1
|
Gonzalez-Orozco M, Tseng HC, Hage A, Xia H, Behera P, Afreen K, Peñaflor-Tellez Y, Giraldo MI, Huante M, Puebla-Clark L, van Tol S, Odle A, Crown M, Teruel N, Shelite TR, Moreno-Contreras J, Terasaki K, Makino S, Menachery V, Endsley M, Endsley JJ, Najmanovich RJ, Bashton M, Stephens R, Shi PY, Xie X, Freiberg AN, Rajsbaum R. TRIM7 ubiquitinates SARS-CoV-2 membrane protein to limit apoptosis and viral replication. Nat Commun 2024; 15:10438. [PMID: 39616206 PMCID: PMC11608229 DOI: 10.1038/s41467-024-54762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024] Open
Abstract
SARS-CoV-2 is a highly transmissible virus that causes COVID-19 disease. Mechanisms of viral pathogenesis include excessive inflammation and viral-induced cell death, resulting in tissue damage. Here we show that the host E3-ubiquitin ligase TRIM7 acts as an inhibitor of apoptosis and SARS-CoV-2 replication via ubiquitination of the viral membrane (M) protein. Trim7-/- mice exhibit increased pathology and virus titers associated with epithelial apoptosis and dysregulated immune responses. Mechanistically, TRIM7 ubiquitinates M on K14, which protects cells from cell death. Longitudinal SARS-CoV-2 sequence analysis from infected patients reveal that mutations on M-K14 appeared in circulating variants during the pandemic. The relevance of these mutations was tested in a mouse model. A recombinant M-K14/K15R virus shows reduced viral replication, consistent with the role of K15 in virus assembly, and increased levels of apoptosis associated with the loss of ubiquitination on K14. TRIM7 antiviral activity requires caspase-6 inhibition, linking apoptosis with viral replication and pathology.
Collapse
Affiliation(s)
- Maria Gonzalez-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hsiang-Chi Tseng
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Padmanava Behera
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Kazi Afreen
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Yoatzin Peñaflor-Tellez
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Maria I Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Matthew Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lucinda Puebla-Clark
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Abby Odle
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Matthew Crown
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK
| | - Natalia Teruel
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Thomas R Shelite
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Joaquin Moreno-Contreras
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Kaori Terasaki
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shinji Makino
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vineet Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mark Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rafael J Najmanovich
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Matthew Bashton
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Center for Immunity and Inflammation and Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
2
|
Zivelonghi G, Melotti L, Carolo A, Venerando A, Roncoroni M, Martinelli G, Maccatrozzo L, Marzorati S, Sugni M, Patruno M. Sea food by-products valorization for biomedical applications: evaluation of their wound regeneration capabilities in an Ex vivo skin model. Front Vet Sci 2024; 11:1491385. [PMID: 39660177 PMCID: PMC11629400 DOI: 10.3389/fvets.2024.1491385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction The skin is often exposed to harmful stimuli that might compromise its integrity and functionality. After an injury, the skin has a limited capability to restore its complex structure, and in the case of severe skin damage, surgical operations and rapid application of wound dressings are often required to promote optimal wound healing. Nowadays, collagen-based biomaterials are widely used in combination with bioactive molecules able to prevent excessive inflammation and possible infections. In line with a circular economy and blue biotechnology approach, it was recently demonstrated that both collagen and bioactive molecules (i.e., antioxidant compounds) can be sustainably obtained from sea food by-products and effectively used for biomaterial development. Herein, we describe and compare the application of two marine collagen-based wound dressings (CBWDs), produced with materials obtained from sea urchin food waste, for the treatment of skin lesions in a wound healing organ culture (WHOC) model. Methods The ex vivo WHOC model was set up starting from rat skin explants and the induced lesions were assigned into three different groups: control (CTRL) group, not treated, marine collagen wound dressing (MCWD) group, and antioxidants-enriched marine collagen wound dressing (A-MCWD) group. After 5 and 10 days, specimens were examined for organ maintenance and assessed for the healing process. Results Immunohistochemical results showed that both CBWDs were similarly successful in prolonging skin repair, preserving the epidermal barrier up to 5 days under static culture conditions. Histological and gene expression analysis highlighted that the A-MCWD might support and accelerate skin wound healing by exerting antioxidant activity and counteracting inflammation. Discussion Overall, these findings underline the potential of sea urchin food waste as a novel resource for the development of functional medical devices for the treatment of skin wounds.
Collapse
Affiliation(s)
- Giulia Zivelonghi
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Anna Carolo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Andrea Venerando
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Margherita Roncoroni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Giordana Martinelli
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Lisa Maccatrozzo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Stefania Marzorati
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| |
Collapse
|
3
|
Chen T, Zhang B, Xie H, Huang C, Wu Q. GRHL2 regulates keratinocyte EMT-MET dynamics and scar formation during cutaneous wound healing. Cell Death Dis 2024; 15:748. [PMID: 39402063 PMCID: PMC11473813 DOI: 10.1038/s41419-024-07121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/17/2024]
Abstract
After cutaneous wounds successfully heal, keratinocytes that underwent the epithelial-mesenchymal transition (EMT) regain their epithelial characteristics, while in scar tissue, epidermal cells persist in a mesenchymal state. However, the regulatory mechanisms governing this reversion are poorly understood, and the impact of persistent mesenchymal-like epidermal cells in scar tissue remains unclear. In the present study, we found that during wound healing, the regulatory factor GRHL2 is highly expressed in normal epidermal cells, downregulated in EMT epidermal cells, and upregulated again during the process of mesenchymal-epithelial transition (MET). We further demonstrated that interfering with GRHL2 expression in epidermal cells can effectively induce the EMT. Conversely, the overexpression of GRHL2 in EMT epidermal cells resulted in partial reversion of the EMT to an epithelial state. To investigate the effects of failed MET in epidermal cells on skin wound healing, we interfered with GRHL2 expression in epidermal cells surrounding the cutaneous wound. The results demonstrated that the persistence of epidermal cells in the mesenchymal state promoted fibrosis in scar tissue, manifested by increased thickness of scar tissue, deposition of collagen and fibronectin, as well as the activation of myofibroblasts. Furthermore, the miR-200s/Zeb1 axis was perturbed in GRHL2 knockdown keratinocytes, and transfection with miR-200s analogs promoted the reversion of EMT in epidermal cells, which indicates that they mediate the EMT process in keratinocytes. These results suggest that restoration of the epithelial state in epidermal cells following the EMT is essential to wound healing, providing potential therapeutic targets for preventing scar formation.
