1
|
Pizzamiglio C, Stefanetti RJ, McFarland R, Thomas N, Ransley G, Hugerth M, Grönberg A, Serrano SS, Elmér E, Hanna MG, Hansson MJ, Gorman GS, Pitceathly RDS. Optimizing rare disorder trials: a phase 1a/1b randomized study of KL1333 in adults with mitochondrial disease. Brain 2025; 148:39-46. [PMID: 39657714 PMCID: PMC11706290 DOI: 10.1093/brain/awae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/27/2024] [Accepted: 09/08/2024] [Indexed: 12/12/2024] Open
Abstract
Over the past two decades there has been increased interest in orphan drug development for rare diseases. However, hurdles to clinical trial design for these disorders remain. This phase 1a/1b study addressed several challenges, while evaluating the safety and tolerability of the novel oral molecule KL1333 in healthy volunteers and subjects with primary mitochondrial disease. KL1333 aims to normalize the NAD+:NADH ratio that is critical for ATP production. The trial incorporated innovative design elements with potential translatability to other rare diseases including patient involvement, adaptive design and exploratory objectives, all of which have subsequently informed the protocol of an ongoing phase 2, pivotal efficacy study of KL1333. Results indicate KL1333 is safe and well tolerated, with dose-dependent gastrointestinal side effects, and validate potential novel outcome measures in primary mitochondrial disease including the 30-s Sit to Stand, and the patient-reported fatigue scales. Importantly, the data from the trial support efficacy of KL1333 based on improvements in fatigue and functional strength and endurance. Furthermore, the study highlights the value in using phase 1 studies to capture data that helps optimize later phase efficacy trial design.
Collapse
Affiliation(s)
- Chiara Pizzamiglio
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Renae J Stefanetti
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle BRC, NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle BRC, NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Naomi Thomas
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle BRC, NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - George Ransley
- Leonard Wolfson Experimental Neurology Centre, University College London Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | | | | | - Sonia Simon Serrano
- Abliva AB, SE-223 81 Lund, Sweden
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Eskil Elmér
- Abliva AB, SE-223 81 Lund, Sweden
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Michael G Hanna
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Magnus J Hansson
- Abliva AB, SE-223 81 Lund, Sweden
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle BRC, NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| |
Collapse
|
2
|
Stinissen L, Böhm J, Bouma S, van Tienen J, Fischer H, Hughes Z, Lennox A, Ward E, Wood M, Foley AR, Oortwijn W, Jungbluth H, Voermans NC. Lessons Learned From Clinical Studies in Centronuclear Myopathies: The Patient Perspective-A Qualitative Study. Clin Ther 2024; 46:742-751. [PMID: 38670885 DOI: 10.1016/j.clinthera.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Since 2014, several clinical studies focusing on centronuclear myopathies have been conducted, including a prospective natural history study, a gene transfer clinical trial and a clinical trial using an antisense oligonucleotide. Dedicated patient organizations have played an important role in this process. The experience of members of these organizations, either as a study participant, parent or as a patient organization member communicating with the sponsors are potentially very informative for future trial design. METHODS We investigated the burden of and the lessons learned from the first natural history studies and clinical trials from a patient perspective using a qualitative approach. We arranged 4 focus groups with a total of 37 participants from 3 large international patient organizations: ZNM-ZusammenStark!, the Myotubular Trust, and the MTM-CNM Family Connection. 4 themes, based on a systematic literature search were discussed: Expectations and preparation, Clinical study participation, Communication and Recommendations for future clinical trials. The focus group recordings were transcribed, anonymized, and uploaded to Atlas-ti version 8.1 software. The data were analyzed using a thematic content analysis. RESULTS Overall, participants were realistic in their expectations, hoping for small improvements of function and quality of life. The realization that trial participation does not equate to a treatment was challenging. Participating in a clinical study had a huge impact on many aspects of daily life, both for patients and their immediate families. First-hand insights into the burden of the design and its possible effect on performance were provided, resulting in numerous compelling recommendations for future clinical studies. Furthermore, participants stressed the importance of clear communication, which was considered to be especially vital in cases of severe adverse events. Finally, while patients were understanding of the importance of adhering to the regulations of good clinical practice, they indicated that they would strongly appreciate a greater understanding and/or acknowledgment of the patient perspective and a reflection of this perspective in future clinical trial design. CONCLUSION The acknowledgment and inclusion of patients' perspectives and efficient and effective communication is expected to improve patient recruitment and retention in future clinical studies, as well as more accurate assessment of the patient performance related to suitable planning of the study visits.
Collapse
Affiliation(s)
- Lizan Stinissen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Sietse Bouma
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Zak Hughes
- Myotubular Trust, London, United Kingdom
| | | | - Erin Ward
- MTM-CNM Family Connection, Methuen, Massachusetts, United States
| | - Marie Wood
- MTM-CNM Family Connection, Methuen, Massachusetts, United States
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, Maryland, United States
| | - Wija Oortwijn
- Department Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, United Kingdom
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Wilson E, Leventer R, Cunningham C, de Silva MG, Hodgson J, Uebergang E. Anything is better than nothing': exploring attitudes towards novel therapies in leukodystrophy clinical trials. Orphanet J Rare Dis 2024; 19:322. [PMID: 39237961 PMCID: PMC11378604 DOI: 10.1186/s13023-024-03320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND/AIM Leukodystrophies comprise a group of genetic white matter disorders that lead to progressive motor and cognitive impairment. Recent development of novel therapies has led to an increase in clinical trials for leukodystrophies. To enable recruitment of individuals with a leukodystrophy into clinical trials, clinical trial acceptability should be ascertained. We sought therefore, to identify the motivations for and barriers to clinical trial participation in addition to clinical trial features that may be of concern to individuals with a leukodystrophy and/or their carers. METHODS Adults with a leukodystrophy and parents/carers of individuals with a leukodystrophy were recruited through the Australian Leukodystrophy Registry and through online advertisements. Qualitative semi-structured interviews were used to explore participants views on what clinical trials involve, the perceived risks and benefits of clinical trials, their desire to participate in clinical trials and their personal experience with leukodystrophy. Thematic analysis of data was performed with co-coding of interview transcripts. RESULTS 5 interviews were held with parents of children with leukodystrophy, 4 with parents of adults with leukodystrophy and 3 with adults diagnosed with leukodystrophy. Motivations for clinical trial enrolment include access to potentially lifesaving novel treatments and improved prognostic outcomes. Participants were concerned about adverse clinical trial outcomes, including side effects and exacerbation of illness. Despite this, majority of participants were willing to try anything in clinical trials, demonstrating a high tolerance for first in human trials and trials utilising invasive treatment options. CONCLUSIONS Interviewees communicated a strong desire to participate in interventional clinical trials involving novel therapies. To support enrolment into future leukodystrophy clinical trials we suggest the provision of transparent information regarding clinical trial treatments, consideration of alternative trial control measures, and inclusion of treating clinicians in the trial recruitment process. Clinicians play an integral role in initiating transparent conversations regarding trial risks and adverse outcomes.
Collapse
Affiliation(s)
- Ella Wilson
- The University of Melbourne, Melbourne, VIC, Australia.
| | - Richard Leventer
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Australian Genomics, Melbourne, VIC, Australia
- Royal Children's Hospital, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
| | - Chloe Cunningham
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Royal Children's Hospital, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
| | - Michelle G de Silva
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
| | - Jan Hodgson
- The University of Melbourne, Melbourne, VIC, Australia
| | - Eloise Uebergang
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Australian Genomics, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Stinissen L, Bouma S, Böhm J, van Tienen J, Fischer H, Hughes Z, Lennox A, Ward E, Wood M, Foley AR, Oortwijn W, Jungbluth H, Voermans NC. The experience of clinical study and trial participation in rare diseases: A scoping review of centronuclear myopathy and other neuromuscular disorders. Neuromuscul Disord 2024; 38:1-7. [PMID: 38290938 DOI: 10.1016/j.nmd.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024]
Abstract
The design of a clinical trial for a rare disease can be challenging. An optimal study design is required to effectively study the clinical outcomes for possible therapies for these types of disorders. Understanding the study participants' experiences as well as barriers and facilitators of participation are important to optimize future research and to inform clinical trial management. Centronuclear myopathies (CNMs) including X-linked myotubular myopathy (XLMTM) are a group of rare congenital myopathies for which there is no cure currently. Since 2014, a number of natural history studies and clinical trials have been conducted in CNMs. Two trials have been prematurely terminated because of severe adverse events. Since no research has been conducted regarding trial experience in CNM, we performed a scoping literature research on clinical trial experience of patients with neuromuscular disorders in general. The most common barriers to trial participation of patients comprise concerns about potential harmful effects, opportunity loss and the expected burden on daily life. The most common facilitators were an expected benefit on the disease course, altruism and collateral benefit. While several results are in line with trial experiences of other types of patients, for example oncological patients, distinctions can be made for patients with CNM and other neuromuscular disorders. However, the limited availability of relevant literature suggests that future (qualitative) research should focus on trial experiences in CNM patients.
Collapse
Affiliation(s)
- Lizan Stinissen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Sietse Bouma
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | | - A Reghan Foley
- Neuromuscular & Neurogenetic Diseases of Childhood, Neurogenetics Branch (NGB), NIH, USA
| | - Wija Oortwijn
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College, London, United Kingdom
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
MacMullen LE, George-Sankoh I, Stanley K, McCormick EM, Muraresku CC, Goldstein A, Zolkipli-Cunningham Z, Falk MJ. Bridging the clinical-research gap: Harnessing an electronic data capture, integration, and visualization platform to systematically assess prospective patient-reported outcomes in mitochondrial medicine. Mol Genet Metab 2024; 142:108348. [PMID: 38387305 DOI: 10.1016/j.ymgme.2024.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE Optimizing individualized clinical care in heterogeneous rare disorders, such as primary mitochondrial disease (PMD), will require gaining more comprehensive and objective understanding of the patient experience by longitudinally tracking quantifiable patient-specific outcomes and integrating subjective data with clinical data to monitor disease progression and targeted therapeutic effects. METHODS Electronic surveys of patient (and caregiver) reported outcome (PRO) measures were administered in REDCap within clinical domains commonly impaired in patients with PMD in the context of their ongoing routine care, including quality of life, fatigue, and functional performance. Descriptive statistics, group comparisons, and inter-measure correlations were used to evaluate system feasibility, utility of PRO results, and consistency across outcome measure domains. Real-time tracking and visualization of longitudinal individual-level and cohort-level data were facilitated by a customized data integration and visualization system, MMFP-Tableau. RESULTS An efficient PRO electronic capture and analysis system was successfully implemented within a clinically and genetically heterogeneous rare disease clinical population spanning all ages. Preliminary data analyses demonstrated the flexibility of this approach for a range of PROs, as well as the value of selected PRO scales to objectively capture qualitative functional impairment in four key clinical domains. High inter-measure reliability and correlation were observed. Between-group analyses revealed that adults with PMD reported significantly worse quality of life and greater fatigue than did affected children, while PMD patients with nuclear gene disorders reported lower functioning relative to those with an mtDNA gene disorder in several clinical domains. CONCLUSION Incorporation of routine electronic data collection, integration, visualization, and analysis of relevant PROs for rare disease patients seen in the clinical setting was demonstrated to be feasible, providing prospective and quantitative data on key clinical domains relevant to the patient experience. Further work is needed to validate specific PROs in diverse PMD patients and cohorts, and to formally evaluate the clinical impact and utility of harnessing integrated data systems to objectively track and integrate quantifiable PROs in the context of rare disease patient clinical care.
Collapse
Affiliation(s)
- Laura E MacMullen
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Ibrahim George-Sankoh
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America; Department of Bioinformatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Katelynn Stanley
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Elizabeth M McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Colleen C Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States of America
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States of America
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
6
|
Xiang Z, Jiang H, Jiang W, Wang Y, Zheng H. Knowledge and Attitudes of Clinical Trials among Patients with Rare Diseases and the Guardians in China. Ther Innov Regul Sci 2024; 58:53-62. [PMID: 37721697 DOI: 10.1007/s43441-023-00571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 08/09/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Conducting of clinical trials for rare diseases faces multiple challenges. Patients' cognition and attitude toward clinical trials are crucial, which may affect their participation and compliance, and affect the schedule of clinical trials eventually. OBJECTIVE AND METHOD This study aims to explore the knowledge and attitudes of clinical trials of patients with rare diseases or patients' guardians. An anonymous cross-sectional survey was conducted from November 1, 2021, to November 30, 2021. A total of 1131 valid questionnaires were included. Among them, 417 were filled in by the patients themselves, and 714 were answered by the patients' guardians. RESULTS The average score of clinical trial knowledge of the patients (8.25) was lower than that of the guardians (8.85). The willingness of the patients to participate in clinical trials was high (4.28), and the willingness of the patients' guardians was also high for patients to participate in clinical trials (4.35). The main promoting factors of clinical trial participation were the possibility of curing the disease. The main hindering factors of participation in clinical trials were lack of access to clinical trial information and concern about the safety and effectiveness of the trial drug. CONCLUSIONS In conclusion, most respondents had some basic knowledge of clinical trials and high willingness to participate in clinical trials. But there were some cognitive deficiencies about clinical trials and many hindering factors to participate in clinical trials. Clinical trials of rare diseases should be patient-centered and truly meet the unmet clinical, psychological, and social needs of patients with rare diseases.
