K Singh
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Mariah H Klunk
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Babak Benham Azad
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery & Cancer Hammersmith Campus, Imperial College, London, UK
| | - Laurence Carroll
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Krug S, Parveen S, Bishai WR. Host-Directed Therapies: Modulating Inflammation to Treat Tuberculosis. Front Immunol 2021; 12:660916. [PMID: 33953722 PMCID: PMC8089478 DOI: 10.3389/fimmu.2021.660916] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Following infection with Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), most human hosts are able to contain the infection and avoid progression to active TB disease through expression of a balanced, homeostatic immune response. Proinflammatory mechanisms aiming to kill, slow and sequester the pathogen are key to a successful host response. However, an excessive or inappropriate pro-inflammatory response may lead to granuloma enlargement and tissue damage, which may prolong the TB treatment duration and permanently diminish the lung function of TB survivors. The host also expresses certain anti-inflammatory mediators which may play either beneficial or detrimental roles depending on the timing of their deployment. The balance between the timing and expression levels of pro- and anti-inflammatory responses plays an important role in the fate of infection. Interestingly, M. tuberculosis appears to manipulate both sides of the human immune response to remodel the host environment for its own benefit. Consequently, therapies which modulate either end of this spectrum of immune responses at the appropriate time may have the potential to improve the treatment of TB or to reduce the formation of permanent lung damage after microbiological cure. Here, we highlight host-directed TB therapies targeting pro- or anti-inflammatory processes that have been evaluated in pre-clinical models. The repurposing of already available drugs known to modulate these responses may improve the future of TB therapy.
Collapse
Affiliation(s)
| | | | - William R. Bishai
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Kilinç G, Saris A, Ottenhoff THM, Haks MC. Host-directed therapy to combat mycobacterial infections. Immunol Rev 2021; 301:62-83. [PMID: 33565103 PMCID: PMC8248113 DOI: 10.1111/imr.12951] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/27/2020] [Indexed: 12/27/2022]
Abstract
Upon infection, mycobacteria, such as Mycobacterium tuberculosis (Mtb) and nontuberculous mycobacteria (NTM), are recognized by host innate immune cells, triggering a series of intracellular processes that promote mycobacterial killing. Mycobacteria, however, have developed multiple counter‐strategies to persist and survive inside host cells. By manipulating host effector mechanisms, including phagosome maturation, vacuolar escape, autophagy, antigen presentation, and metabolic pathways, pathogenic mycobacteria are able to establish long‐lasting infection. Counteracting these mycobacteria‐induced host modifying mechanisms can be accomplished by host‐directed therapeutic (HDT) strategies. HDTs offer several major advantages compared to conventional antibiotics: (a) HDTs can be effective against both drug‐resistant and drug‐susceptible bacteria, as well as potentially dormant mycobacteria; (b) HDTs are less likely to induce bacterial drug resistance; and (c) HDTs could synergize with, or shorten antibiotic treatment by targeting different pathways. In this review, we will explore host‐pathogen interactions that have been identified for Mtb for which potential HDTs impacting both innate and adaptive immunity are available, and outline those worthy of future research. We will also discuss possibilities to target NTM infection by HDT, although current knowledge regarding host‐pathogen interactions for NTM is limited compared to Mtb. Finally, we speculate that combinatorial HDT strategies can potentially synergize to achieve optimal mycobacterial host immune control.