Collapse
Affiliation(s)
- Tianying Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bo Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hanqi Xie
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chenyu Huang
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Wang X, Sun R, Che N, Zhang D, Li Y, Zhao N. Overexpression of NDRG1 leads to poor prognosis in hepatocellular carcinoma through mediating immune infiltration and EMT. Dig Liver Dis 2024; 56:1382-1399. [PMID: 38290958 DOI: 10.1016/j.dld.2024.01.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND NDRG1, the first member of the NDRG family, is a multifunctional protein associated with carcinogenesis. Its function in human cancer is currently poorly understood. The aim of this study was to explore the importance of NDRG1 in tumor immune cell infiltration and epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma. METHODS NDRG1 expression in various cancers was analyzed using TIMER 2.0, the Human Protein Atlas (HPA), UALCAN and PrognoScan. Wound healing, Transwell, MTT and colony formation assays were performed to confirm the effects of NDRG1 on the metastasis and proliferation of HCC cells. Western blotting was used to study the effect of NDRG1 on the expression of EMT-related proteins. Signaling networks were constructed using LinkedOmics and Metascape. TIMER2.0 and TISIDB were used for comprehensive analysis of tumor-infiltrating immune cells and tumor-infiltrating lymphocytes (TILs). RESULT NDRG1 expression was higher in HCC tissue than in normal liver tissue at both the mRNA and protein levels. Overexpression of NDRG1 is associated with poor prognosis in HCC patients. Genomic analysis suggests that NDRG1 promoter hypermethylation leads to enhanced transcription, which may be one mechanism for NDRG1 upregulation in HCC. The overexpression of NDRG1 promotes the invasion, migration, and proliferation of HCC cells and induces the expression of EMT-related proteins. Immunoinfiltration analysis suggests that NDRG1 is involved in the recruitment of immune cells. CONCLUSIONS The present study showed that NDRG1 may induce metastasis and invasion through EMT and immune cell infiltration. NDRG1 could be used as a biomarker for the diagnosis and prognosis of HCC and could be a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Ran Sun
- Hospital of Integrated Chinese and Western Medicine , Tianjin 300100, China
| | - Na Che
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Dpartment of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Dpartment of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Dpartment of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Dpartment of Pathology, General Hospital of Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
5
|
Gonzalez-Orozco M, Tseng HC, Hage A, Xia H, Behera P, Afreen K, Peñaflor-Tellez Y, Giraldo MI, Huante M, Puebla-Clark L, van Tol S, Odle A, Crown M, Teruel N, Shelite TR, Menachery V, Endsley M, Endsley JJ, Najmanovich RJ, Bashton M, Stephens R, Shi PY, Xie X, Freiberg AN, Rajsbaum R. TRIM7 ubiquitinates SARS-CoV-2 membrane protein to limit apoptosis and viral replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599107. [PMID: 38948778 PMCID: PMC11212893 DOI: 10.1101/2024.06.17.599107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
SARS-CoV-2 is a highly transmissible virus that causes COVID-19 disease. Mechanisms of viral pathogenesis include excessive inflammation and viral-induced cell death, resulting in tissue damage. We identified the host E3-ubiquitin ligase TRIM7 as an inhibitor of apoptosis and SARS-CoV-2 replication via ubiquitination of the viral membrane (M) protein. Trim7 -/- mice exhibited increased pathology and virus titers associated with epithelial apoptosis and dysregulated immune responses. Mechanistically, TRIM7 ubiquitinates M on K14, which protects cells from cell death. Longitudinal SARS-CoV-2 sequence analysis from infected patients revealed that mutations on M-K14 appeared in circulating variants during the pandemic. The relevance of these mutations was tested in a mouse model. A recombinant M-K14/K15R virus showed reduced viral replication, consistent with the role of K15 in virus assembly, and increased levels of apoptosis associated with the loss of ubiquitination on K14. TRIM7 antiviral activity requires caspase-6 inhibition, linking apoptosis with viral replication and pathology.
Collapse
Affiliation(s)
- Maria Gonzalez-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Hsiang-chi Tseng
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX
| | - Padmanava Behera
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Kazi Afreen
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Yoatzin Peñaflor-Tellez
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Maria I. Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Matthew Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Lucinda Puebla-Clark
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Abby Odle
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Matthew Crown
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK
| | - Natalia Teruel
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Thomas R Shelite
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX
| | - Vineet Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Mark Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Janice J. Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Rafael J. Najmanovich
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Matthew Bashton
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX
- Center for Immunity and Inflammation and Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX
| | | | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Center for Virus-Host-Innate-Immunity, RBHS Institute for Infectious and Inflammatory Diseases, and Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| |
Collapse
|
6
|
Asci H, Savran M, Comlekci S, Sofu MM, Erzurumlu Y, Ozmen O, Kaynak M, Sahin ME, Taner R, Gecin M. Combined Pulsed Magnetic Field and Radiofrequency Electromagnetic Field Enhances MMP-9, Collagen-4, VEGF Synthesis to Improve Wound Healing Via Hif-1α/eNOS Pathway. Aesthetic Plast Surg 2023; 47:2841-2852. [PMID: 37369865 DOI: 10.1007/s00266-023-03450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The blood supply of the tissue is very important in the acceleration of wound healing. Radiofrequency electromagnetic field (RF) and the pulsed magnetic field (PMF) increase vasodilation to contribute wound healing. The aim of this study was to evaluate the effects of RF and PMF on wound healing via hypoxia-inducible factor-1 alpha (Hif-1α)/endothelial nitric oxide synthase (eNOS) pathway. METHODS Forty-eight rats were divided into 4 groups as sham (wound created only), PMF (27.12 MHz, 12 times a day at 30-min intervals), RF (0.5 mT, continuously) and PMF + RF groups. Wounds were created at 1.5 × 1.5 cm size to the dorsal region, and animals were put into unit. Six animals were killed on days 4 and 7; wound tissues were collected for histopathological, immunohistochemical as collagen-4, cytokeratin, matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF) staining and Hif-1α/eNOS/VEGF expressions. RESULTS On day 4, in addition to increasing VEGF and MMP-9 stainings, connection between intact tissue and scar tissue which was stronger in the RF- and PMF-applied groups was observed. On day 7, epithelization started; inflammatory reaction decreased; collagen production, cytokeratin, VEGF and MMP-9 expression enhanced, especially in the RF + PMF applied group. eNOS, Hif-1α and VEGF expression levels were found to be significantly highest in both days of RF + PMF-applied group. CONCLUSIONS This study revealed that both in vitro RF and PMF applications can cause notable changes in factors that are required for tissue repair on wound healing such as epithelization, connective tissue formation, collagen production and angiogenesis via vasodilatory Hif-1α/eNOS pathway and VEGF signaling. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Halil Asci
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey.
| | - Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - Selcuk Comlekci
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
- Department of Electronics and Communication Engineering, Faculty of Engineering, Suleyman Demirel University, Isparta, Turkey
| | - Mehmet M Sofu
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - Yalcin Erzurumlu
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Mine Kaynak
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mehmet E Sahin
- Department of Biomedical Device Technology, Technical Sciences Vocational High School, Isparta University of Applied Sciences, Isparta, Turkey
| | - Rumeysa Taner
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Gecin
- Department of Electronics and Communication Engineering, Faculty of Engineering, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
7
|
VEISAGA MARIALUISA, AHUMADA MARIAM, SORIANO STACY, ACUNA LEONARDO, ZHANG WEI, LEUNG IVY, BARNUM ROBERT, BARBIERI MANUELA. Anti-proliferative effect of Annona extracts on breast cancer cells. BIOCELL 2023; 47:1835-1852. [PMID: 37771344 PMCID: PMC10538365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Backgorund Fruits and seed extracts of Annona montana have significant cytotoxic potential in several cancer cells. This study evaluates the effect of A. montana leaves hexane extract on several signaling cascades and gene expression in metastatic breast cancer cells upon insulin-like growth factor-1 (IGF-1) stimulation. Methods MTT assay was performed to determine the proliferation of cancer cells. Propidium iodide staining and flow cytometry analysis of Annexin V binding was utilized to measure the progression of the cell cycle and the induction of apoptosis. Protein expression and phosphorylation were determined by western blotting analysis to examine the underlying cellular mechanism triggered upon treatment with A. montana leaves hexane extract. Results A. montana leaves hexane (sub-fraction V) blocked the constitutive stimulation of the PI3K/mTOR signaling pathways. This inhibitory effect was associated with apoptosis induction as evidenced by the positivity with Annexin V and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNNEL) staining, activation of caspase-3, and cleavage of PPAR. It also limited the expression of various downstream genes that regulate proliferation, survival, metastasis, and angiogenesis (i.e., cyclin D1, survivin, COX-2, and VEGF). It increased the expression of p53 and p21. Interestingly, we also observed that this extract blocked the activation of AKT and ERK without affecting the phosphorylation of the IGF-1 receptor and activation of Ras upon IGF-1 stimulation. Conclusion Our study indicates that A. montana leaves (sub-fraction V) extract exhibits a selective anti-proliferative and proapoptotic effect on the metastatic MDA-MB-231 breast cancer cells through the involvement of PI3K/AKT/mTOR/S6K1 pathways.
Collapse
Affiliation(s)
- MARIA-LUISA VEISAGA
- Biomolecular Sciences Institute, Florida International University, Miami, 33199, USA
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - MARIAM AHUMADA
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - STACY SORIANO
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - LEONARDO ACUNA
- Biochemistry Ph.D. Program, Florida International University, Miami, 33199, USA
| | - WEI ZHANG
- Biochemistry Ph.D. Program, Florida International University, Miami, 33199, USA
| | - IVY LEUNG
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - ROBERT BARNUM
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
| | - MANUEL A. BARBIERI
- Biomolecular Sciences Institute, Florida International University, Miami, 33199, USA
- Department of Biological Sciences, Florida International University, Miami, 33199, USA
- Biochemistry Ph.D. Program, Florida International University, Miami, 33199, USA
- Fairchild Tropical Botanic Garden, Coral Gables, 33156, USA
- International Center of Tropical Botany, Florida International University, Miami, 33199, USA
| |
Collapse
|
8
|
Movahhed M, pazhouhi M, Ghaleh HEG, Kondori BJ. Anti-metastatic effect of taraxasterol on prostate cancer cell lines. Res Pharm Sci 2023; 18:439-448. [PMID: 37614618 PMCID: PMC10443670 DOI: 10.4103/1735-5362.378090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/04/2023] [Accepted: 05/30/2023] [Indexed: 08/25/2023] Open
Abstract
Background and purpose Prostate cancer is the second cause of death among men. Nowadays, treating various cancers with medicinal plants is more common than other therapeutic agents due to their minor side effects. This study aimed to evaluate the effect of taraxasterol on the prostate cancer cell line. Experimental approach The prostate cancer cell line (PC3) was cultured in a nutrient medium. MTT method and trypan blue staining were used to evaluate the viability of cells in the presence of different concentrations of taraxasterol, and IC50 was calculated. Real-time PCR was used to measure the expression of MMP-9, MMP-2, uPA, uPAR, TIMP-2, and TIMP-1 genes. Gelatin zymography was used to determine MMP-9 and MMP-2 enzyme activity levels. Finally, the effect of taraxasterol on cell invasion, migration, and adhesion was investigated. Findings/Results Taraxasterol decreased the survival rate of PC3 cells at IC50 time-dependently (24, 48, and 72 h). Taraxasterol reduced the percentage of PC3 cell adhesion, invasion, and migration by 74, 56, and 76 percent, respectively. Real-time PCR results revealed that uPA, uPAR, MMP-9, and MMP-2 gene expressions decreased in the taraxasterol-treated groups, but TIMP-2 and TIMP-1 gene expressions increased significantly. Also, a significant decrease in the level of MMP-9 and MMP-2 enzymes was observed in the PC3 cell line treated with taraxasterol. Conclusion and implications The present study confirmed the therapeutic role of taraxasterol in preventing prostate cancer cell metastasis in the in-vitro study.