Collapse
Affiliation(s)
- Ziling Xiang
- School of Pharmacy, Chongqing Medical University, Yuanjiagang Campus, Chongqing Medical University, Shiyou Road Street, Yuzhong District, Chongqing, China
| | - Hui Jiang
- Zhangzhou Hospital affiliated to Fujian Medical University, Zhangzhou, China
| | - Wengao Jiang
- School of Pharmacy, Chongqing Medical University, Yuanjiagang Campus, Chongqing Medical University, Shiyou Road Street, Yuzhong District, Chongqing, China
| | - Yali Wang
- Department of Neurology, Guangzhou First People's Hospital, Guangzhou, China
| | - Hang Zheng
- School of Pharmacy, Chongqing Medical University, Yuanjiagang Campus, Chongqing Medical University, Shiyou Road Street, Yuzhong District, Chongqing, China.
| |
Collapse
|
7
|
DiVito D, Wellik A, Burfield J, Peterson J, Flickinger J, Tindall A, Albanowski K, Vishnubhatt S, MacMullen L, Martin I, Muraresku C, McCormick E, George-Sankoh I, McCormack S, Goldstein A, Ganetzky R, Yudkoff M, Xiao R, Falk MJ, R Mascarenhas M, Zolkipli-Cunningham Z. Optimized Nutrition in Mitochondrial Disease Correlates to Improved Muscle Fatigue, Strength, and Quality of Life. Neurotherapeutics 2023; 20:1723-1745. [PMID: 37723406 PMCID: PMC10684455 DOI: 10.1007/s13311-023-01418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 09/20/2023] Open
Abstract
We sought to prospectively characterize the nutritional status of adults ≥ 19 years (n = 22, 27% males) and children (n = 38, 61% male) with genetically-confirmed primary mitochondrial disease (PMD) to guide development of precision nutritional support strategies to be tested in future clinical trials. We excluded subjects who were exclusively tube-fed. Daily caloric requirements were estimated using World Health Organization (WHO) equations to predict resting energy expenditure (REE) multiplied by an activity factor (AF) based on individual activity levels. We developed a Mitochondrial Disease Activity Factors (MOTIVATOR) score to encompass the impact of muscle fatigue typical of PMD on physical activity levels. PMD cohort daily diet intake was estimated to be 1,143 ± 104.1 kcal in adults (mean ± SEM, 76.2% of WHO-MOTIVATOR predicted requirement), and 1,114 ± 62.3 kcal in children (86.4% predicted). A total of 11/22 (50%) adults and 18/38 (47.4%) children with PMD consumed ≤ 75% predicted daily Kcal needs. Malnutrition was identified in 16/60 (26.7%) PMD subjects. Increased protein and fat intake correlated with improved muscle strength in those with insufficient daily Kcal intake (≤ 75% predicted); higher protein and fat intake correlated with decreased muscle fatigue; and higher protein, fat, and carbohydrate intake correlated with improved quality of life (QoL). These data demonstrate the frequent occurrence of malnutrition in PMD and emphasize the critical need to devise nutritional interventions to optimize clinical outcomes.
Collapse
Affiliation(s)
- Donna DiVito
- Clinical Nutrition Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amanda Wellik
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica Burfield
- Clinical Nutrition Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James Peterson
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jean Flickinger
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alyssa Tindall
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Gastroenterology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kimberly Albanowski
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shailee Vishnubhatt
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura MacMullen
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Isaac Martin
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Colleen Muraresku
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth McCormick
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ibrahim George-Sankoh
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shana McCormack
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy Goldstein
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rebecca Ganetzky
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marc Yudkoff
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rui Xiao
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marni J Falk
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maria R Mascarenhas
- Division of Gastroenterology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zarazuela Zolkipli-Cunningham
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Saneto RP, Karaa A. Optimized Nutrition in Mitochondrial Diseases Correlates with Improved Muscle Fatigue, Strength, and Quality of Life: You Are What You Eat, or Are You? Neurotherapeutics 2023; 20:1694-1695. [PMID: 37770714 PMCID: PMC10684433 DOI: 10.1007/s13311-023-01445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Affiliation(s)
- Russell P Saneto
- Center for Integrated Brain Research, Division of Pediatric Neurology, Mitochondrial Medicine and Metabolism, Neuroscience Institute, Seattle Children's Hospital/University of Washington, Seattle, WA, 98105, USA.
| | - Amel Karaa
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
9
|
Thompson JLP, Karaa A, Pham H, Yeske P, Krischer J, Xiao Y, Long Y, Kramer A, Dimmock D, Holbert A, Gorski C, Engelstad KM, Buchsbaum R, Rosales XQ, Hirano M. The evolution of the mitochondrial disease diagnostic odyssey. Orphanet J Rare Dis 2023; 18:157. [PMID: 37349818 PMCID: PMC10288668 DOI: 10.1186/s13023-023-02754-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/04/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Mitochondrial diseases often require multiple years and clinicians to diagnose. We lack knowledge of the stages of this diagnostic odyssey, and factors that affect it. Our goals are to report the results of the 2018 Odyssey2 (OD2) survey of patients with a medical diagnosis of mitochondrial disease; and to propose steps to reduce the odyssey going forward, and procedures to evaluate them. METHODS Data are from the NIH-funded NAMDC-RDCRN-UMDF OD2 survey (N = 215). The main outcomes are Time from symptom Onset to mitochondrial disease Diagnosis (TOD) and Number of Doctors Seen during this diagnostic process (NDOCS). RESULTS Expert recoding increased analyzable responses by 34% for final mitochondrial diagnosis and 39% for prior non-mitochondrial diagnosis. Only one of 122 patients who initially saw a primary care physician (PCP) received a mitochondrial diagnosis, compared to 26 of 86 (30%) who initially saw a specialist (p < 0.001). Mean TOD overall was 9.9 ± 13.0 years, and mean NDOCS 6.7 ± 5.2. Mitochondrial diagnosis brings extensive benefits through treatment changes and increased membership in and support of advocacy groups. CONCLUSIONS Because TOD is long and NDOCS high, there is great potential for shortening the mitochondrial odyssey. Although prompt patient contact with primary mitochondrial disease specialists, or early implementation of appropriate tests, may shorten the diagnostic odyssey, specific proposals for improvement require testing and confirmation with adequately complete, unbiased data across all its stages, and appropriate methods. Electronic Health Record (EHRs) may help by accessing diagnostic codes early, but their reliability and diagnostic utility have not been established for this group of diseases.
Collapse
Affiliation(s)
- John L P Thompson
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, USA.
| | - Amel Karaa
- Division of Genetics, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Hung Pham
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, USA
| | | | - Jeffrey Krischer
- University of South Florida Health Informatics Institute, Tampa, FL, USA
| | - Yi Xiao
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, USA
| | - Yuelin Long
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, USA
| | - Amanda Kramer
- Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, USA
| | | | | | | | - Kristin M Engelstad
- Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Richard Buchsbaum
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, USA
| | - Xiomara Q Rosales
- Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
10
|
Peña LDM, Burrage LC, Enns GM, Esplin ED, Harding C, Mendell JR, Niu ZN, Scharfe C, Yu T, Koeberl DD. Contributions from medical geneticists in clinical trials of genetic therapies: A points to consider statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023; 25:100831. [PMID: 37031408 PMCID: PMC11040261 DOI: 10.1016/j.gim.2023.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/10/2023] Open
Affiliation(s)
- Loren D M Peña
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Gregory M Enns
- Department of Pediatrics, Stanford University, Stanford, CA
| | | | - Cary Harding
- School of Medicine, Oregon Health & Science University, Portland, OR
| | - Jerry R Mendell
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH; Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH
| | - Zhiyv Neal Niu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Curt Scharfe
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | - Timothy Yu
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC
| |
Collapse
|
11
|
Karaa A, Klopstock T. Clinical trials in mitochondrial diseases. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:229-250. [PMID: 36813315 DOI: 10.1016/b978-0-12-821751-1.00002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Primary mitochondrial diseases are some of the most common and complex inherited inborn errors of metabolism. Their molecular and phenotypic diversity has led to difficulties in finding disease-modifying therapies and clinical trial efforts have been slow due to multiple significant challenges. Lack of robust natural history data, difficulties in finding specific biomarkers, absence of well-validated outcome measures, and small patient numbers have made clinical trial design and conduct difficult. Encouragingly, new interest in treating mitochondrial dysfunction in common diseases and regulatory incentives to develop therapies for rare conditions have led to significant interest and efforts to develop drugs for primary mitochondrial diseases. Here, we review past and present clinical trials and future strategies of drug development in primary mitochondrial diseases.
Collapse
Affiliation(s)
- Amel Karaa
- Mitochondrial Disease Program, Division of Medical Genetics and Metabolism, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Network for mitochondrial disorders (mitoNET), Munich, Germany
| |
Collapse
|
12
|
Kornblum C, Lamperti C, Parikh S. Currently available therapies in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:189-206. [PMID: 36813313 DOI: 10.1016/b978-0-12-821751-1.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial diseases are a heterogeneous group of multisystem disorders caused by impaired mitochondrial function. These disorders occur at any age and involve any tissue, typically affecting organs highly dependent on aerobic metabolism. Diagnosis and management are extremely difficult due to various underlying genetic defects and a wide range of clinical symptoms. Preventive care and active surveillance are strategies to try to reduce morbidity and mortality by timely treatment of organ-specific complications. More specific interventional therapies are in early phases of development and no effective treatment or cure currently exists. A variety of dietary supplements have been utilized based on biological logic. For several reasons, few randomized controlled trials have been completed to assess the efficacy of these supplements. The majority of the literature on supplement efficacy represents case reports, retrospective analyses and open-label studies. We briefly review selected supplements that have some degree of clinical research support. In mitochondrial diseases, potential triggers of metabolic decompensation or medications that are potentially toxic to mitochondrial function should be avoided. We shortly summarize current recommendations on safe medication in mitochondrial diseases. Finally, we focus on the frequent and debilitating symptoms of exercise intolerance and fatigue and their management including physical training strategies.
Collapse
Affiliation(s)
- Cornelia Kornblum
- Department of Neurology, Neuromuscular Disease Section, University Hospital Bonn, Bonn, Germany.
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sumit Parikh
- Center for Pediatric Neurosciences, Mitochondrial Medicine & Neurogenetics, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
13
|
Gwaltney C, Stokes J, Aiudi A, Mazar I, Ollis S, Love E, Karaa A, Houts CR, Wirth RJ, Shields AL. Psychometric performance of the Primary Mitochondrial Myopathy Symptom Assessment (PMMSA) in a randomized, double-blind, placebo-controlled crossover study in subjects with mitochondrial disease. J Patient Rep Outcomes 2022; 6:129. [PMID: 36562873 PMCID: PMC9789285 DOI: 10.1186/s41687-022-00534-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The Primary Mitochondrial Myopathy Symptom Assessment (PMMSA) is a 10-item patient-reported outcome (PRO) measure designed to assess the severity of mitochondrial disease symptoms. Analyses of data from a clinical trial with PMM patients were conducted to evaluate the psychometric properties of the PMMSA and to provide score interpretation guidelines for the measure. METHODS The PMMSA was completed as a daily diary for approximately 14 weeks by individuals in a Phase 2 randomized, placebo-controlled crossover trial evaluating the safety, tolerability, and efficacy of subcutaneous injections of elamipretide in patents with mitochondrial disease. In addition to the PMMSA, performance-based assessments, clinician ratings, and other PRO measures were also completed. Descriptive statistics, psychometric analyses, and score interpretation guidelines were evaluated for the PMMSA. RESULTS Participants (N = 30) had a mean age of 45.3 years, with the majority of the sample being female (n = 25, 83.3%) and non-Hispanic white (n = 29, 96.6%). The 10 PMMSA items assessing a diverse symptomology were not found to form a single underlying construct. However, four items assessing tiredness and muscle weakness were grouped into a "general fatigue" domain score. The PMMSA Fatigue 4 summary score (4FS) demonstrated stable test-retest scores, internal consistency, correlations with the scores produced by reference measures, and the ability to differentiate between different global health levels. Changes on the PMMSA 4FS were also related to change scores produced by the reference measures. PMMSA severity scores were higher for the symptom rated as "most bothersome" by each subject relative to the remaining nine PMMSA items (most bothersome symptom mean = 2.88 vs. 2.18 for other items). Distribution- and anchor-based evaluations suggested that reduction in weekly scores between 0.79 and 2.14 (scale range: 4-16) may represent a meaningful change on the PMMSA 4FS and reduction in weekly scores between 0.03 and 0.61 may represent a responder for each of the remaining six non-fatigue items, scored independently. CONCLUSIONS Upon evaluation of its psychometric properties, the PMMSA, specifically the 4FS domain, demonstrated strong reliability and construct-related validity. The PMMSA can be used to evaluate treatment benefit in clinical trials with individuals with PMM. Trial registration ClinicalTrials.gov identifier, NCT02805790; registered June 20, 2016; https://clinicaltrials.gov/ct2/show/NCT02805790 .
Collapse
Affiliation(s)
- Chad Gwaltney
- Gwaltney Consulting Group, 1 Bucks Trail, Westerly, RI USA
| | - Jonathan Stokes
- Adelphi Values (or employed at Adelphi Values at time of conduct of research), Boston, MA USA
| | - Anthony Aiudi
- grid.476731.00000 0004 0414 8723Stealth BioTherapeutics Inc., Newton, MA USA
| | - Iyar Mazar
- Adelphi Values (or employed at Adelphi Values at time of conduct of research), Boston, MA USA
| | - Sarah Ollis
- Adelphi Values (or employed at Adelphi Values at time of conduct of research), Boston, MA USA
| | - Emily Love
- Adelphi Values (or employed at Adelphi Values at time of conduct of research), Boston, MA USA
| | - Amel Karaa
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Boston, MA USA
| | | | - R. J. Wirth
- Vector Psychometric Group LLC, Chapel Hill, NC USA
| | - Alan L. Shields
- Adelphi Values (or employed at Adelphi Values at time of conduct of research), Boston, MA USA
| |
Collapse
|
14
|
Monticelli M, Francisco R, Brasil S, Marques-da-Silva D, Rijoff T, Pascoal C, Jaeken J, Videira PA, Dos Reis Ferreira V. Stakeholders' views on drug development: the congenital disorders of glycosylation community perspective. Orphanet J Rare Dis 2022; 17:303. [PMID: 35907899 PMCID: PMC9338569 DOI: 10.1186/s13023-022-02460-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/17/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) are a large family of rare genetic diseases for which therapies are virtually nonexistent. However, CDG therapeutic research has been expanding, thanks to the continuous efforts of the CDG medical/scientific and patient communities. Hence, CDG drug development is a popular research topic. The main aim of this study was to understand current and steer future CDG drug development and approval by collecting and analysing the views and experiences of the CDG community, encompassing professionals and families. An electronic (e-)survey was developed and distributed to achieve this goal. RESULTS A total of 128 respondents (46 CDG professionals and 82 family members), mainly from Europe and the USA, participated in this study. Most professionals (95.0%) were relatively familiar with drug development and approval processes, while CDG families revealed low familiarity levels, with 8.5% admitting to never having heard about drug development. However, both stakeholder groups agreed that patients and families make significant contributions to drug development and approval. Regarding their perceptions of and experiences with specific drug development and approval tools, namely biobanks, disease models, patient registries, natural history studies (NHS) and clinical trials (CT), the CDG community stakeholders described low use and participation, as well as variable familiarity. Additionally, CDG professionals and families shared conflicting views about CT patient engagement and related information sharing. Families reported lower levels of involvement in CT design (25.0% declared ever being involved) and information (60.0% stated having been informed) compared to professionals (60.0% and 85.7%, respectively). These contrasting perceptions were further extended to their insights and experiences with patient-centric research. Finally, the CDG community (67.4% of professionals and 54.0% of families) reported a positive vision of artificial intelligence (AI) as a drug development tool. Nevertheless, despite the high AI awareness among CDG families (76.8%), professionals described limited AI use in their research (23.9%). CONCLUSIONS This community-centric study sheds new light on CDG drug development and approval. It identifies educational, communication and research gaps and opportunities for CDG professionals and families that could improve and accelerate CDG therapy development.