Collapse
Affiliation(s)
- Gül Kilinç
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Cao D, Wang J, Ji Z, Shangguan Y, Guo W, Feng X, Xu K, Yang J. Profiling the mRNA and miRNA in Peripheral Blood Mononuclear Cells in Subjects with Active Tuberculosis. Infect Drug Resist 2020; 13:4223-4234. [PMID: 33262617 PMCID: PMC7695608 DOI: 10.2147/idr.s278705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/04/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose To identify candidate hub genes and miRNAs associated with active tuberculosis (ATB) and reveal the potential molecular mechanisms of disease progression. Patients and Methods The expression of mRNA and miRNA was evaluated in peripheral blood mononuclear cells (PBMC) from 4 ATB patients and 4 healthy donors (HD) using high throughput sequencing (HTS) and bioinformatics analysis. Moreover, differentially expressed miRNAs were validated with 35 ATB patients and 35 HDs using reverse transcription quantitative real-time PCR (RT-qPCR). Results A total of 2658 significantly differentially expressed genes (DEG) including 1415 up-regulated genes and 1243 down-regulated genes were identified in the ATB group compared with HDs, and the DEGs enriched in immune-related pathways, especially in TNF signaling pathway, cytokine–cytokine receptor interaction, mitogen-activated protein kinase (MAPK) signaling pathways and tuberculosis. Additionally, 10 hub genes were acquired according to protein–protein interaction (PPI) analysis of DEGs. Moreover, 26 differentially expressed miRNAs were found in ATB group compared with HDs. Furthermore, RT-qPCR results showed that hsa-miR-23a-5p (P=0.0106), hsa-miR-183-5p (P=0.0027), hsa-miR-193a-5p (P=0.0021) and hsa-miR-941(P=0.0001) were significantly increased in the ATB patients compared with HD group, and the hsa-miR-16-1-3p was significantly decreased (P=0.0032). Conclusion Our research provided a characteristic profile of mRNAs and miRNAs expressed in ATB subjects, and 10 hub genes related with ATB were found, which will contribute to explore the role of miRNAs and hub genes in the pathogenesis of ATB, and improve the ability of differential diagnosis and treatment for the disease.
Collapse
Affiliation(s)
- Dan Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Ju Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Zhongkang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yanwan Shangguan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Wanru Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Xuewen Feng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
14
|
Ordonez AA, Pokkali S, Sanchez-Bautista J, Klunk MH, Urbanowski ME, Kübler A, Bishai WR, Elkington PT, Jain SK. Matrix Metalloproteinase Inhibition in a Murine Model of Cavitary Tuberculosis Paradoxically Worsens Pathology. J Infect Dis 2019; 219:633-636. [PMID: 29920600 DOI: 10.1093/infdis/jiy373] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) degrade extracellular matrix and are implicated in tuberculosis pathogenesis and cavitation. In particular, MMP-7 is induced by hypoxia and highly expressed around pulmonary cavities of Mycobacterium tuberculosis-infected C3HeB/FeJ mice. In this study, we evaluated whether administration of cipemastat, an orally available potent inhibitor of MMP-7, could reduce pulmonary cavitation in M. tuberculosis-infected C3HeB/FeJ mice. We demonstrate that, compared with untreated controls, cipemastat treatment paradoxically increases the frequency of cavitation (32% vs 7%; P = .029), immunopathology, and mortality. Further studies are needed to understand the role of MMP inhibitors as adjunctive treatments for pulmonary tuberculosis.
Collapse
Affiliation(s)
- Alvaro A Ordonez
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Supriya Pokkali
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julian Sanchez-Bautista
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mariah H Klunk
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael E Urbanowski
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - André Kübler
- Queen's Hospital, Barking, Havering, and Redbridge University Hospital National Health Service Trust, Romford
| | - William R Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul T Elkington
- Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, NIHR Biomedical Research Centre.,Institute of Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Sanjay K Jain
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
15
|
Sabir N, Hussain T, Mangi MH, Zhao D, Zhou X. Matrix metalloproteinases: Expression, regulation and role in the immunopathology of tuberculosis. Cell Prolif 2019; 52:e12649. [PMID: 31199047 PMCID: PMC6668971 DOI: 10.1111/cpr.12649] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) leads to approximately 1.5 million human deaths every year. In pulmonary tuberculosis (TB), Mtb must drive host tissue destruction to cause pulmonary cavitation and dissemination in the tissues. Matrix metalloproteinases (MMPs) are endopeptidases capable of degrading all components of pulmonary extracellular matrix (ECM). It is well established that Mtb infection leads to upregulation of MMPs and also causes disturbance in the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs), thus altering the extracellular matrix deposition. In TB, secretion of MMPs is mainly regulated by NF-κB, p38 and MAPK signalling pathways. In addition, recent studies have demonstrated the immunomodulatory roles of MMPs in Mtb pathogenesis. Researchers have proposed a new regimen of improved TB treatment by inhibition of MMP activity to hinder matrix destruction and to minimize the TB-associated morbidity and mortality. The proposed regimen involves adjunctive use of MMP inhibitors such as doxycycline, marimastat and other related drugs along with front-line anti-TB drugs to reduce granuloma formation and bacterial load. These findings implicate the possible addition of economical and well-tolerated MMP inhibitors to current multidrug regimens as an attractive mean to increase the drug potency. Here, we will summarize the recent advancements regarding expression of MMPs in TB, their immunomodulatory role, as well as their potential as therapeutic targets to control the deadly disease.