Collapse
Affiliation(s)
- Morteza Movahhed
- Department of Pathology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mona pazhouhi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | | | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Das G, Farhan M, Sinha S, Bora HK, Singh WR, Meeran SM. Mikania micrantha extract enhances cutaneous wound healing activity through the activation of FAK/Akt/mTOR cell signaling pathway. Injury 2023:110856. [PMID: 37330403 DOI: 10.1016/j.injury.2023.110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
Mikania micrantha (MM) has been traditionally used for various health benefits, including mental health, anti-inflammatory, wound dressing, and healing of sores. However, the molecular mechanisms and dose required for the wound healing activity of MM have yet to be reported. Therefore, a study was conducted to evaluate the wound healing potential of a cold methanolic extract of MM through in vitro and in vivo studies. Human dermal fibroblast adult (HDFa) cells were treated with 0 (control), 75 ng/ml, 125 ng/ml, 250 ng/ml, and 500 ng/ml of MMmethanolic extract (MME) for 24 h. MME at 75 ng/ml has significantly (p˂0.05) promoted HDFa cell proliferation and migration. Further, MME has also been shown to enhance the invasiveness of human umbilical vascular endothelial cells (HUVECs), indicating the neovasculature for wound healing. The tube formation assay demonstrated a significant (p<0.05) increase in the angiogenic effect of the MME starting at a concentration of 75 ng/ml as compared to the control. Treatment of excision wounds in Wistar rats with 5% and 10% MME ointment significantly enhanced wound contraction compared to control animals. Incision wounds in rats treated with 5% and 10% MME showed a significant (p<0.01) increase in tensile strength compared to control. HDFa cells, and granulation tissue collected on day 14 post-wounding, revealed the modulation of the FAK/Akt/mTOR cell signaling pathway during the enhancement of wound healing. The results of gel zymography showed increased activity of MMP-2 and MMP-9 in the HDFa cells after treatment with the extract. It is concluded that MMEcan potentially accelerate cutaneous wound healing.
Collapse
Affiliation(s)
- Gunjan Das
- Department of Veterinary Medicine, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Jalukie, Imphal, Nagaland 797110, India.
| | - Mohammad Farhan
- Laboratory Animal Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sonam Sinha
- Laboratory Animal Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Himangsu K Bora
- Laboratory Animal Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Wangkheirakpam Ramdas Singh
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Jalukie, Imphal, Nagaland 797110, India
| | - Syed Musthapa Meeran
- Laboratory Animal Division, CSIR-Central Drug Research Institute, Lucknow, India; Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
10
|
Zacarias CA, de Mendonça Florenziano RF, de Andrade TAM, de Aro AA, do Amaral MEC, dos Santos GMT, Esquisatto MAM. Arnica montana L. associated with microcurrent accelerates the dermis reorganisation of skin lesions. Int J Exp Pathol 2023; 104:81-95. [PMID: 36752313 PMCID: PMC10009304 DOI: 10.1111/iep.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 02/09/2023] Open
Abstract
The aim of this study was to test the effect of electrical stimulation in association with topical Arnica montana gel on organisational changes in the dermis during tissue repair. An experimental rat incisional skin lesion was used for the study. This involved making an incisional lesion on the dorsum of the animals using a scalpel. Ninety-six animals were used divided into the following groups: control (C), microcurrent (MC); topical treatment with Arnica montana gel (ARN); the ARN + microcurrent (ARN + MC). Treatments were administered daily, and injured tissue samples were collected and processed on Days 2, 6 and 10 for dermis analyses. Myeloperoxidase levels were greater in control than in treatment groups on Days 2 and 6. F4/80 expression was similar among all treatment groups and greater than that in control on Day 2. On Day 6, the expression of vascular endothelial growth factor was higher in the MC group than that in other groups, whereas transforming growth factor-β expression increased in the MC and ARN + MC groups on Day 10. The expression of matrix metalloproteinase-2 was higher in the ARN + MC group when compared with other groups on Day 10. Expression levels of collagen I were increased in the ARN and ARN + MC groups when compared with control and MC groups on Day 6, while expression of collagen III was enhanced in MC, ARN, and ARN + MC groups when compared with the control. The protocol combining microcurrent with topical application of ARN reduces the inflammatory process, increases myofibroblasts proliferation and decreases the presence of macrophages in the dermis during skin repair in rats.
Collapse
Affiliation(s)
- Cresle Andrei Zacarias
- Graduate Program in Biomedical SciencesUniversity Center of Herminio Ometto Foundation – FHOArarasBrazil
| | | | | | - Andrea Aparecida de Aro
- Graduate Program in Biomedical SciencesUniversity Center of Herminio Ometto Foundation – FHOArarasBrazil
| | | | | | | |
Collapse
|
11
|
Clinical analysis of tethered cord syndrome and gene expression profiling of wound healing surgery. Postepy Dermatol Alergol 2023; 40:78-86. [PMID: 36909921 PMCID: PMC9993202 DOI: 10.5114/ada.2022.120001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/18/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction The method to prevent progression of symptoms in tethered cord syndrome (TCS) is neurosurgery. However, postoperative wound healing is a lengthy process and is hindered by the release of cerebrospinal fluid (CSF) through the wound. To the best of the authors' knowledge, there is no study evaluating the changes in the expression of factors involved in the wound healing process after neurosurgery for TCS. Aim To clinically analyse 2 cases of TCS and evaluate the change in expression of selected genes during the postoperative wound healing process. Material and methods Determination of TCS in two adult patients (woman, aged 26 years; man, aged 53 years) was based on magnetic resonance imaging (MRI). After confirming the initial diagnosis, a neurosurgical procedure was performed to remove the intrathecal spreading adipoma and transect the medullary terminal thread in patients. In the postoperative period, impaired wound healing was noted as a result of CSF secretion through the surgical wound. Results Molecularly, there was an increase in expression of all genes assessed in skin biopsy specimens compared to skin samples. Impaired postoperative wound healing after neurosurgery for TCS is expected due to CSF leakage through the surgical wound. The greatest changes were noted for metalloproteinases (MMPs) and four isoforms (A-D) of vascular endothelial growth factor A-D (VEGF-A-D; p < 0.05). Conclusions Changes in the expression of our selected genes can be used to monitor and predict the process of wound healing and scar formation, which occurred in our cases at 19 and 20 days after surgery.