Collapse
Affiliation(s)
- Maria Monticelli
- Department of Biology, Università degli Studi di Napoli "Federico II", 80126, Naples, Italy.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal
| | - Rita Francisco
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal. .,UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal. .,Associate Laboratory i4HB , Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.
| | - Sandra Brasil
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,Associate Laboratory i4HB , Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,Portuguese Association for Congenital Disorders of Glycosylation (CDG), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal
| | - Dorinda Marques-da-Silva
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,Portuguese Association for Congenital Disorders of Glycosylation (CDG), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, 2411-901, Leiria, Portugal.,ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Tatiana Rijoff
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,CDG Swiss Association, Meyrin, Switzerland
| | - Carlota Pascoal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,Associate Laboratory i4HB , Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,Portuguese Association for Congenital Disorders of Glycosylation (CDG), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,Department of Development and Regeneration, Centre for Metabolic Diseases, KU Leuven, Leuven, Belgium
| | - Paula A Videira
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,Associate Laboratory i4HB , Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,Portuguese Association for Congenital Disorders of Glycosylation (CDG), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal
| | - Vanessa Dos Reis Ferreira
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal. .,UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal. .,Portuguese Association for Congenital Disorders of Glycosylation (CDG), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.
| |
Collapse
|
15
|
Emmanuele V, Ganesh J, Vladutiu G, Haas R, Kerr D, Saneto RP, Cohen BH, Van Hove JLK, Scaglia F, Hoppel C, Rosales XQ, Barca E, Buchsbaum R, Thompson JL, DiMauro S, Hirano M. Time to harmonize mitochondrial syndrome nomenclature and classification: A consensus from the North American Mitochondrial Disease Consortium (NAMDC). Mol Genet Metab 2022; 136:125-131. [PMID: 35606253 PMCID: PMC9341219 DOI: 10.1016/j.ymgme.2022.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To harmonize terminology in mitochondrial medicine, we propose revised clinical criteria for primary mitochondrial syndromes. METHODS The North American Mitochondrial Disease Consortium (NAMDC) established a Diagnostic Criteria Committee comprised of members with diverse expertise. It included clinicians, researchers, diagnostic laboratory directors, statisticians, and data managers. The Committee conducted a comprehensive literature review, an evaluation of current clinical practices and diagnostic modalities, surveys, and teleconferences to reach consensus on syndrome definitions for mitochondrial diseases. The criteria were refined after manual application to patients enrolled in the NAMDC Registry. RESULTS By building upon published diagnostic criteria and integrating recent advances, NAMDC has generated updated consensus criteria for the clinical definition of classical mitochondrial syndromes. CONCLUSIONS Mitochondrial diseases are clinically, biochemically, and genetically heterogeneous and therefore challenging to classify and diagnose. To harmonize terminology, we propose revised criteria for the clinical definition of mitochondrial disorders. These criteria are expected to standardize the diagnosis and categorization of mitochondrial diseases, which will facilitate future natural history studies and clinical trials.
Collapse
Affiliation(s)
- Valentina Emmanuele
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jaya Ganesh
- Division of Genetics, Department of Pediatrics, Mount Sinai School of Medicine, New York, NY, USA
| | - Georgirene Vladutiu
- Departments of Pediatrics, Neurology, and Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Richard Haas
- Departments of Neurosciences and Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Douglas Kerr
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Russell P Saneto
- Department of Neurology, Division of Pediatric Neurology, Seattle Children's Hospital/University of Washington, Seattle, WA, USA
| | - Bruce H Cohen
- Department of Pediatrics, Children's Hospital Medical Center of Akron and Northeast Ohio Medical University, Akron, OH, USA
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, ShaTin, Hong Kong Special Administrative Region
| | - Charles Hoppel
- Center for Mitochondrial Disease, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Xiomara Q Rosales
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Emanuele Barca
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Richard Buchsbaum
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - John L Thompson
- Department of Neurology, Columbia University Medical Center, New York, NY, USA; Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
16
|
Tinker RJ, Falk MJ, Goldstein A, George-Sankoh I, Xiao R, Adang L, Ganetzky R. Early developmental delay in Leigh syndrome spectrum disorders is associated with poor clinical prognosis. Mol Genet Metab 2022; 135:342-349. [PMID: 35216885 PMCID: PMC8965798 DOI: 10.1016/j.ymgme.2022.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Leigh spectrum syndrome (LSS) is a primary mitochondrial disorder characterized by neurodevelopmental regression and metabolic stroke typically in early life. Developmental delay (DD) is known to follow episodes of neurologic regression in LSS, although primary developmental delay (pDD) has been rarely reported. We hypothesized that pDD precedes regression in a broader subset of LSS individuals and may associate with worse long-term educational outcomes. METHODS From a retrospective cohort, subjects with pathogenic variant(s) in a nuclear or mitochondrial gene associated with LSS and consistent clinical manifestations and neuroradiological findings. Detailed developmental histories and neurologic outcomes were extracted. RESULTS Of 69 LSS subjects, 47 (68.1%) had a history of pDD and 53 (76.8%) had neurodevelopmental regression. We identified 3 distinct developmental phenotypes: [1] pDD followed by regression (N = 31/69, 44.9%), [2] pDD without subsequent regression (16/69, 23.2%), [3] regression without pDD (N = 22/69, 31.9%). A history of pDD was associated with earlier disease onset (p = 0.0003) and worse educational outcomes (OR 22.14). CONCLUSION LSS is associated with multiple developmental phenotypes and pDD is associated with negative educational outcomes. pDD occurring prior to neurologic regression suggests that mitochondrial energetics impact developmental trajectories prior to acute metabolic failure and regression, providing an opportunity for earlier diagnosis and/or therapeutic intervention.
Collapse
Affiliation(s)
- Rory J Tinker
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ibrahim George-Sankoh
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, USA
| | - Laura Adang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Diamond T, DiVito D, Savoca M, Mascarenhas M, Goldstein A. Nutrition rehabilitation-related complications in primary mitochondrial disorders. Nutr Clin Pract 2022; 37:377-382. [PMID: 34270139 DOI: 10.1002/ncp.10739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Primary mitochondrial disorders (PMDs) comprise a group of hundreds of individual genetic diseases affecting mitochondrial function, including oxidative phosphorylation and energy production. The estimated prevalence of these disorders ranges from 2.9 to 20 cases per 100,000. PMDs are commonly associated with malnutrition and growth failure. There is a paucity of literature regarding nutrition assessment and long-term data in the PMD population. We present three patients with various PMDs who presented complications related to malnutrition: (1) a 16-year-old male with Kearns-Sayre syndrome developed type 2 insulin-requiring diabetes mellitus after the initiation of high-calorie nutrition rehabilitation via gastrostomy tube (G-tube); (2) an 11-year-old female with myoclonic epilepsy associated with ragged red fibers developed diarrhea with metabolic decompensation and profound neurological and respiratory deterioration during nutrition rehabilitation after surgical G-tube placement; and (3) a 19-year-old male with a WARS2-associated PMD manifesting with developmental delay and severe parkinsonism presented complications related to poor wound healing after gastrojejunostomy tube placement. The last patient required prolonged hospitalization in the intensive care unit. Clinicians should be vigilant in monitoring these possible complications, as no standards of care exist for the initiation of enteral nutrition for this unique population.
Collapse
Affiliation(s)
- Tamir Diamond
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Donna DiVito
- Department of Clinical Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Melanie Savoca
- Department of Clinical Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Maria Mascarenhas
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Francisco R, Brasil S, Pascoal C, Jaeken J, Liddle M, Videira PA, Dos Reis Ferreira V. The road to successful people-centric research in rare diseases: the web-based case study of the Immunology and Congenital Disorders of Glycosylation questionnaire (ImmunoCDGQ). Orphanet J Rare Dis 2022; 17:134. [PMID: 35331276 PMCID: PMC8944152 DOI: 10.1186/s13023-022-02286-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/14/2022] [Indexed: 01/25/2023] Open
Abstract
Background Congenital Disorders of Glycosylation (CDG) are a complex family of rare metabolic diseases. Robust clinical data collection faces many hurdles, preventing full CDG biological and clinical comprehension. Web-based platforms offer privileged opportunities for biomedical data gathering, and participant recruitment, particularly in rare diseases. The immunology and CDG electronic (e-) questionnaire (ImmunoCDGQ) explores this paradigm, proposing a people-centric framework to advance health research and participant empowerment. Objective The objectives of this study were to: (1) Describe and characterize the ImmunoCDGQ development, engagement, recruitment, participation, and result dissemination strategies; (2) To critically compare this framework with published literature and making recommendations. Methods An international, multistakeholder people-centric approach was initiated to develop and distribute the ImmunoCDGQ, a multi-lingual e-questionnaire able to collect immune-related data directly from patients and family caregivers. An adapted version was produced and distributed among the general “healthy” population (ImmunoHealthyQ), serving as the control group. Literature screening was performed to identify and analyze comparable studies. Results The ImmunoCDGQ attained high participation and inclusion rates (94.6%, 209 out of 221). Comparatively to the control, CDG participants also showed higher and more variable questionnaire completion times as well as increased English version representativeness. Additionally, 20% of the CDG group (42 out of 209) chose not to complete the entire questionnaire in one go. Conditional logic structuring guided participant data provision and accurate data analysis assignment. Multi-channel recruitment created sustained engagement with Facebook emerging as the most followed social media outlet. Still, most included ImmunoCDGQ questionnaires (50.7%, 106 out of 209) were submitted within the first month of the project’s launch. Literature search and analysis showed that most e-questionnaire-based studies in rare diseases are author-built (56.8%, 25 out of 44), simultaneously addressing medical and health-related quality of life (HRQoL) and/or information needs (79.5%, 35 out of 44). Also, over 68% of the studies adopt multi-platform recruitment (30 out of 44) actively supported by patient organizations (52.3%, 23 out of 44). Conclusions The ImmunoCDGQ, its methodology and the CDG Community served as models for health research, hence paving a successful and reproducible road to people-centricity in biomedical research. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02286-w.
Collapse
Affiliation(s)
- Rita Francisco
- CDG & Allies-Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,Portuguese Association for Congenital Disorders of Glycosylation (CDG), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal
| | - Sandra Brasil
- CDG & Allies-Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,Portuguese Association for Congenital Disorders of Glycosylation (CDG), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal
| | - Carlota Pascoal
- CDG & Allies-Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,Portuguese Association for Congenital Disorders of Glycosylation (CDG), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal
| | - Jaak Jaeken
- CDG & Allies-Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,Center for Metabolic Diseases, Department of Pediatrics, KU Leuven, 3000, Leuven, Belgium
| | - Merell Liddle
- CDG & Allies-Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal
| | - Paula A Videira
- CDG & Allies-Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.,Portuguese Association for Congenital Disorders of Glycosylation (CDG), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal
| | - Vanessa Dos Reis Ferreira
- CDG & Allies-Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal. .,UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal. .,Portuguese Association for Congenital Disorders of Glycosylation (CDG), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.
| |
Collapse
|
19
|
Karaa A, MacMullen LE, Campbell JC, Christodoulou J, Cohen BH, Klopstock T, Koga Y, Lamperti C, van Maanen R, McFarland R, Parikh S, Rahman S, Scaglia F, Sherman AV, Yeske P, Falk MJ. Community Consensus Guidelines to Support FAIR Data Standards in Clinical Research Studies in Primary Mitochondrial Disease. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100047. [PMID: 35317023 PMCID: PMC8936395 DOI: 10.1002/ggn2.202100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 01/09/2023]
Abstract
Primary mitochondrial diseases (PMD) are genetic disorders with extensive clinical and molecular heterogeneity where therapeutic development efforts have faced multiple challenges. Clinical trial design, outcome measure selection, lack of reliable biomarkers, and deficiencies in long-term natural history data sets remain substantial challenges in the increasingly active PMD therapeutic development space. Developing "FAIR" (findable, accessible, interoperable, reusable) data standards to make data sharable and building a more transparent community data sharing paradigm to access clinical research metadata are the first steps to address these challenges. This collaborative community effort describes the current landscape of PMD clinical research data resources available for sharing, obstacles, and opportunities, including ways to incentivize and encourage data sharing among diverse stakeholders. This work highlights the importance of, and challenges to, developing a unified system that enables clinical research structured data sharing and supports harmonized data deposition standards across clinical consortia and research groups. The goal of these efforts is to improve the efficiency and effectiveness of drug development and improve understanding of the natural history of PMD. This initiative aims to maximize the benefit for PMD patients, research, industry, and other stakeholders while acknowledging challenges related to differing needs and international policies on data privacy, security, management, and oversight.