Collapse
Affiliation(s)
- Naveed Sabir
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Tariq Hussain
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Mazhar Hussain Mangi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Deming Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Xiangmei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| |
Collapse
|
16
|
Saini V, Ammerman NC, Chang YS, Tasneen R, Chaisson RE, Jain S, Nuermberger E, Grosset JH. Treatment-Shortening Effect of a Novel Regimen Combining Clofazimine and High-Dose Rifapentine in Pathologically Distinct Mouse Models of Tuberculosis. Antimicrob Agents Chemother 2019; 63:e00388-19. [PMID: 30936097 PMCID: PMC6535519 DOI: 10.1128/aac.00388-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/22/2019] [Indexed: 01/09/2023] Open
Abstract
Clofazimine and high-dose rifapentine have each separately been associated with treatment-shortening activity when incorporated into tuberculosis (TB) treatment regimens. We hypothesized that both modifications, i.e., the addition of clofazimine and the replacement of rifampin with high-dose rifapentine, in the first-line regimen for drug-susceptible TB would significantly shorten the duration of treatment necessary for cure. We tested this hypothesis in a well-established BALB/c mouse model of TB chemotherapy and also in a C3HeB/FeJ mouse model in which mice can develop caseous necrotic lesions, an environment where rifapentine and clofazimine may individually be less effective. In both mouse models, replacing rifampin with high-dose rifapentine and adding clofazimine in the first-line regimen resulted in greater bactericidal and sterilizing activity than either modification alone, suggesting that a rifapentine- and clofazimine-containing regimen may have the potential to significantly shorten the treatment duration for drug-susceptible TB. These data provide preclinical evidence supporting the evaluation of regimens combining high-dose rifapentine and clofazimine in clinical trials.
Collapse
Affiliation(s)
- Vikram Saini
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole C Ammerman
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yong Seok Chang
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rokeya Tasneen
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard E Chaisson
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjay Jain
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jacques H Grosset
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Rohlwink UK, Walker NF, Ordonez AA, Li YJ, Tucker EW, Elkington PT, Wilkinson RJ, Wilkinson KA. Matrix Metalloproteinases in Pulmonary and Central Nervous System Tuberculosis-A Review. Int J Mol Sci 2019; 20:ijms20061350. [PMID: 30889803 PMCID: PMC6471445 DOI: 10.3390/ijms20061350] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 01/06/2023] Open
Abstract
Tuberculosis (TB) remains the single biggest infectious cause of death globally, claiming almost two million lives and causing disease in over 10 million individuals annually. Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes with various physiological roles implicated as key factors contributing to the spread of TB. They are involved in the breakdown of lung extracellular matrix and the consequent release of Mycobacterium tuberculosis bacilli into the airways. Evidence demonstrates that MMPs also play a role in central nervous system (CNS) tuberculosis, as they contribute to the breakdown of the blood brain barrier and are associated with poor outcome in adults with tuberculous meningitis (TBM). However, in pediatric TBM, data indicate that MMPs may play a role in both pathology and recovery of the developing brain. MMPs also have a significant role in HIV-TB-associated immune reconstitution inflammatory syndrome in the lungs and the brain, and their modulation offers potential novel therapeutic avenues. This is a review of recent research on MMPs in pulmonary and CNS TB in adults and children and in the context of co-infection with HIV. We summarize different methods of MMP investigation and discuss the translational implications of MMP inhibition to reduce immunopathology.
Collapse
Affiliation(s)
- Ursula K Rohlwink
- Neuroscience Institute, University of Cape Town, Faculty of Health Sciences, Anzio Road, Observatory 7925, South Africa.
| | - Naomi F Walker
- TB Centre and Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK.
| | - Alvaro A Ordonez
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Yifan J Li
- Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa.
| | - Elizabeth W Tucker
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
- Division of Pediatric Critical Care, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA.
| | - Paul T Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
- Department of Medicine, Imperial College London, London W2 1PG, UK.
| | - Katalin A Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|