Collapse
|
12
|
He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol 2023; 13:1093990. [PMID: 36776395 PMCID: PMC9910179 DOI: 10.3389/fimmu.2022.1093990] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are an important class of enzymes in the body that function through the extracellular matrix (ECM). They are involved in diverse pathophysiological processes, such as tumor invasion and metastasis, cardiovascular diseases, arthritis, periodontal disease, osteogenesis imperfecta, and diseases of the central nervous system. MMPs participate in the occurrence and development of numerous cancers and are closely related to immunity. In the present study, we review the immunomodulatory role of MMPs in colitis-associated cancer (CAC) and discuss relevant clinical applications. We analyze more than 300 pharmacological studies retrieved from PubMed and the Web of Science, related to MMPs, cancer, colitis, CAC, and immunomodulation. Key MMPs that interfere with pathological processes in CAC such as MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13, as well as their corresponding mechanisms are elaborated. MMPs are involved in cell proliferation, cell differentiation, angiogenesis, ECM remodeling, and the inflammatory response in CAC. They also affect the immune system by modulating differentiation and immune activity of immune cells, recruitment of macrophages, and recruitment of neutrophils. Herein we describe the immunomodulatory role of MMPs in CAC to facilitate treatment of this special type of colon cancer, which is preceded by detectable inflammatory bowel disease in clinical populations.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| |
Collapse
|
13
|
Wound healing approach based on excretory-secretory product and lysate of liver flukes. Sci Rep 2022; 12:21639. [PMID: 36517588 PMCID: PMC9751068 DOI: 10.1038/s41598-022-26275-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Exogenous bioactive peptides are considered promising for the wound healing therapy in humans. In this regard, parasitic trematodes proteins may potentially become a new perspective agents. Foodborne trematode Opisthorchis felineus is widespread in Europe and has the ability to stimulate proliferation of bile duct epithelium. In this study, we investigated skin wound healing potential of O. felineus proteins in mouse model. C57Bl/6 mice were inflicted with superficial wounds with 8 mm diameter. Experimental groups included several non-specific controls and specific treatment groups (excretory-secretory product and lysate). After 10 days of the experiment, the percentage of wound healing in the specific treatment groups significantly exceeded the control values. We also found that wound treatment with excretory-secretory product and worm lysate resulted in: (i) inflammation reducing, (ii) vascular response modulating, (iii) type 1 collagen deposition promoting dermal ECM remodeling. An additional proteomic analysis of excretory-secretory product and worm lysate samples was revealed 111 common proteins. The obtained data indicate a high wound-healing potential of liver fluke proteins and open prospects for further research as new therapeutic approaches.
Collapse
|
14
|
Bormann T, Maus R, Stolper J, Tort Tarrés M, Brandenberger C, Wedekind D, Jonigk D, Welte T, Gauldie J, Kolb M, Maus UA. Role of matrix metalloprotease-2 and MMP-9 in experimental lung fibrosis in mice. Respir Res 2022; 23:180. [PMID: 35804363 PMCID: PMC9270768 DOI: 10.1186/s12931-022-02105-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/29/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a diffuse parenchymal lung disease characterized by exuberant deposition of extracellular matrix (ECM) proteins in the lung interstitium, which contributes to substantial morbidity and mortality in IPF patients. Matrix metalloproteinases (MMPs) are a large family of zinc-dependent endopeptidases, many of which have been implicated in the regulation of ECM degradation in lung fibrosis. However, the roles of MMP-2 and -9 (also termed gelatinases A and B) have not yet been explored in lung fibrosis in detail. METHODS AdTGF-β1 was applied via orotracheal routes to the lungs of WT, MMP-2 KO, MMP-9 KO and MMP-2/-9 dKO mice on day 0 to induce lung fibrosis. Using hydroxyproline assay, FlexiVent based lung function measurement, histopathology, western blot and ELISA techniques, we analyzed MMP-2 and MMP-9 levels in BAL fluid and lung, collagen contents in lung and lung function in mice on day 14 and 21 post-treatment. RESULT IPF lung homogenates exhibited significantly increased levels of MMP-2 and MMP-9, relative to disease controls. Enzymatically active MMP-2 and MMP-9 was increased in lungs of mice exposed to adenoviral TGF-β1, suggesting a role for these metalloproteinases in lung fibrogenesis. However, we found that neither MMP-2 or MMP-9 nor combined MMP-2/-9 deletion had any effect on experimental lung fibrosis in mice. CONCLUSION Together, our data strongly suggest that both gelatinases MMP-2 and MMP-9 play only a subordinate role in experimental lung fibrosis in mice.
Collapse
Affiliation(s)
- Tina Bormann
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany
| | - Regina Maus
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany
| | - Jennifer Stolper
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany
| | - Meritxell Tort Tarrés
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Dirk Wedekind
- Institute of Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Danny Jonigk
- Department of Pathology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Tobias Welte
- Clinic for Pneumology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,German Center for Lung Research, Partner Site BREATH, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Jack Gauldie
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Martin Kolb
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany. .,German Center for Lung Research, Partner Site BREATH, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
15
|
Weigelt MA, Lev-Tov HA, Tomic-Canic M, Lee WD, Williams R, Strasfeld D, Kirsner RS, Herman IM. Advanced Wound Diagnostics: Toward Transforming Wound Care into Precision Medicine. Adv Wound Care (New Rochelle) 2022; 11:330-359. [PMID: 34128387 PMCID: PMC8982127 DOI: 10.1089/wound.2020.1319] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/29/2021] [Indexed: 11/01/2022] Open
Abstract
Significance: Nonhealing wounds are an ever-growing global pandemic, with mortality rates and management costs exceeding many common cancers. Although our understanding of the molecular and cellular factors driving wound healing continues to grow, standards for diagnosing and evaluating wounds remain largely subjective and experiential, whereas therapeutic strategies fail to consistently achieve closure and clinicians are challenged to deliver individualized care protocols. There is a need to apply precision medicine practices to wound care by developing evidence-based approaches, which are predictive, prescriptive, and personalized. Recent Advances: Recent developments in "advanced" wound diagnostics, namely biomarkers (proteases, acute phase reactants, volatile emissions, and more) and imaging systems (ultrasound, autofluorescence, spectral imaging, and optical coherence tomography), have begun to revolutionize our understanding of the molecular wound landscape and usher in a modern age of therapeutic strategies. Herein, biomarkers and imaging systems with the greatest evidence to support their potential clinical utility are reviewed. Critical Issues: Although many potential biomarkers have been identified and several imaging systems have been or are being developed, more high-quality randomized controlled trials are necessary to elucidate the currently questionable role that these tools are playing in altering healing dynamics or predicting wound closure within the clinical setting. Future Directions: The literature supports the need for the development of effective point-of-care wound assessment tools, such as a platform diagnostic array that is capable of measuring multiple biomarkers at once. These, along with advances in telemedicine, synthetic biology, and "smart" wearables, will pave the way for the transformation of wound care into a precision medicine. Clinical Trial Registration number: NCT03148977.