Collapse
Affiliation(s)
- Amel Karaa
- Department of Genetics, Massachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Laura E. MacMullen
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPA19104USA
| | | | - John Christodoulou
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of MelbourneMelbourneVictoria3052Australia
| | - Bruce H. Cohen
- Department of Pediatrics and the Rebecca D. Considine Research InstituteAkron Children's HospitalAkronOH44308USA
| | - Thomas Klopstock
- Friedrich‐Baur Institute, Department of NeurologyUniversity HospitalLMUMunich80336Germany
- German Center for Neurodegenerative Diseases (DZNE)Munich80336Germany
- Munich Cluster for Systems Neurology (SyNergy)Munich80336Germany
- German Network for Mitochondrial Disorders (mitoNET)Munich80336Germany
| | - Yasutoshi Koga
- Department of Pediatrics and Child HealthKurume University School of MedicineKurume830‐0011Japan
| | - Costanza Lamperti
- UO Genetics and NeurogeneticsFondazione IRCCS Instituto Neurologico C. BestaMilan20126Italy
| | | | | | | | - Shamima Rahman
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation TrustLondonWC1N 1EHUK
| | - Fernando Scaglia
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
- Texas Children's HospitalHoustonTX77030USA
- Joint BCM‐CUHK Center of Medical GeneticsPrince of Wales HospitalHong Kong SARNTChina
| | - Alexander V. Sherman
- Department of Neurology, Massachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Philip Yeske
- United Mitochondrial Disease FoundationPittsburghPA15239USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPA19104USA
- Department of PediatricsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA19104USA
| |
Collapse
|
20
|
Denmark D, Ruhoy I, Wittmann B, Ashki H, Koran LM. Altered Plasma Mitochondrial Metabolites in Persistently Symptomatic Individuals after a GBCA-Assisted MRI. TOXICS 2022; 10:56. [PMID: 35202243 PMCID: PMC8879776 DOI: 10.3390/toxics10020056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Abstract
Despite the impressive safety of gadolinium (Gd)-based contrast agents (GBCAs), a small number of patients report the onset of new, severe, ongoing symptoms after even a single exposure-a syndrome termed Gadolinium Deposition Disease (GDD). Mitochondrial dysfunction and oxidative stress have been repeatedly implicated by animal and in vitro studies as mechanisms of Gd/GBCA-related toxicity, and as pathogenic in other diseases with similarities in presentation. Here, we aimed to molecularly characterize and explore potential metabolic associations with GDD symptoms. Detailed clinical phenotypes were systematically obtained for a small cohort of individuals (n = 15) with persistent symptoms attributed to a GBCA-enhanced MRI and consistent with provisional diagnostic criteria for GDD. Global untargeted mass spectroscopy-based metabolomics analyses were performed on plasma samples and examined for relevance with both single marker and pathways approaches. In addition to GDD criteria, frequently reported symptoms resembled those of patients with known mitochondrial-related diseases. Plasma differences compared to a healthy, asymptomatic reference cohort were suggested for 45 of 813 biochemicals. A notable proportion of these are associated with mitochondrial function and related disorders, including nucleotide and energy superpathways, which were over-represented. Although early evidence, coincident clinical and biochemical indications of potential mitochondrial involvement in GDD are remarkable in light of preclinical models showing adverse Gd/GBCA effects on multiple aspects of mitochondrial function. Further research on the potential contributory role of these markers and pathways in persistent symptoms attributed to GBCA exposure is recommended.
Collapse
Affiliation(s)
- DeAunne Denmark
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3710 SW US Veterans Hospital Road, Mail Code R&D40, Portland, OR 97239, USA;
| | - Ilene Ruhoy
- Mount Sinai South Nassau Chiari-EDS Center, 1420 Broadway, Hewlett, NY 11557, USA;
| | - Bryan Wittmann
- Owlstone Medical, 600 Park Offices Drive, Suite 140, Research Triangle Park, NC 27709, USA;
| | - Haleh Ashki
- Prime Genomics, Inc., 319 Bernardo Avenue, Mountain View, CA 94041, USA;
| | - Lorrin M. Koran
- Department of Psychiatry and Behavioral Sciences, OCD Clinic, Stanford University Medical Center, 401 Quarry Road, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Goetzl EJ, Maecker HT, Rosenberg-Hasson Y, Koran LM. Altered Functional Mitochondrial Protein Levels in Plasma Neuron-Derived Extracellular Vesicles of Patients With Gadolinium Deposition. FRONTIERS IN TOXICOLOGY 2022; 3:797496. [PMID: 35295151 PMCID: PMC8915819 DOI: 10.3389/ftox.2021.797496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 01/25/2023] Open
Abstract
The retention of the heavy metal, gadolinium, after a Gadolinium-Based Contrast Agent-assisted MRI may lead to a symptom cluster termed Gadolinium Deposition Disease. Little is known of the disorder's underlying pathophysiology, but a recent study reported abnormally elevated serum levels of pro-inflammatory cytokines compared to normal controls. As a calcium channel blocker in cellular plasma and mitochondrial membranes, gadolinium also interferes with mitochondrial function. We applied to sera from nine Gadolinium Deposition Disease and two Gadolinium Storage Condition patients newly developed methods allowing isolation of plasma neuron-derived extracellular vesicles that contain reproducibly quantifiable levels of mitochondrial proteins of all major classes. Patients' levels of five mitochondrial functional proteins were statistically significantly lower and of two significantly higher than the levels in normal controls. The patterns of differences between study patients and controls for mitochondrial dynamics and mitochondrial proteins encompassing neuronal energy generation, metabolic regulation, ion fluxes, and survival differed from those seen for patients with first episode psychosis and those with Major Depressive Disorder compared to their controls. These findings suggest that mitochondrial dysfunction due to retained gadolinium may play a role in causing Gadolinium Deposition Disease. Larger samples of both GDD and GSC patients are needed to allow not only testing the repeatability of our findings, but also investigation of relationships of specific mitochondrial protein deficiencies or excesses and concurrent cytokine, genetic, or other factors to GDD's neurological and cognitive symptoms. Studies of neuronal mitochondrial proteins as diagnostic markers or indicators of treatment effectiveness are also warranted.
Collapse
Affiliation(s)
- Edward J. Goetzl
- School of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Holden T. Maecker
- Human Immune Monitoring Center, Microbiology and Immunology, Stanford University Medical Center, Stanford, CA, United States
| | - Yael Rosenberg-Hasson
- Human Immune Monitoring Center, Microbiology and Immunology, Stanford University Medical Center, Stanford, CA, United States
| | - Lorrin M. Koran
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, CA, United States,*Correspondence: Lorrin M. Koran,
| |
Collapse
|
22
|
Lim AZ, Ng YS, Blain A, Jiminez-Moreno C, Alston CL, Nesbitt V, Simmons L, Santra S, Wassmer E, Blakely EL, Turnbull DM, Taylor RW, Gorman GS, McFarland R. Natural History of Leigh Syndrome: A Study of Disease Burden and Progression. Ann Neurol 2021; 91:117-130. [PMID: 34716721 PMCID: PMC9534328 DOI: 10.1002/ana.26260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022]
Abstract
Objective This observational cohort study aims to quantify disease burden over time, establish disease progression rates, and identify factors that may determine the disease course of Leigh syndrome. Methods Seventy‐two Leigh syndrome children who completed the Newcastle Paediatric Mitochondrial Disease Scale (NPMDS) at baseline at 3.7 years (interquartile range [IQR] = 2.0–7.6) and follow‐up assessments at 7.5 years (IQR = 3.7–11.0) in clinics were enrolled. Eighty‐two percent of this cohort had a confirmed genetic diagnosis, with pathogenic variants in the MT‐ATP6 and SURF1 genes being the most common cause. The total NPMDS scores denoted mild (0–14), moderate (15–25), and severe (>25) disease burden. Detailed clinical, neuroradiological, and molecular genetic findings were also analyzed. Results The median total NPMDS scores rose significantly (Z = −6.9, p < 0.001), and the percentage of children with severe disease burden doubled (22% → 42%) over 2.6 years of follow‐up. Poor function (especially mobility, self‐care, communication, feeding, and education) and extrapyramidal features contributed significantly to the disease burden (τb ≈ 0.45–0.68, p < 0.001). These children also deteriorated to wheelchair dependence (31% → 57%), exclusive enteral feeding (22% → 46%), and one‐to‐one assistance for self‐care (25% → 43%) during the study period. Twelve children (17%) died after their last NPMDS scores were recorded. These children had higher follow‐up NPMDS scores (disease burden; p < 0.001) and steeper increase in NPMDS score per annum (disease progression; p < 0.001). Other predictors of poor outcomes include SURF1 gene variants (p < 0.001) and bilateral caudate changes on neuroimaging (p < 0.01). Interpretation This study has objectively defined the disease burden and progression of Leigh syndrome. Our analysis has also uncovered potential influences on the trajectory of this neurodegenerative condition. ANN NEUROL 2022;91:117–130
Collapse
Affiliation(s)
- Albert Z Lim
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,National Health Service Highly Specialised Services for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,National Health Service Highly Specialised Services for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Alasdair Blain
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Cecilia Jiminez-Moreno
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,National Health Service Highly Specialised Services for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Victoria Nesbitt
- National Health Service Highly Specialised Services for Rare Mitochondrial Disorders, Oxford University Hospitals National Health Service Foundation Trust, Oxford, UK
| | | | | | | | - Emma L Blakely
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,National Health Service Highly Specialised Services for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,National Health Service Highly Specialised Services for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,National Health Service Highly Specialised Services for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,National Health Service Highly Specialised Services for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,National Health Service Highly Specialised Services for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
23
|
Flickinger J, Fan J, Wellik A, Ganetzky R, Goldstein A, Muraresku CC, Glanzman AM, Ballance E, Leonhardt K, McCormick EM, Soreth B, Nguyen S, Gornish J, George-Sankoh I, Peterson J, MacMullen LE, Vishnubhatt S, McBride M, Haas R, Falk MJ, Xiao R, Zolkipli-Cunningham Z. Development of a Mitochondrial Myopathy-Composite Assessment Tool. JCSM CLINICAL REPORTS 2021; 6:109-127. [PMID: 35071983 PMCID: PMC8782422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND 'Mitochondrial Myopathy' (MM) refers to genetically-confirmed Primary Mitochondrial Disease (PMD) that predominantly impairs skeletal muscle function. Validated outcome measures encompassing core MM domains of muscle weakness, muscle fatigue, imbalance, impaired dexterity, and exercise intolerance do not exist. The goal of this study was to validate clinically-meaningful, quantitative outcome measures specific to MM. METHODS This was a single centre study. Objective measures evaluated included hand-held dynamometry, balance assessments, Nine Hole Peg Test (9HPT), Functional Dexterity Test (FDT), 30 second Sit to Stand (30s STS), and 6-minute walk test (6MWT). Results were assessed as z-scores, with < -2 standard deviations considered abnormal. Performance relative to the North Star Ambulatory Assessment (NSAA) of functional mobility was assessed by Pearson's correlation. RESULTS In genetically-confirmed MM participants [n = 59, mean age 21.6 ± 13.9 (range 7 - 64.6 years), 44.1% male], with nuclear gene aetiologies, n = 18/59, or mitochondrial (mtDNA) aetiologies, n = 41/59, dynamometry measurements demonstrated both proximal [dominant elbow flexion (-2.6 ± 2.1, mean z-score ± standard deviation, SD), hip flexion (-2.5 ± 2.3), and knee flexion (-2.8 ± 1.3)] and distal muscle weakness [wrist extension (-3.4 ± 1.7), palmar pinch (-2.5 ± 2.8), and ankle dorsiflexion (-2.4 ± 2.5)]. Balance [Tandem Stance (TS) Eyes Open (-3.2 ± 8.8, n = 53) and TS Eyes Closed (-2.6 ± 2.7, n = 52)] and dexterity [FDT (-5.9 ± 6.0, n = 44) and 9HPT (-8.3 ± 11.2, n = 53)] assessments also revealed impairment. Exercise intolerance was confirmed by strength-based 30s STS test (-2.0 ± 0.8, n = 38) and mobility-based 6MWT mean z-score (-2.9 ± 1.3, n = 46) with significant decline in minute distances (slope -0.9, p = 0.03, n = 46). Muscle fatigue was quantified by dynamometry repetitions with strength decrement noted between first and sixth repetitions at dominant elbow flexors (-14.7 ± 2.2%, mean ± standard error, SEM, n = 21). All assessments were incorporated in the MM-Composite Assessment Tool (MM-COAST). MM-COAST composite score for MM participants was 1.3± 0.1(n = 53) with a higher score indicating greater MM disease severity, and correlated to NSAA (r = 0.64, p < 0.0001, n = 52) to indicate clinical meaning. Test-retest reliability of MM-COAST assessments in an MM subset (n = 14) revealed an intraclass correlation coefficient (ICC) of 0.81 (95% confidence interval: 0.59-0.92) indicating good reliability. CONCLUSIONS We have developed and successfully validated a MM-specific Composite Assessment Tool to quantify the key domains of MM, shown to be abnormal in a Definite MM cohort. MM-COAST may hold particular utility as a meaningful outcome measure in future MM intervention trials.
Collapse
Affiliation(s)
- Jean Flickinger
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jiaxin Fan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amanda Wellik
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Colleen C. Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Allan M. Glanzman
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth Ballance
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kristin Leonhardt
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brianna Soreth
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sara Nguyen
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer Gornish
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ibrahim George-Sankoh
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - James Peterson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura E. MacMullen
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shailee Vishnubhatt
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael McBride
- Cardiovascular Exercise Physiology Laboratory, Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Richard Haas
- Metabolic and Mitochondrial Disease Center, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
24
|
Kuthethur R, Prasad K, Chakrabarty S, Kabekkodu SP, Singh KK, Thangaraj K, Satyamoorthy K. Advances in mitochondrial medicine and translational research. Mitochondrion 2021; 61:62-68. [PMID: 34363984 DOI: 10.1016/j.mito.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Current knowledge of mitochondrial biology and function has provided tools and technologies that helped a better understanding of the molecular etiology of complex mitochondrial disorders. Dual genetic control of this subcellular organelle function regulates various signaling mechanisms which are essential for metabolism, bioenergetics, fatty acid biosynthesis, and DNA replication & repair. Understanding nuclear mitochondrial crosstalk through advanced genomics as well as clinical perspectives is the overall basis of mitochondrial research and medicine, also the sole objective of Society for Mitochondrial Medicine and Research (SMRM) - India. The eighth virtual international conference on 'Advances in Mitochondrial Medicine and Translational Research' was organized at the Manipal School of Life Sciences, MAHE, Manipal, India, during 6 - 7 November 2020. The aim of the virtual conference was to highlight the recent advances and future perspectives that represent comprehensive clinical and fundamental research interests in the area of mitochondrial biology of human diseases. To systematically present the various findings in mitochondrial biology, the meeting was themed with specific aspects comprising (a) mitochondrial disorders: clinical & genomic perspectives, (b) mitochondria in cancer, (c) mitochondrial metabolism & disorders, and (d) mitochondrial diseases & therapy. This report provides an overview of the recent advancements in the area of mitochondrial biology and medicine that was discussed at the conference.
Collapse
Affiliation(s)
- Raviprasad Kuthethur
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Keshav K Singh
- Department of Genetics, School of Medicine, The University of Alabama at Birmingham, Kaul Genetics Building, Rm. 620, 720 20th St. South, Birmingham, AL, 35294, United States
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India; Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500 039, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
25
|
Jimenez-Moreno AC, van Overbeeke E, Pinto CA, Smith I, Sharpe J, Ormrod J, Whichello C, de Bekker-Grob EW, Bullok K, Levitan B, Huys I, de Wit GA, Gorman G. Patient Preferences in Rare Diseases: A Qualitative Study in Neuromuscular Disorders to Inform a Quantitative Preference Study. THE PATIENT 2021; 14:601-612. [PMID: 33660162 PMCID: PMC8357717 DOI: 10.1007/s40271-020-00482-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/13/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION It has become increasingly important to include patient preference information in decision-making processes for drug development. As neuromuscular disorders represent multisystem, debilitating, and progressive rare diseases with few treatment options, this study aimed to explore unmet health care needs and patient treatment preferences for two neuromuscular disorders, myotonic dystrophy type 1 (DM1) and mitochondrial myopathies (MM) to inform early stages of drug development. METHODS Fifteen semi-structured interviews and five focus group discussions (FGDs) were held with DM1 and MM adult patients and caregivers. Topics discussed included (1) reasons for study participation; (2) disease signs/symptoms and their impact on daily lives; (3) top desired benefits; and (4) acceptability of risks and tolerance levels for a hypothetical new treatment. Data were analyzed following a thematic 'code' approach. RESULTS A total of 52 participants representing a wide range of disease severities participated. 'Muscle strength' and 'energy and endurance' were the disease-related unmet needs most often mentioned. Additionally, improved 'balance', 'cognition' and 'gut function' were the top desired treatment benefits, while 'damage to the liver, kidneys or eyes' was the most concerning risk. Factors influencing their tolerance to risks related to previously having experienced the risk and differentiation between permanent and temporary risks. A few differences were elicited between patients and caregivers. CONCLUSIONS This qualitative study provided an open forum to elicit treatment-desired benefits and acceptable risks to be established by patients themselves. These findings can inform decisions for developing new treatments and the design of clinical trials for DM1 and MM.
Collapse
Affiliation(s)
- A Cecilia Jimenez-Moreno
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK.
- Evidera, London, UK.
| | - Eline van Overbeeke
- Clinical Pharmacology and Pharmacotherapy, University of Leuven, Leuven, Belgium
| | - Cathy Anne Pinto
- Pharmacoepidemiology Department, Center for Observational and Real-world Evidence, Merck & Co, Inc., Rahway, NJ, USA
| | - Ian Smith
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - James Ormrod
- School of Applied Social Science, University of Brighton, East Sussex, UK
| | - Chiara Whichello
- Erasmus School of Health Policy and Management, and Erasmus Choice Modelling Centre, Erasmus University, Rotterdam, The Netherlands
| | - Esther W de Bekker-Grob
- Erasmus School of Health Policy and Management, and Erasmus Choice Modelling Centre, Erasmus University, Rotterdam, The Netherlands
| | - Kristin Bullok
- Global Patient Safety Department, Eli Lilly & Co., Indianapolis, IN, USA
| | | | - Isabelle Huys
- Clinical Pharmacology and Pharmacotherapy, University of Leuven, Leuven, Belgium
| | - G Ardine de Wit
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Grainne Gorman
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| |
Collapse
|
26
|
Flickinger J, Fan J, Wellik A, Ganetzky R, Goldstein A, Muraresku CC, Glanzman AM, Ballance E, Leonhardt K, McCormick EM, Soreth B, Nguyen S, Gornish J, George‐Sankoh I, Peterson J, MacMullen LE, Vishnubhatt S, McBride M, Haas R, Falk MJ, Xiao R, Zolkipli‐Cunningham Z. Development of a Mitochondrial Myopathy‐Composite Assessment Tool. JCSM CLINICAL REPORTS 2021. [DOI: 10.1002/crt2.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jean Flickinger
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Physical Therapy Children's Hospital of Philadelphia Philadelphia PA USA
| | - Jiaxin Fan
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Amanda Wellik
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Rebecca Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Colleen C. Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Allan M. Glanzman
- Department of Physical Therapy Children's Hospital of Philadelphia Philadelphia PA USA
| | - Elizabeth Ballance
- Department of Physical Therapy Children's Hospital of Philadelphia Philadelphia PA USA
| | - Kristin Leonhardt
- Department of Physical Therapy Children's Hospital of Philadelphia Philadelphia PA USA
| | - Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Brianna Soreth
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Sara Nguyen
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Jennifer Gornish
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Ibrahim George‐Sankoh
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - James Peterson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Laura E. MacMullen
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Shailee Vishnubhatt
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Michael McBride
- Cardiovascular Exercise Physiology Laboratory, Division of Cardiology Children's Hospital of Philadelphia Philadelphia PA USA
| | - Richard Haas
- Metabolic and Mitochondrial Disease Center La Jolla CA USA
- Department of Neurosciences University of California San Diego School of Medicine La Jolla CA USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Zarazuela Zolkipli‐Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| |
Collapse
|
27
|
Kuthethur R, Prasad K, Chakrabarty S, Prasada Kabekkodu S, Singh KK, Thangaraj K, Satyamoorthy K. Advances in Mitochondrial Medicine and Translational Research. Mitochondrion 2021:S1567-7249(21)00102-1. [PMID: 34363984 DOI: 10.1016/j.mito.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Current knowledge of mitochondrial biology and function has provided with tools and technologies that helped a better understanding of the molecular etiology of complex mitochondrial disorders. Dual genetic control of this subcellular organelle function regulates various signaling mechanisms which are essential for metabolism, bioenergetics, fatty acid biosynthesis, and DNA replication & repair. Understanding nuclear mitochondrial crosstalk through advanced genomics as well as clinical perspectives is the overall basis of mitochondrial research and medicine, also the sole objective of Society for Mitochondrial Medicine and Research (SMRM) - India. The eighth virtual international conference on 'Advances in Mitochondrial Medicine and Translational Research' was organized at the Manipal School of Life Sciences, MAHE, Manipal, India, during 6 - 7 November 2020. The aim of the virtual conference was to highlight the recent advances and future perspectives that represent comprehensive clinical and fundamental research interests in the area of mitochondrial biology of human diseases. To systematically present the various findings in mitochondrial biology, the meeting was themed with specific aspects comprising (a) mitochondrial disorders: clinical & genomic perspectives, (b) mitochondria in cancer, (c) mitochondrial metabolism & disorders, and (d) mitochondrial diseases & therapy. This report provides an overview of the recent advancements in the area of mitochondrial biology and medicine that was discussed at the conference.
Collapse
Affiliation(s)
- Raviprasad Kuthethur
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Keshav K Singh
- Department of Genetics, School of Medicine, The University of Alabama at Birmingham, Kaul Genetics Building, Rm. 620, 720 20th St. South, Birmingham, AL 35294, USA
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India; Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500 039, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
28
|
Gonçalves FG, Alves CAPF, Heuer B, Peterson J, Viaene AN, Reis Teixeira S, Martín-Saavedra JS, Andronikou S, Goldstein A, Vossough A. Primary Mitochondrial Disorders of the Pediatric Central Nervous System: Neuroimaging Findings. Radiographics 2021; 40:2042-2067. [PMID: 33136487 DOI: 10.1148/rg.2020200052] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Primary mitochondrial disorders (PMDs) constitute the most common cause of inborn errors of metabolism in children, and they frequently affect the central nervous system. Neuroimaging findings of PMDs are variable, ranging from unremarkable and nonspecific to florid and highly suggestive. An overview of PMDs, including a synopsis of the basic genetic concepts, main clinical symptoms, and neuropathologic features, is presented. In addition, eight of the most common PMDs that have a characteristic imaging phenotype in children are reviewed in detail. Online supplemental material is available for this article. ©RSNA, 2020.
Collapse
Affiliation(s)
- Fabrício Guimarães Gonçalves
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - César Augusto Pinheiro Ferreira Alves
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Beth Heuer
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - James Peterson
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Angela N Viaene
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Sara Reis Teixeira
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Juan Sebastián Martín-Saavedra
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Savvas Andronikou
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Amy Goldstein
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Arastoo Vossough
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| |
Collapse
|
29
|
Guha S, Mathew ND, Konkwo C, Ostrovsky J, Kwon YJ, Polyak E, Seiler C, Bennett M, Xiao R, Zhang Z, Nakamaru-Ogiso E, Falk MJ. Combinatorial glucose, nicotinic acid and N-acetylcysteine therapy has synergistic effect in preclinical C. elegans and zebrafish models of mitochondrial complex I disease. Hum Mol Genet 2021; 30:536-551. [PMID: 33640978 PMCID: PMC8120136 DOI: 10.1093/hmg/ddab059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 01/16/2023] Open
Abstract
Mitochondrial respiratory chain disorders are empirically managed with variable antioxidant, cofactor and vitamin 'cocktails'. However, clinical trial validated and approved compounds, or doses, do not exist for any single or combinatorial mitochondrial disease therapy. Here, we sought to pre-clinically evaluate whether rationally designed mitochondrial medicine combinatorial regimens might synergistically improve survival, health and physiology in translational animal models of respiratory chain complex I disease. Having previously demonstrated that gas-1(fc21) complex I subunit ndufs2-/-C. elegans have short lifespan that can be significantly rescued with 17 different metabolic modifiers, signaling modifiers or antioxidants, here we evaluated 11 random combinations of these three treatment classes on gas-1(fc21) lifespan. Synergistic rescue occurred only with glucose, nicotinic acid and N-acetylcysteine (Glu + NA + NAC), yielding improved mitochondrial membrane potential that reflects integrated respiratory chain function, without exacerbating oxidative stress, and while reducing mitochondrial stress (UPRmt) and improving intermediary metabolic disruptions at the levels of the transcriptome, steady-state metabolites and intermediary metabolic flux. Equimolar Glu + NA + NAC dosing in a zebrafish vertebrate model of rotenone-based complex I inhibition synergistically rescued larval activity, brain death, lactate, ATP and glutathione levels. Overall, these data provide objective preclinical evidence in two evolutionary-divergent animal models of mitochondrial complex I disease to demonstrate that combinatorial Glu + NA + NAC therapy significantly improved animal resiliency, even in the face of stressors that cause severe metabolic deficiency, thereby preventing acute neurologic and biochemical decompensation. Clinical trials are warranted to evaluate the efficacy of this lead combinatorial therapy regimen to improve resiliency and health outcomes in human subjects with mitochondrial disease.
Collapse
Affiliation(s)
- Sujay Guha
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neal D Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chigoziri Konkwo
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julian Ostrovsky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Young Joon Kwon
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erzsebet Polyak
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christoph Seiler
- Aquatics Core Facility, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael Bennett
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zhe Zhang
- Center for Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
30
|
Bayona-Bafaluy MP, Garrido-Pérez N, Meade P, Iglesias E, Jiménez-Salvador I, Montoya J, Martínez-Cué C, Ruiz-Pesini E. Down syndrome is an oxidative phosphorylation disorder. Redox Biol 2021; 41:101871. [PMID: 33540295 PMCID: PMC7859316 DOI: 10.1016/j.redox.2021.101871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Down syndrome is the most common genomic disorder of intellectual disability and is caused by trisomy of chromosome 21. Several genes in this chromosome repress mitochondrial biogenesis. The goal of this study was to evaluate whether early overexpression of these genes may cause a prenatal impairment of oxidative phosphorylation negatively affecting neurogenesis. Reduction in the mitochondrial energy production and a lower mitochondrial function have been reported in diverse tissues or cell types, and also at any age, including early fetuses, suggesting that a defect in oxidative phosphorylation is an early and general event in Down syndrome individuals. Moreover, many of the medical conditions associated with Down syndrome are also frequently found in patients with oxidative phosphorylation disease. Several drugs that enhance mitochondrial biogenesis are nowadays available and some of them have been already tested in mouse models of Down syndrome restoring neurogenesis and cognitive defects. Because neurogenesis relies on a correct mitochondrial function and critical periods of brain development occur mainly in the prenatal and early neonatal stages, therapeutic approaches intended to improve oxidative phosphorylation should be provided in these periods.
Collapse
Affiliation(s)
- M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza. C/ Mariano Esquillor (Edificio I+D), 50018, Zaragoza, Spain.
| | - Nuria Garrido-Pérez
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza. C/ Mariano Esquillor (Edificio I+D), 50018, Zaragoza, Spain.
| | - Patricia Meade
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza. C/ Mariano Esquillor (Edificio I+D), 50018, Zaragoza, Spain.
| | - Eldris Iglesias
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain.
| | - Irene Jiménez-Salvador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain.