Collapse
Affiliation(s)
- Maximillian A. Weigelt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hadar A. Lev-Tov
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - W. David Lee
- Precision Healing, Inc., Newton, Massachusetts, USA
| | | | | | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ira M. Herman
- Precision Healing, Inc., Newton, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Pan J, Cai X, Zheng X, Zhu X, Feng J, Wang X. Luteolin inhibits viability, migration, angiogenesis and invasion of non-small cell lung cancer vascular endothelial cells via miR-133a-3p/purine rich element binding protein B-mediated MAPK and PI3K/Akt signaling pathways. Tissue Cell 2022; 75:101740. [PMID: 35101688 DOI: 10.1016/j.tice.2022.101740] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Luteolin inhibits tumorigenesis of non-small cell lung cancer (NSCLC), but its mechanism still needs to be clarified. We hereby explored the effects of luteolin in vascular endothelial cells of NSCLC (NSCLC-VECs). After extraction and identification of NSCLC-VECs, cells were treated with luteolin and transfected. The viability, migration, angiogenesis and invasion of the cells were measured. The levels of miR-133a-3p, purine rich element binding protein B (PURB), vascular endothelial growth factor (VEGF), phosphatidylinositol 3-kinase (PI3K), Akt, mitogen-activated protein kinases (MAPK), matrix metalloproteinase (MMP)-2/-9 were determined. The interaction relationship of miR-133a-3p and PURB was identified. Luteolin inhibited the viability, migration, angiogenesis and invasion of NSCLC-VECs yet up-regulated miR-133a-3p level, while miR-133a-3p inhibitor counteracted the repressive effect of luteolin on the viability, migration, angiogenesis, and invasion in NSCLC-VECs. Luteolin inhibited the expressions of migration- and invasion-associated proteins (VEGF, MMP-2 and MMP-9), PI3K/Akt and MAPK signaling pathways-related factors, while miR-133a-3p inhibitor reversed the inhibitory effect of Luteolin on NSCLC-VECs. Luteolin decreased the level of PURB, which was targeted by miR-133a-3p. ShPURB promoted miR-133a-3p level in NSCLC-VECs, while reversing the promoting effects of miR-133a-3p inhibitor on the migration, invasion, and levels of migration- and invasion-associated proteins, PI3K/Akt and MAPK pathways-associated factors in NSCLC-VECs. Collectively speaking, luteolin inhibits the migration and invasion of NSCLC-VECs via miR-133a-3p/PURB- mediated MAPK and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Jie Pan
- Department of General Medicine, Lishui City People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, China
| | - Xiaoping Cai
- Department of Respiratory Medicine, Lishui City People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, China
| | - Xiao Zheng
- Department of Respiratory Medicine, Suichang County People's Hospital, China
| | - Xiaoyu Zhu
- Department of General Surgery, Lishui City People's Hospital, China
| | - Jihong Feng
- Department of Oncology, Lishui City People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, China
| | - Xiaoqiu Wang
- Department of Oncology, Lishui City People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, China.
| |
Collapse
|
17
|
Wang Y, Wang J, Xiang H, Ding P, Wu T, Ji G. Recent update on application of dihydromyricetin in metabolic related diseases. Biomed Pharmacother 2022; 148:112771. [PMID: 35247719 DOI: 10.1016/j.biopha.2022.112771] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/02/2022] Open
Abstract
As a new type of natural flavonoids, dihydromyricetin (DMY) has attracted more and more attention. It has a series of pharmacological effects, such as anti-inflammatory, anti-tumor, anti-oxidation, antibacterial and so on, and it is almost no toxicity and with excellent safety. Therefore, even if the bioavailability is poor, it is often added to daily food, beverages and even medicines. In recent years, some researchers have found that DMY can treat some diseases by anti-oxidation, anti-inflammation, promoting cell death and regulate the activity of lipid and glucose metabolism. In addition, the mechanism of DMY on these diseases was also related to the signal pathway of AMPK, PI3K/Akt, PPAR and the participation of microRNAs. This review describes the mechanism of DMY in metabolic related diseases from three aspects: metabolic diseases, liver diseases, and cancers, hoping to provide some new ideas for clinical researches.
Collapse
Affiliation(s)
- Yirong Wang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
18
|
Gondaliya P, Sayyed AA, Bhat P, Mali M, Arya N, Khairnar A, Kalia K. Mesenchymal Stem Cell-Derived Exosomes Loaded with miR-155 Inhibitor Ameliorate Diabetic Wound Healing. Mol Pharm 2022; 19:1294-1308. [PMID: 35294195 DOI: 10.1021/acs.molpharmaceut.1c00669] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic wounds are one of the debilitating complications that affect up to 20% of diabetic patients. Despite the advent of extensive therapies, the recovery rate is unsatisfactory, and approximately, 25% of patients undergo amputation, thereby demanding alternative therapeutic strategies. On the basis of the individual therapeutic roles of the miR-155 inhibitor and mesenchymal stem cells (MSC)-derived exosomes, we conjectured that the combination of the miR-155 inhibitor and MSC-derived exosomes would have synergy in diabetic wound healing. Herein, miR-155-inhibitor-loaded MSC-derived exosomes showed synergistic effects in keratinocyte migration, restoration of FGF-7 levels, and anti-inflammatory action, leading to accelerated wound healing mediated by negative regulation of miR-155, using an in vitro co-culture model and in vivo mouse model of the diabetic wound. Furthermore, treatment with miR-155-inhibitor-loaded MSC-derived exosomes led to enhanced collagen deposition, angiogenesis, and re-epithelialization in diabetic wounds. This study revealed the therapeutic potential of miR-155-inhibitor-loaded MSC-derived exosomes in diabetic wound healing and opened the doors for encapsulating miRNAs along with antibiotics within the MSC-derived exosomes toward improved management of chronic, nonhealing diabetic wounds.