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Carmen Martínez-Cué
- Departamento de Fisiología y Farmacología. Facultad de Medicina, Universidad de Cantabria. Av. Herrera Oría, 39011, Santander, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet, 177. 50013, Zaragoza, Spain and C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13, 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Rd de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| |
Collapse
|
31
|
Falk MJ. The pursuit of precision mitochondrial medicine: Harnessing preclinical cellular and animal models to optimize mitochondrial disease therapeutic discovery. J Inherit Metab Dis 2021; 44:312-324. [PMID: 33006762 PMCID: PMC7994194 DOI: 10.1002/jimd.12319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/22/2022]
Abstract
Mitochondria share extensive evolutionary conservation across nearly all living species. This homology allows robust insights to be gained into pathophysiologic mechanisms and therapeutic targets for the heterogeneous class of primary mitochondrial diseases (PMDs) through the study of diverse in vitro cellular and in vivo animal models. Dramatic advances in genetic technologies, ranging from RNA interference to achieve graded knock-down of gene expression to CRISPR/Cas-based gene editing that yields a stable gene knock-out or targeted mutation knock-in, have enabled the ready establishment of mitochondrial disease models for a plethora of individual nuclear gene disorders. These models are complemented and extended by the use of pharmacologic inhibitor-based stressors to characterize variable degrees, onset, duration, and combinations of acute on chronic mitochondrial dysfunction in individual respiratory chain enzyme complexes or distinct biochemical pathways within mitochondria. Herein is described the rationale for, and progress made in, "therapeutic cross-training," a novel approach meant to improve the validity and rigor of experimental conclusions when testing therapies by studying treatment effects in multiple, evolutionarily-distinct species, including Caenorhabditis elegans (invertebrate, worm), Danio rerio (vertebrate, zebrafish), Mus musculus (mammal, mouse), and/or human patient primary fibroblast cell line models of PMD. The goal of these preclinical studies is to identify lead therapies from candidate molecules or library screens that consistently demonstrate efficacy, with minimal toxicity, in specific subtypes of mitochondrial disease. Conservation of in vitro and in vivo therapeutic effects of lead molecules across species has proven extensive, where molar concentrations found to be toxic or efficacious in one species are often consistent with therapeutic effects at similar doses seen in other mitochondrial disease models. Phenotypic outcome studies in all models are prioritized at the level of survival and function, to reflect the ultimate goal of developing highly potent therapies for human mitochondrial disease. Lead compounds that demonstrate significant benefit on gross phenotypes may be further scrutinized in these same models to decipher their cellular targets, mechanism(s), and detailed biochemical effects. High-throughput, automated technologic advances will be discussed that enable efficient, parallel screening in a diverse array of mitochondrial disease disorders and overarching subclasses of compounds, concentrations, libraries, and combinations. Overall, this therapeutic cross-training approach has proven valuable to identify compounds with optimal potency and safety profiles among major biochemical subtypes or specific genetic etiologies of mitochondrial disease. This approach further supports rational prioritization of lead compounds, target concentrations, and specific disease phenotypes, outcomes, and subgroups to optimally inform the design of clinical trials that test their efficacy in human mitochondrial disease subjects.
Collapse
Affiliation(s)
- Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Corresponding Author: Marni J. Falk, M.D., The Children’s Hospital of Philadelphia, ARC1002c, 3615 Civic Center Blvd, Philadelphia, PA 19104, Office 1-267-426-4961, Fax 1-267-476-2876,
| |
Collapse
|
32
|
Goldstein A, Rahman S. Seeking impact: Global perspectives on outcome measure selection for translational and clinical research for primary mitochondrial disorders. J Inherit Metab Dis 2021; 44:343-357. [PMID: 33016339 DOI: 10.1002/jimd.12320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022]
Abstract
Primary mitochondrial disorders (PMDs) are challenging due to overall poor outcomes, no proven treatments, and a history of failed clinical trials, leading to a critical need to design future trials that can prove efficacy of an intervention. Selection of outcome measures for PMDs is complicated by extreme clinical, biochemical and genetic heterogeneity; PMDs are effectively a collection of nearly 400 individually ultrarare diseases. In clinical trials, outcome measures aim to evaluate, and ideally quantitate, the efficacy of an intervention in ameliorating clinical phenotype(s). The heterogeneity and multisystemic nature of PMDs makes it unlikely that a universal outcome measure will be applicable to all PMDs. Instead, a composite score of the individual's most worrisome symptoms may be a preferable endpoint. A further challenge arises from the tension between finding outcomes suitable for use in clinical trials (able to produce a measurable change in a relatively short period of time, namely the duration of a clinical trial) vs measures that are clinically meaningful to individual patients. A number of clinical rating scales and proposed biomarkers have emerged to capture the features of PMDs for natural history and interventional trials. Here we review our collective experiences with clinical rating scales, patient-reported outcome measures, and physiological, imaging, biochemical and muscle phenotypes as outcome measures in paediatric and adult PMDs in natural history studies and recent clinical trials. There is a pressing need to agree on a set of validated, robust, clinically meaningful outcome measures internationally, to facilitate the multicentre international clinical trials needed for optimal evaluation of novel therapies for these ultrarare diseases.
Collapse
Affiliation(s)
- Amy Goldstein
- Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shamima Rahman
- Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
33
|
Ehinger JK, Karlsson M, Sjövall F, Leffler M, McCormack SE, Kubis SE, Åkesson A, Falk MJ, Kilbaugh TJ. Predictors of outcome in children with disorders of mitochondrial metabolism in the pediatric intensive care unit. Pediatr Res 2021; 90:1221-1227. [PMID: 33627817 PMCID: PMC7903037 DOI: 10.1038/s41390-021-01410-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/31/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The aim of this study was to identify factors predicting outcome in patients with mitochondrial disease admitted to pediatric intensive care units (PICU). METHODS Retrospective study of 2434 patients (age <21 years) admitted to a PICU from 1 January 2006 through 31 March 2016 and captured in the Virtual Pediatric Systems database with ICD9 diagnosis 277.87, disorders of mitochondrial metabolism. Factors influencing mortality and prolonged length of stay (≥14 days) were analyzed using logistic regression. RESULTS Predictors independently affecting mortality (adjusted odds ratios and 95% confidence intervals, p < 0.05): age 1-23 months 3.4 (1.7-6.6) and mechanical ventilation 4.7 (2.6-8.6) were risk factors; post-operative 0.2 (0.1-0.6), readmission 0.5 (0.3-0.9), and neurologic reason for admittance 0.3 (0.1-0.9) were factors reducing risk. Predictors affecting prolonged length of stay: mechanical ventilation 7.4 (5.2-10.3) and infectious reason for admittance 2.0 (1.3-3.2) were risk factors, post-operative patients 0.3 (0.2-0.5) had lower risk. The utility of PRISM and PIM2 scores in this patient group was evaluated. CONCLUSIONS The single most predictive factor for both mortality and prolonged length of stay is the presence of mechanical ventilation. Age 1-23 months is a risk factor for mortality, and infectious reason for admittance indicates risk for prolonged length of stay. IMPACT Presence of mechanical ventilation is the factor most strongly associated with negative outcome in patients with mitochondrial disease in pediatric intensive care. Age 1-23 months is a risk factor for mortality, and infectious reason for admittance indicates risk for prolonged length of stay PRISM3 and PIM2 are not as accurate in patients with mitochondrial disease as in a mixed patient population.
Collapse
Affiliation(s)
- Johannes K. Ehinger
- grid.4514.40000 0001 0930 2361Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden ,grid.25879.310000 0004 1936 8972Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA ,grid.239552.a0000 0001 0680 8770Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA USA ,grid.411843.b0000 0004 0623 9987Department of Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Michael Karlsson
- grid.4514.40000 0001 0930 2361Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden ,grid.25879.310000 0004 1936 8972Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA ,grid.239552.a0000 0001 0680 8770Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA USA ,grid.475435.4Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Fredrik Sjövall
- grid.4514.40000 0001 0930 2361Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden ,grid.411843.b0000 0004 0623 9987Department of Intensive- and perioperative Care, Skåne University Hospital, Malmö, Sweden
| | - Märta Leffler
- grid.4514.40000 0001 0930 2361Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden ,grid.411843.b0000 0004 0623 9987Department of Intensive- and perioperative Care, Skåne University Hospital, Malmö, Sweden
| | - Shana E. McCormack
- grid.239552.a0000 0001 0680 8770Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Sherri E. Kubis
- grid.239552.a0000 0001 0680 8770Department of Nursing, The Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Anna Åkesson
- grid.411843.b0000 0004 0623 9987Clinical Studies Sweden – Forum South, Skåne University Hospital, Lund, Sweden
| | - Marni J. Falk
- grid.239552.a0000 0001 0680 8770Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Todd J. Kilbaugh
- grid.25879.310000 0004 1936 8972Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA ,grid.239552.a0000 0001 0680 8770Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA USA
| |
Collapse
|
34
|
Pitceathly RD, Keshavan N, Rahman J, Rahman S. Moving towards clinical trials for mitochondrial diseases. J Inherit Metab Dis 2021; 44:22-41. [PMID: 32618366 PMCID: PMC8432143 DOI: 10.1002/jimd.12281] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
Primary mitochondrial diseases represent some of the most common and severe inherited metabolic disorders, affecting ~1 in 4,300 live births. The clinical and molecular diversity typified by mitochondrial diseases has contributed to the lack of licensed disease-modifying therapies available. Management for the majority of patients is primarily supportive. The failure of clinical trials in mitochondrial diseases partly relates to the inefficacy of the compounds studied. However, it is also likely to be a consequence of the significant challenges faced by clinicians and researchers when designing trials for these disorders, which have historically been hampered by a lack of natural history data, biomarkers and outcome measures to detect a treatment effect. Encouragingly, over the past decade there have been significant advances in therapy development for mitochondrial diseases, with many small molecules now transitioning from preclinical to early phase human interventional studies. In this review, we present the treatments and management strategies currently available to people with mitochondrial disease. We evaluate the challenges and potential solutions to trial design and highlight the emerging pharmacological and genetic strategies that are moving from the laboratory to clinical trials for this group of disorders.
Collapse
Affiliation(s)
- Robert D.S. Pitceathly
- Department of Neuromuscular DiseasesUCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryLondonUK
| | - Nandaki Keshavan
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Joyeeta Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Shamima Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| |
Collapse
|
35
|
Development of a Patient-Reported Outcome Questionnaire to Evaluate Primary Mitochondrial Myopathy Symptoms: The Primary Mitochondrial Myopathy Symptom Assessment. J Clin Neuromuscul Dis 2020; 22:65-76. [PMID: 33214391 DOI: 10.1097/cnd.0000000000000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Primary mitochondrial myopathy (PMM) is a genetic condition characterized by life-limiting symptoms such as muscle weakness, fatigue, and pain. Because these symptoms are best reported by individuals with PMM, the objective of this qualitative research study was to develop a PMM-specific patient-reported outcome (PRO) questionnaire. METHOD Individuals with PMM were interviewed, identifying the most salient symptoms of PMM and assessing the resulting questionnaire's relevance and comprehensibility. RESULTS Developed based on patient interviews, the 10-item Primary Mitochondrial Myopathy Symptom Assessment assesses patients' symptom experiences at their worst in the last 24 hours. Individuals with PMM confirmed the concepts of the questionnaire as relevant and comprehensive to their symptom experiences and responded to the items consistently with developers' intentions. CONCLUSIONS The Primary Mitochondrial Myopathy Symptom Assessment is a content-valid PRO questionnaire with qualitative and quantitative support as a valuable tool to evaluate and monitor the day-to-day experience of PMM symptoms from the patient perspective.
Collapse
|
36
|
McCormick EM, Lott MT, Dulik MC, Shen L, Attimonelli M, Vitale O, Karaa A, Bai R, Pineda-Alvarez DE, Singh LN, Stanley CM, Wong S, Bhardwaj A, Merkurjev D, Mao R, Sondheimer N, Zhang S, Procaccio V, Wallace DC, Gai X, Falk MJ. Specifications of the ACMG/AMP standards and guidelines for mitochondrial DNA variant interpretation. Hum Mutat 2020; 41:2028-2057. [PMID: 32906214 DOI: 10.1002/humu.24107] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial DNA (mtDNA) variant pathogenicity interpretation has special considerations given unique features of the mtDNA genome, including maternal inheritance, variant heteroplasmy, threshold effect, absence of splicing, and contextual effects of haplogroups. Currently, there are insufficient standardized criteria for mtDNA variant assessment, which leads to inconsistencies in clinical variant pathogenicity reporting. An international working group of mtDNA experts was assembled within the Mitochondrial Disease Sequence Data Resource Consortium and obtained Expert Panel status from ClinGen. This group reviewed the 2015 American College of Medical Genetics and Association of Molecular Pathology standards and guidelines that are widely used for clinical interpretation of DNA sequence variants and provided further specifications for additional and specific guidance related to mtDNA variant classification. These Expert Panel consensus specifications allow for consistent consideration of the unique aspects of the mtDNA genome that directly influence variant assessment, including addressing mtDNA genome composition and structure, haplogroups and phylogeny, maternal inheritance, heteroplasmy, and functional analyses unique to mtDNA, as well as specifications for utilization of mtDNA genomic databases and computational algorithms.
Collapse
Affiliation(s)
- Elizabeth M McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marie T Lott
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew C Dulik
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lishuang Shen
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Marcella Attimonelli
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Ornella Vitale
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Amel Karaa
- Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christine M Stanley
- Variantyx, Inc, Framingham, Massachusetts, USA.,QNA Diagnostics, Cambridge, Massachusetts, USA
| | | | - Anshu Bhardwaj
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Daria Merkurjev
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Rong Mao
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Neal Sondheimer
- Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shiping Zhang
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Vincent Procaccio
- Department of Biochemistry and Genetics, MitoVasc Institute, UMR CNRS 6015- INSERM U1083, CHU Angers, Angers, France
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaowu Gai
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Jimenez-Moreno AC, Pinto CA, Levitan B, Whichello C, Dyer C, Van Overbeeke E, de Bekker-Grob E, Smith I, Huys I, Viberg Johansson J, Adcock K, Bullock K, Soekhai V, Yuan Z, Lochmuller H, de Wit A, Gorman GS. A study protocol for quantifying patient preferences in neuromuscular disorders: a case study of the IMI PREFER Project. Wellcome Open Res 2020; 5:253. [PMID: 34395923 PMCID: PMC8356266 DOI: 10.12688/wellcomeopenres.16116.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
Objectives: Patient preference studies are increasingly used to inform decision-making during the medical product lifecycle but are rarely used to inform early stages of drug development. The primary aim of this study is to quantify treatment preferences of patients with neuromuscular disorders, which represent serious and debilitating conditions with limited or no treatment options available. Methods: This quantitative patient preferences study was designed as an online survey, with a cross-over design. This study will target two different diseases from the neuromuscular disorders disease group, myotonic dystrophy type 1 (DM1) and mitochondrial myopathies (MM). Despite having different physio-pathological pathways both DM1 and MM manifest in a clinically similar manner and may benefit from similar treatment options. The sample will be stratified into three subgroups: two patient groups differentiated by age of symptom onset and one caregivers group. Each subgroup will be randomly assigned to complete two of three different preference elicitation methods at two different time points: Q-methodology survey, discrete choice experiment, and best-worst scaling type 2, allowing cross-comparisons of the results across each study time within participants and within elicitation methods. Additional variables such as sociodemographic, clinical and health literacy will be collected to enable analysis of potential heterogeneity. Ethics and Dissemination: This study protocol has undergone ethical review and approval by the Newcastle University R&D Ethics Committee (Ref: 15169/2018). All participants will be invited to give electronic informed consent to take part in the study prior accessing the online survey. All electronic data will be anonymised prior analysis. This study is part of the Patient Preferences in Benefit-Risk Assessments during the Drug Life Cycle (IMI-PREFER) project, a public-private collaborative research project aiming to develop expert and evidence-based recommendations on how and when patient preferences can be assessed and used to inform medical product decision making.
Collapse
Affiliation(s)
- Aura Cecilia Jimenez-Moreno
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
- Patient Centered Research, Evidera, London, W6 8BJ, UK
| | - Cathy Anne Pinto
- Pharmacoepidemiology Department, Centre for Observational and Realworld Evidence, Merck & Co, Inc., Rahway, NJ, USA
| | - Bennett Levitan
- Department of Epidemiology, Janssen Research & Development, Titusville, NJ, USA
| | - Chiara Whichello
- Erasmus School of Health Policy & Management and Erasmus Choice Modelling Centre, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Christine Dyer
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Eline Van Overbeeke
- Department of Clinical Pharmacology and Pharmacotherapy, University of Leuven, Leuven, Belgium
| | - Esther de Bekker-Grob
- Erasmus School of Health Policy & Management and Erasmus Choice Modelling Centre, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Ian Smith
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Isabelle Huys
- Department of Clinical Pharmacology and Pharmacotherapy, University of Leuven, Leuven, Belgium
| | | | | | - Kristin Bullock
- Global Patient Safety Department, Eli Lilly & Co., Indianapolis, IN, 46205, USA
| | - Vikas Soekhai
- Erasmus School of Health Policy & Management and Erasmus Choice Modelling Centre, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Zhong Yuan
- Department of Epidemiology, Janssen Research & Development, Titusville, NJ, USA
| | - Hanns Lochmuller
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Ardine de Wit
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Grainne S. Gorman
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| |
Collapse
|
38
|
Karaa A, Haas R, Goldstein A, Vockley J, Cohen BH. A randomized crossover trial of elamipretide in adults with primary mitochondrial myopathy. J Cachexia Sarcopenia Muscle 2020; 11:909-918. [PMID: 32096613 PMCID: PMC7432581 DOI: 10.1002/jcsm.12559] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND This study aims to evaluate the effect of subcutaneous (SC) elamipretide dosing on exercise performance using the 6 min walk test (6MWT), patient-reported outcomes measuring fatigue, functional assessments, and safety to guide the development of the Phase 3 trial. METHODS MMPOWER-2 was a randomized, double-blind, placebo-controlled, crossover trial that enrolled participants (N = 30) with genetically confirmed primary mitochondrial myopathy. Participants were randomly assigned (1:1) to 40 mg/day SC elamipretide for 4 weeks followed by placebo SC for 4 weeks, separated by a 4-week washout period, or the opposite sequence. The primary endpoint was the distance walked on the 6MWT. RESULTS The distance walked on the 6MWT by the elamipretide-treated participants was 398.3 (±134.16) meters compared with 378.5 (±125.10) meters in the placebo-treated group, a difference of 19.8 m (95% confidence interval, -2.8, 42.5; P = 0.0833). The results of the Primary Mitochondrial Myopathy Symptom Assessment Total Fatigue and Total Fatigue During Activities scores showed that participants treated with elamipretide reported less fatigue and muscle complaints compared with placebo (P = 0.0006 and P = 0.0018, respectively). Additionally, the Neuro-QoL Fatigue Short Form and Patient Global Assessment showed reductions in symptoms (P = 0.0115 and P = 0.0421, respectively). In this 4-week treatment period, no statistically significant change was observed in the Physician Global Assessment (P = 0.0636), the Triple Timed Up and Go (P = 0.8423) test, and wrist/hip accelerometry (P = 0.9345 and P = 0.7326, respectively). Injection site reactions were the most commonly reported adverse events with elamipretide (80%), the majority of which were mild. No serious adverse events or deaths were reported. CONCLUSIONS Participants who received a short-course treatment of daily SC elamipretide for 4 weeks experienced a clinically meaningful change in the 6MWT, which did not achieve statistical significance as the primary endpoint of the study. Secondary endpoints were suggestive of an elamipretide treatment effect compared with placebo. Nominal statistically significant and clinically meaningful improvements were seen in patient-reported outcomes. The results of this trial provided an efficacy signal and data to support the initiation of MMPOWER-3, a 6-month long, Phase 3 treatment trial in patients with primary mitochondrial myopathy.
Collapse
Affiliation(s)
- Amel Karaa
- Genetics UnitMassachusetts General HospitalBostonMAUSA
| | - Richard Haas
- Rady Children's Hospital, UC San Diego School of MedicineLa JollaCAUSA
| | - Amy Goldstein
- Children's Hospital of PittsburghUniversity of PittsburghPittsburghPAUSA
| | - Jerry Vockley
- Children's Hospital of PittsburghUniversity of PittsburghPittsburghPAUSA
| | - Bruce H. Cohen
- Department of Pediatrics, Rebecca D. Considine Research InstituteAkron Children's HospitalAkronOHUSA
| |
Collapse
|
39
|
Prodinger C, Diem A, Ude-Schoder K, Piñón-Hofbauer J, Kitzmueller S, Bauer JW, Laimer M. Profiling trial burden and patients' attitudes to improve clinical research in epidermolysis bullosa. Orphanet J Rare Dis 2020; 15:182. [PMID: 32650809 PMCID: PMC7350741 DOI: 10.1186/s13023-020-01443-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Background Epidermolysis bullosa (EB) comprises inherited mechanobullous dermatoses with considerable morbidity and mortality. While current treatments are symptomatic, a growing number of innovative therapeutic compounds are evaluated in clinical trials. Clinical research in rare diseases like EB, however, faces many challenges, including sample size requirements and recruitment failures. The objective of this study was to determine attitudes of EB patients towards clinical research and trial participation as well as the assessment of contextual motivating and discouraging factors in an effort to support patient-centered RD trial designing. Methods A 53-items questionnaire was handed over to EB patients (of all types and ages) in contact with the EB House Austria, a designated national center of expertise for EB care. Main categories included level of interest in and personal knowledge about clinical studies, pros/cons for participation and extent of individual expenses considered acceptable for participation in a clinical study. Descriptive subgroup analysis was calculated with SPSS 20.0 and Microsoft Excel. Results Thirty-six individuals (mean age 25.7 years), diagnosed for recessive dystrophic EB (36.1%), EB simplex (33.4%), junctional EB (8.3%), dominant dystrophic EB (2.8%) and acral peeling syndrome (2.8%) participated. Motivation for participation in and the desire to increase personal knowledge about clinical trials were (outmost) high in 57.2 and 66.7%, respectively. Altruism was the major motivating factor, followed by hope that alleviation of the own symptoms can be achieved. The greatest hurdle was travel distance, followed by concerns about possible adverse reactions. Patients diagnosed for severe subgroups (RDEB, JEB) were more impaired by the extent of scheduled invasive investigations and possible adverse reactions of the study medication. Patients with generally milder EB forms and older patients were accepting more frequent outpatient study visits, blood takes, skin biopsies and inpatient admissions in association with trial participation. Conclusions This study provides additional indications to better determine and address attitudes towards clinical research among EB patients as well as guidance to improve clinical trial protocols for patient centricity.
Collapse
Affiliation(s)
- Christine Prodinger
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Muellner Hauptstrasse 48, 5020, Salzburg, Austria.
| | - Anja Diem
- EB House Austria, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| | - Katherina Ude-Schoder
- EB House Austria, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| | - Josefina Piñón-Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| | - Sophie Kitzmueller
- EB House Austria, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| | - Johann W Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Martin Laimer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Although mitochondrial diseases impose a significant functional limitation in the lives of patients, treatment of these conditions has been limited to dietary supplements, exercise, and physical therapy. In the past few years, however, translational medicine has identified potential therapies for these patients. RECENT FINDINGS For patients with primary mitochondrial myopathies, preliminary phase I and II multicenter clinical trials of elamipretide indicate safety and suggest improvement in 6-min walk test (6MWT) performance and fatigue scales. In addition, for thymidine kinase 2-deficient (TK2d) myopathy, compassionate-use oral administration of pyrimidine deoxynucleosides have shown preliminary evidence of safety and efficacy in survival of early onset patients and motor functions relative to historical TK2d controls. SUMMARY The prospects of effective therapies that improve the quality of life for patients with mitochondrial myopathy underscore the necessity for definitive diagnoses natural history studies for better understanding of the diseases.
Collapse
|
41
|
Rosales XQ, Thompson JLP, Haas R, Van Hove JLK, Karaa A, Krotoski D, Engelstad K, Buchsbaum R, DiMauro S, Hirano M. The North American mitochondrial disease registry. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:81-90. [PMID: 32601614 PMCID: PMC7323997 DOI: 10.20517/jtgg.2020.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aim The North American Mitochondrial Disease Consortium (NAMDC) comprises a network of 17 clinical centers with a mission to conduct translational research on mitochondrial diseases. NAMDC is a part of the Rare Disease Clinical Research Network (RDCRN) and is funded by the National Institutes of Health. To foster its mission, NAMDC has implemented a comprehensive Mitochondrial Disease Clinical Registry (hereafter NAMDC Registry), collected biosamples deposited into the NAMDC Biorepository, defined phenotypes and genotypes of specific disorders, collected natural history data, identified outcome measures, characterized safety and long-term toxicity and efficacy of promising therapies, and trained young investigators interested in patient-oriented research in mitochondrial disease. Methods Research conducted by NAMDC is built on the foundation of the Clinical Registry. Data within the registry are encrypted and maintained in a centralized database at Columbia University Medical Center. In addition to clinical data, NAMDC has established a mitochondrial disease biorepository, collecting DNA, plasma, cell, and tissue samples. Specimens are assigned coded identifiers in compliance with all relevant regulatory entities and with emerging NIH guidelines for biorepositories. NAMDC funds two pilot projects each year. Pilot grants are small grants typically supporting an early stage concept to obtain preliminary data. Pilot grants must enhance and address major issues in mitochondrial medicine and specific areas of need for the field and for the successful outcome of NAMDC. The grant selection process is facilitated by input from multiple stakeholders including patient organizations and the strategic leadership of NAMDC. To train new mitochondrial disease investigators, NAMDC has established a Fellowship Program which offers a unique training opportunity to senior postdoctoral clinical fellows. The fellowship includes a 6-month period of intensive training in clinical trial methodology through the Clinical Research Enhancement through Supplemental Training program and equivalent programs at the other sites, along with rotations up to 3 months each to two additional consortium sites where a rich and varied training experience is provided. Nine core educational sites participate in this training program, each offering a summer grant program in mitochondrial medicine funded by our NAMDC partner the United Mitochondrial Disease Foundation (www.umdf.org). All clinical research in NAMDC depends on the participation of mitochondrial disease patients. Since individual mitochondrial disorders are often extremely rare, major communication and recruitment efforts are required. Therefore, NAMDC has forged a very close partnership with the premier patient advocacy group for mitochondrial diseases in North America, the United Mitochondrial Disease Foundation (UMDF). Results The NAMDC Registry has confirmed the clinical and genetical heterogeneity of mitochondrial diseases due to primary mutations in mitochondrial DNA or nuclear DNA. During the 8 years of this NIH-U54 grant, this consortium, acting in close collaboration with a patient advocacy group, the UMDF, has effectively addressed these complex diseases. NAMDC has expanded a powerful patient registry with more than 1600 patients enrolled to date, a website for education and recruitment of patients (www.namdc.org), a NAMDC biorepository housed at the Mayo Clinic in Rochester, MN, and essential diagnostic guidelines for consensus research. In addition, eight clinical studies have been initiated and the NAMDC fellowship program has been actively training the next generation of mitochondrial disease clinical investigators, of which six have completed the program and remain actively involved in mitochondrial disease research. Conclusion The NAMDC Patient Registry and Biorepository is actively facilitating mitochondrial disease research, and accelerating progress in the understanding and treatment of mitochondrial diseases.
Collapse
Affiliation(s)
- Xiomara Q Rosales
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - John L P Thompson
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Richard Haas
- Departments of Neurosciences and Pediatrics, University of California at San Diego, San Diego, CA 92093, USA
| | - Johan L K Van Hove
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Amel Karaa
- Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Danuta Krotoski
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | - Kristin Engelstad
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Richard Buchsbaum
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
42
|
Barca E, Long Y, Cooley V, Schoenaker R, Emmanuele V, DiMauro S, Cohen BH, Karaa A, Vladutiu GD, Haas R, Van Hove JLK, Scaglia F, Parikh S, Bedoyan JK, DeBrosse SD, Gavrilova RH, Saneto RP, Enns GM, Stacpoole PW, Ganesh J, Larson A, Zolkipli-Cunningham Z, Falk MJ, Goldstein AC, Tarnopolsky M, Gropman A, Camp K, Krotoski D, Engelstad K, Rosales XQ, Kriger J, Grier J, Buchsbaum R, Thompson JLP, Hirano M. Mitochondrial diseases in North America: An analysis of the NAMDC Registry. NEUROLOGY-GENETICS 2020; 6:e402. [PMID: 32337332 PMCID: PMC7164977 DOI: 10.1212/nxg.0000000000000402] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/16/2019] [Indexed: 11/21/2022]
Abstract
Objective To describe clinical, biochemical, and genetic features of participants with mitochondrial diseases (MtDs) enrolled in the North American Mitochondrial Disease Consortium (NAMDC) Registry. Methods This cross-sectional, multicenter, retrospective database analysis evaluates the phenotypic and molecular characteristics of participants enrolled in the NAMDC Registry from September 2011 to December 2018. The NAMDC is a network of 17 centers with expertise in MtDs and includes both adult and pediatric specialists. Results One thousand four hundred ten of 1,553 participants had sufficient clinical data for analysis. For this study, we included only participants with molecular genetic diagnoses (n = 666). Age at onset ranged from infancy to adulthood. The most common diagnosis was multisystemic disorder (113 participants), and only a minority of participants were diagnosed with a classical mitochondrial syndrome. The most frequent classical syndromes were Leigh syndrome (97 individuals) and mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (71 individuals). Pathogenic variants in the mitochondrial DNA were more frequently observed (414 participants) than pathogenic nuclear gene variants (252 participants). Pathogenic variants in 65 nuclear genes were identified, with POLG1 and PDHA1 being the most commonly affected. Pathogenic variants in 38 genes were reported only in single participants. Conclusions The NAMDC Registry data confirm the high variability of clinical, biochemical, and genetic features of participants with MtDs. This study serves as an important resource for future enhancement of MtD research and clinical care by providing the first comprehensive description of participant with MtD in North America.