Collapse
Affiliation(s)
- Piyush Gondaliya
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Adil Ali Sayyed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Palak Bhat
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Mukund Mali
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Neha Arya
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Kiran Kalia
- Department of Biotechnology, National of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| |
Collapse
|
19
|
Li F, Sun H, Li Y, Bai X, Dong X, Zhao N, Meng J, Sun B, Zhang D. High expression of eIF4E is associated with tumor macrophage infiltration and leads to poor prognosis in breast cancer. BMC Cancer 2021; 21:1305. [PMID: 34876062 PMCID: PMC8650334 DOI: 10.1186/s12885-021-09010-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Background The expression and activation of eukaryotic translation initiation factor 4E (eIF4E) is associated with cell transformation and tumor initiation, but the functional role and the mechanism whereby it drives immune cell infiltration in breast cancer (BRCA) remain uncertain. Methods Oncomine, Timer and UALCAN were used to analyze the expression of eIF4E in various cancers. PrognoScan, Kaplan–Meier plotter, and GEPIA were utilized to analyze the prognostic value of eIF4E in select cancers. In vitro cell experiments were used to verify the role of eIF4E in promoting the progression of BRCA. ImmuCellAI and TIMER database were used to explore the relationship between eIF4E and tumor infiltrating immune cells. The expression of a macrophage marker (CD68+) and an M2-type marker (CD163+) was evaluated using immunohistochemistry in 50 invasive BRCA samples on tissue microarrays. The Human Protein Atlas (HPA) database was used to show the expression of eIF4E and related immune markers. LinkedOmics and NetworkAnalyst were used to build the signaling network. Results Through multiple dataset mining, we found that the expression of eIF4E in BRCA was higher than that in normal tissues, and patients with increased eIF4E expression had poorer survival and a higher cumulative recurrence rate in BRCA. At the cellular level, BRCA cell migration and invasion were significantly inhibited after eIF4E expression was inhibited by siRNA. Immune infiltration analysis showed that the eIF4E expression level was significantly associated with the tumor purity and immune infiltration levels of different immune cells in BRCA. The results from immunohistochemical (IHC) staining further proved that the expression of CD68+ and CD163+ were significantly increased and correlated with poor prognosis in BRCA patients (P < 0.05). Finally, interaction network and functional enrichment analysis revealed that eIF4E was mainly involved in tumor-related pathways, including the cell adhesion molecule pathway and the JAK-STAT signaling pathway. Conclusions Our study has demonstrated that eIF4E expression has prognostic value for BRCA patients. eIF4E may act as an essential regulator of tumor macrophage infiltration and may participate in macrophage M2 polarization. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09010-0.
Collapse
Affiliation(s)
- Fan Li
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Huizhi Sun
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, People's Republic of China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Yue Li
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xiaoyu Bai
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, People's Republic of China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, People's Republic of China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Jie Meng
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, People's Republic of China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, People's Republic of China. .,National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China.
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, People's Republic of China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300070, People's Republic of China.
| |
Collapse
|
20
|
Sun Y, Ma G, Xiang H, Wang X, Wang H, Zhang Y, Qie F, Li C. circFLNA promotes glioblastoma proliferation and invasion by negatively regulating miR‑199‑3p expression. Mol Med Rep 2021; 24:786. [PMID: 34498720 PMCID: PMC8441964 DOI: 10.3892/mmr.2021.12426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/28/2021] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma (GBM) is one of the most common and malignant types of primary cancer in the central nervous system; however, the clinical outcomes of patients with GBM remain poor. Circular RNAs (circRNAs) have been revealed to serve important roles in diverse biological processes, such as regulating cell proliferation, epithelial-mesenchymal transition and tumor development. However, the underlying biological function of circRNA filamin A (circFLNA) and its potential role in GBM remain to be determined. The present study aimed to identify differentially expressed circRNAs in GBM. Reverse transcription-quantitative PCR was used to analyze the expression levels of circFLNA. The results demonstrated that the expression levels of circFLNA were significantly upregulated in clinical GBM samples and GBM cells compared with adjacent healthy brain tissues and normal human astrocytes, respectively. The results of the Cell Counting Kit-8 and Transwell assays revealed that circFLNA knockdown significantly inhibited the proliferative and invasive abilities of GBM cell lines. Moreover, high circFLNA expression levels were associated with a worse prognosis in GBM. MicroRNA (miR)-199-3p was subsequently predicted to be target of circFLNA. The inhibitory effect of miR-199-3p on cell proliferation and invasion was partially reversed following circFLNA knockdown. In conclusion, the findings of the present study identified novel roles for circFLNA in GBM and indicated that the circFLNA/miR-199-3p signaling axis may serve an important role in GBM progression. Therefore, circFLNA may represent a novel target for the diagnosis and treatment of GBM.
Collapse
Affiliation(s)
- Yu Sun
- Department of Neurosurgery, Daqing Oil Field General Hospital, Daqing, Heilongjiang 163001, P.R. China
| | - Guangtao Ma
- Department of Neurosurgery, Daqing Oil Field General Hospital, Daqing, Heilongjiang 163001, P.R. China
| | - Hongtao Xiang
- Department of Gastroenterology, The Fourth Hospital of Daqing, Daqing, Heilongjiang 163001, P.R. China
| | - Xiaomin Wang
- Department of Neurosurgery, Daqing Oil Field General Hospital, Daqing, Heilongjiang 163001, P.R. China
| | - Hanmei Wang
- Department of Neurosurgery, Daqing Oil Field General Hospital, Daqing, Heilongjiang 163001, P.R. China
| | - Yan Zhang
- Department of The Heart of Non‑Invasive Examination, Daqing Oil Field General Hospital, Daqing, Heilongjiang 163001, P.R. China
| | - Fuzhong Qie
- Department of Neurosurgery, Daqing Oil Field General Hospital, Daqing, Heilongjiang 163001, P.R. China
| | - Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
21
|
Pulido T, Velarde MC, Alimirah F. The senescence-associated secretory phenotype: Fueling a wound that never heals. Mech Ageing Dev 2021; 199:111561. [PMID: 34411604 DOI: 10.1016/j.mad.2021.111561] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
Wound healing is impaired with advanced age and certain chronic conditions, such as diabetes and obesity. Moreover, common cancer treatments, including chemotherapy and radiation, can cause unintended tissue damage and impair wound healing. Available wound care treatments are not always effective, as some wounds fail to heal or recur after treatment. Hence, a more thorough understanding of the pathophysiology of chronic, nonhealing wounds may offer new ideas for the development of effective wound care treatments. Cancers are sometimes referred to as wounds that never heal, sharing mechanisms similar to wound healing. We describe in this review how cellular senescence and the senescence-associated secretory phenotype (SASP) contribute to chronic wounds versus cancer.