Collapse
Affiliation(s)
- Emanuele Barca
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Yuelin Long
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Victoria Cooley
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Robert Schoenaker
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Valentina Emmanuele
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Salvatore DiMauro
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Bruce H Cohen
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Amel Karaa
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Georgirene D Vladutiu
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Richard Haas
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Johan L K Van Hove
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Fernando Scaglia
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Sumit Parikh
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Jirair K Bedoyan
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Susanne D DeBrosse
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Ralitza H Gavrilova
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Russell P Saneto
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Gregory M Enns
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Peter W Stacpoole
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Jaya Ganesh
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Austin Larson
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Zarazuela Zolkipli-Cunningham
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Marni J Falk
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Amy C Goldstein
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Mark Tarnopolsky
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Andrea Gropman
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Kathryn Camp
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Danuta Krotoski
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Kristin Engelstad
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Xiomara Q Rosales
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Joshua Kriger
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Johnston Grier
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Richard Buchsbaum
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - John L P Thompson
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| | - Michio Hirano
- Department of Neurology (E.B., V.E., S.D., K.E., X.Q.R., M.H.), Columbia University Medical Center, New York; Department of Biostatistics (Y.L., V.C., J.K., J. Grier, R.B., J.L.P.T.), Mailman School of Public Health, Columbia University, New York; Radboudumc (R.S.), Nijmegen, The Netherlands; Department of Pediatrics (B.H.C.), Northeast Ohio Medical University and Akron Children's Hospital; Genetics Unit (A.K.), Massachusetts General Hospital, Boston; Department of Pediatrics (G.D.V.), State University of New York at Buffalo; Departments of Neurosciences and Pediatrics (R.H.), University of California at San Diego; Department of Pediatrics (J.L.K.V.H., A.L.), University of Colorado School of Medicine, Aurora; Department of Molecular and Human Genetics (F.S.), Baylor College of Medicine, Houston, TX; Texas Children's Hospital (F.S.), Houston; Joint BCM-CUHK Center of Medical Genetics (F.S.), Prince of Wales Hospital, ShaTin, New Territories, Hong Kong; Department of Neurology (S.P.), Cleveland Clinic, OH; Departments of Genetics and Genome Sciences and Pediatrics (J.K.B., S.D.D.), and Center for Human Genetics, University Hospitals Cleveland Medical Center, Case Western Reserve University, OH; Departments of Neurology and Clinical Genomics (R.H.G.), Mayo Clinic, Rochester, MN; Department of Neurology (R.P.S.), University of Washington, Seattle Children's Hospital; Department of Pediatrics (G.M.E.), Stanford University, Palo Alto, CA; Department of Medicine (P.W.S.), University of Florida at Gainesville; Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai (J. Ganesh), New York; Mitochondrial Medicine Frontier Program (Z.Z.-C., M.J.F., A.C.G.), Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; University of Pennsylvania Perelman School of Medicine (Z.Z.-C.), Philadelphia; Department of Neurology (M.T.), McMasters University, Toronto, Ontario, Canada; Department of Neurology (A.G.), Children's National Health Network, Washington, DC; Office of Dietary Supplements (K.C.), National Institutes of Health, Bethesda, MD; and Eunice Kennedy Shriver National Institute of Child Health and Human Development (D.K.), National Institutes of Health, Bethesda, MD
| |
Collapse
|
43
|
Parikh S, Galioto R, Lapin B, Haas R, Hirano M, Koenig MK, Saneto RP, Zolkipli-Cunningham Z, Goldstein A, Karaa A. Fatigue in primary genetic mitochondrial disease: No rest for the weary. Neuromuscul Disord 2019; 29:895-902. [DOI: 10.1016/j.nmd.2019.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023]
|
44
|
Khayat D, Kurtz TL, Stacpoole PW. The changing landscape of clinical trials for mitochondrial diseases: 2011 to present. Mitochondrion 2019; 50:51-57. [PMID: 31669619 DOI: 10.1016/j.mito.2019.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/12/2019] [Accepted: 10/16/2019] [Indexed: 12/29/2022]
Abstract
We reviewed the status of interventional clinical trials for primary mitochondrial diseases. Using national and international search engines, we found 48 randomized controlled trials (RCTs) registered as of May 15, 2019. Consilience between lay and professional mitochondrial disease communities to engage in RCTs has increased, as has progress in developing new disease and treatment biomarkers and potential therapies. The continued advancement of general knowledge of mitochondrial biology has fostered appreciation for the fundamental role mitochondria play in the etiopathology of other rare and common illnesses, emphasizing the therapeutic potential of mitochondrially-targeted small molecules for an increasing spectrum of human diseases.
Collapse
Affiliation(s)
- Delia Khayat
- Departments of Medicine (Division of Endocrinology, Diabetes and Metabolism), College of Medicine, University of Florida, United States
| | - Tracie L Kurtz
- Departments of Medicine (Division of Endocrinology, Diabetes and Metabolism), College of Medicine, University of Florida, United States
| | - Peter W Stacpoole
- Departments of Medicine (Division of Endocrinology, Diabetes and Metabolism), College of Medicine, University of Florida, United States; Biochemistry and Molecular Biology, College of Medicine, University of Florida, United States.
| |
Collapse
|
45
|
Turriff A, Blain D, Similuk M, Biesecker B, Wiley H, Cukras C, Sieving PA. Motivations and Decision Making Processes of Men With X-linked Retinoschisis Considering Participation in an Ocular Gene Therapy Trial. Am J Ophthalmol 2019; 204:90-96. [PMID: 30885710 DOI: 10.1016/j.ajo.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE To describe the motivations, expectations, and other factors men with X-linked retinoschisis (XLRS) consider when making decisions to participate in an early phase ocular gene therapy clinical trial. DESIGN Qualitative interview study. METHODS Men with XLRS who were considering participation in a phase I/IIa ocular gene therapy clinical trial at the National Eye Institute were eligible for this study. Trial participants (n = 9) were interviewed prior to receiving the gene transfer and then at 3 and 12 months later. Trial participation decliners (n = 2) were interviewed at an initial visit and 12 months later. Those screened for the trial and found ineligible (n = 2) were interviewed at an initial visit only. Interviews were transcribed, coded, and analyzed thematically. RESULTS Interview participants described decision making factors as risk-benefit assessments, personal intuition, trust in the study team, and religious faith. Altruism and the potential for therapeutic benefit were the main motives for trial participation, whereas the uncertainty of risks and benefits was the reason 2 men declined participation. Although most participants hoped for direct benefit, no one expected to benefit. Almost all interview participants considered their decision straightforward and were satisfied with their decision when interviewed over time. Meaningful relationships with the study team and perceived secondary benefits to participation contributed to positive trial experiences. CONCLUSIONS Engaging prospective research participants in a discussion about their hopes, expectations, and personal factors provides a more complete understanding of patient decision making and may help support informed choices to participate in clinical trials for XLRS.
Collapse
Affiliation(s)
- Amy Turriff
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Delphine Blain
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Morgan Similuk
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Barbara Biesecker
- Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Henry Wiley
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Catherine Cukras
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
46
|
Yardeni T, Tanes CE, Bittinger K, Mattei LM, Schaefer PM, Singh LN, Wu GD, Murdock DG, Wallace DC. Host mitochondria influence gut microbiome diversity: A role for ROS. Sci Signal 2019; 12:12/588/eaaw3159. [PMID: 31266851 DOI: 10.1126/scisignal.aaw3159] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Changes in the gut microbiota and the mitochondrial genome are both linked with the development of disease. To investigate why, we examined the gut microbiota of mice harboring various mutations in genes that alter mitochondrial function. These studies revealed that mitochondrial genetic variations altered the composition of the gut microbiota community. In cross-fostering studies, we found that although the initial microbiota community of newborn mice was that obtained from the nursing mother, the microbiota community progressed toward that characteristic of the microbiome of unfostered pups of the same genotype within 2 months. Analysis of the mitochondrial DNA variants associated with altered gut microbiota suggested that microbiome species diversity correlated with host reactive oxygen species (ROS) production. To determine whether the abundance of ROS could alter the gut microbiota, mice were aged, treated with N-acetylcysteine, or engineered to express the ROS scavenger catalase specifically within the mitochondria. All three conditions altered the microbiota from that initially established. Thus, these data suggest that the mitochondrial genotype modulates both ROS production and the species diversity of the gut microbiome, implying that the connection between the gut microbiome and common disease phenotypes might be due to underlying changes in mitochondrial function.
Collapse
Affiliation(s)
- Tal Yardeni
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ceylan E Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa M Mattei
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patrick M Schaefer
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gary D Wu
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deborah G Murdock
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Division of Human Genetics and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Guha S, Konkwo C, Lavorato M, Mathew ND, Peng M, Ostrovsky J, Kwon YJ, Polyak E, Lightfoot R, Seiler C, Xiao R, Bennett M, Zhang Z, Nakamaru-Ogiso E, Falk MJ. Pre-clinical evaluation of cysteamine bitartrate as a therapeutic agent for mitochondrial respiratory chain disease. Hum Mol Genet 2019; 28:1837-1852. [PMID: 30668749 PMCID: PMC6522065 DOI: 10.1093/hmg/ddz023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Cysteamine bitartrate is a US Food and Drug Administration-approved therapy for nephropathic cystinosis also postulated to enhance glutathione biosynthesis. We hypothesized this antioxidant effect may reduce oxidative stress in primary mitochondrial respiratory chain (RC) disease, improving cellular viability and organismal health. Here, we systematically evaluated the therapeutic potential of cysteamine bitartrate in RC disease models spanning three evolutionarily distinct species. These pre-clinical studies demonstrated the narrow therapeutic window of cysteamine bitartrate, with toxicity at millimolar levels directly correlating with marked induction of hydrogen peroxide production. Micromolar range cysteamine bitartrate treatment in Caenorhabditis elegans gas-1(fc21) RC complex I (NDUFS2-/-) disease invertebrate worms significantly improved mitochondrial membrane potential and oxidative stress, with corresponding modest improvement in fecundity but not lifespan. At 10 to 100 μm concentrations, cysteamine bitartrate improved multiple RC complex disease FBXL4 human fibroblast survival, and protected both complex I (rotenone) and complex IV (azide) Danio rerio vertebrate zebrafish disease models from brain death. Mechanistic profiling of cysteamine bitartrate effects showed it increases aspartate levels and flux, without increasing total glutathione levels. Transcriptional normalization of broadly dysregulated intermediary metabolic, glutathione, cell defense, DNA, and immune pathways was greater in RC disease human cells than in C. elegans, with similar rescue in both models of downregulated ribosomal and proteasomal pathway expression. Overall, these data suggest cysteamine bitartrate may hold therapeutic potential in RC disease, although not through obvious modulation of total glutathione levels. Careful consideration is required to determine safe and effective cysteamine bitartrate concentrations to further evaluate in clinical trials of human subjects with primary mitochondrial RC disease.
Collapse
Affiliation(s)
- Sujay Guha
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chigoziri Konkwo
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Manuela Lavorato
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Neal D Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Min Peng
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julian Ostrovsky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Young-Joon Kwon
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Erzsebet Polyak
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Richard Lightfoot
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christoph Seiler
- Aquatics Core Facility, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rui Xiao
- Department of Statistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael Bennett
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zhe Zhang
- Center for Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
48
|
McCormick EM, Zolkipli-Cunningham Z, Falk MJ. Mitochondrial disease genetics update: recent insights into the molecular diagnosis and expanding phenotype of primary mitochondrial disease. Curr Opin Pediatr 2018; 30:714-724. [PMID: 30199403 PMCID: PMC6467265 DOI: 10.1097/mop.0000000000000686] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Primary mitochondrial disease (PMD) is a genetically and phenotypically diverse group of inherited energy deficiency disorders caused by impaired mitochondrial oxidative phosphorylation (OXPHOS) capacity. Mutations in more than 350 genes in both mitochondrial and nuclear genomes are now recognized to cause primary mitochondrial disease following every inheritance pattern. Next-generation sequencing technologies have dramatically accelerated mitochondrial disease gene discovery and diagnostic yield. Here, we provide an up-to-date review of recently identified, novel mitochondrial disease genes and/or pathogenic variants that directly impair mitochondrial structure, dynamics, and/or function. RECENT FINDINGS A review of PubMed publications was performed from the past 12 months that identified 16 new PMD genes and/or pathogenic variants, and recognition of expanded phenotypes for a wide variety of mitochondrial disease genes. SUMMARY Broad-based exome sequencing has become the standard first-line diagnostic approach for PMD. This has facilitated more rapid and accurate disease identification, and greatly expanded understanding of the wide spectrum of potential clinical phenotypes. A comprehensive dual-genome sequencing approach to PMD diagnosis continues to improve diagnostic yield, advance understanding of mitochondrial physiology, and provide strong potential to develop precision therapeutics targeted to diverse aspects of mitochondrial disease pathophysiology.
Collapse
Affiliation(s)
- Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, PA 19104
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, PA 19104
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|