Collapse
Affiliation(s)
- Tanya Pulido
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Michael C Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101, Philippines.
| | | |
Collapse
|
22
|
Shantha Kumara HMC, Miyagaki H, Herath SA, Pettke E, Yan X, Cekic V, Whelan RL. Plasma MMP-2 and MMP-7 levels are elevated first month after surgery and may promote growth of residual metastases. World J Gastrointest Oncol 2021; 13:879-892. [PMID: 34457193 PMCID: PMC8371512 DOI: 10.4251/wjgo.v13.i8.879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/16/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MMP-2 also known as gelatinase A and MMP-7 (matrilysin) are members of the zinc-dependent family of MMPs (Matrix metalloproteinase). MMP-2 and MMP-7 are remodeling enzymes that digest extracellular matrix; MMP-2 is extensively expressed during development and is upregulated at sites of tissue damage, inflammation, and in stromal cells of metastatic tumors. MMP-7 is expressed in the epithelial cells and in a variety of cancers including colon tumors. Plasma MMP-2 and MMP-7 levels were assessed before and after minimally invasive colorectal resection for cancer pathology.
AIM To determine plasma MMP-2 and MMP-7 levels before and after minimally invasive colorectal resection for cancer pathology.
METHODS Patients enrolled in a plasma bank for whom plasma was available were eligible. Plasma obtained from preoperative (Preop) and postoperative blood samples was used. Only colorectal cancer (CRC) patients who underwent elective minimally invasive cancer resection with preop, post-operative day (POD) 1, 3 and at least 1 late postop sample (POD 7-34) were included. Late samples were bundled into 7 d blocks (POD 7-13, 14-20, etc.) and treated as single time points. Plasma MMP-2 and MMP-7 levels were determined via enzyme-linked immunosorbent assay in duplicate.
RESULTS Total 88 minimally invasive CRC resection CRC patients were studied (right colectomy, 37%; sigmoid, 24%; and LAR/AR 18%). Cancer stages were: 1, 31%; 2, 30%; 3, 34%; and 4, 5%. Mean Preop MMP-2 plasma level (ng/mL) was 179.3 ± 40.9 (n = 88). Elevated mean levels were noted on POD1 (214.3 ± 51.2, n = 87, P < 0.001), POD3 (258.0 ± 63.9, n = 80, P < 0.001), POD7-13 (229.9 ± 62.3, n = 65, P < 0.001), POD 14-20 (234.9 ± 47.5, n = 25, P < 0.001), POD 21-27 (237.0 ± 63.5, n = 17, P < 0.001,) and POD 28-34 (255.4 ± 59.7, n = 15, P < 0.001). Mean Preop MMP-7 level was 3.9 ± 1.9 (n = 88). No significant differences were noted on POD 1 or 3, however, significantly elevated levels were noted on POD 7-13 (5.7 ± 2.5, n = 65, P < 0.001), POD 14-20 (5.9 ± 2.5, n = 25, P < 0.001), POD 21-27 (6.1 ± 3.6, n = 17, P = 0.002) and on POD 28-34 (6.8 ± 3.3, n = 15 P < 0.001,) vs preop levels.
CONCLUSION MMP-2 levels are elevated for 5 wk and MMP-7 levels elevated for weeks 2-6. The etiology of these changes in unclear, trauma and wound healing likely play a role. These changes may promote residual tumor growth and metastasis.
Collapse
Affiliation(s)
- HMC Shantha Kumara
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10028, United States
| | - Hiromichi Miyagaki
- Department of Gastroenterological Surgery, Osaka University, Suita 565-0862, Osaka, Japan
| | - Sajith A Herath
- Analytic Department, Novartis, Morris Plains, NJ 07905, United States
| | - Erica Pettke
- Department of Surgery, Swedish Medical Center, Seattle, WA 98122, United States
| | - Xiaohong Yan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10028, United States
| | - Vesna Cekic
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10028, United States
| | - Richard L Whelan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10028, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, United States
| |
Collapse
|
23
|
Jin FE, Xie B, Xian HZ, Wang JH. Knockdown of miR-125b-5p inhibits the proliferation and invasion of gastric carcinoma cells by targeting RYBP. Kaohsiung J Med Sci 2021; 37:863-871. [PMID: 34337862 DOI: 10.1002/kjm2.12425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022] Open
Abstract
Gastric carcinoma, one of the most aggressive and lethal human malignancies, is associated with poor prognosis despite progress in therapeutic strategies. This study examined the potential function and mechanism of action of microRNA-125b-5p (miR-125b-5p) in the pathogenesis of gastric carcinoma. We recognized that miR-125b-5p was elevated in gastric carcinoma, and its decreased expression was associated with a better prognosis. Loss-of-function assays showed that miR-125b-5p suppression inhibited the proliferative and invasive abilities of gastric cancer cells. Furthermore, RING1 and YY1-binding protein (RYBP) was found to be target gene for miR-125b-5p action; miR-125b-5p negatively regulates RYBP expression. According to the results of rescue experiments, RYBP downregulation partially counteracted the miR-125b-5p silence-mediated inhibitory function in gastric cancer progression. Collectively, these data elucidated the molecular mechanisms of the miR-125b-5p/RYBP axis in gastric cancer invasion and growth.
Collapse
Affiliation(s)
- Fu-E Jin
- Department of Health Management, Qingdao Huangdao District Center Hospital, Qingdao, China
| | - Bo Xie
- Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, China
| | - Hong-Zhen Xian
- Department of Gastroenterology, Jimo People's Hospital of Qingdao City, Qingdao, China
| | - Ji-Hai Wang
- Surgery Staff Room, Shandong Medical College, Linyi, China
| |
Collapse
|
24
|
Nakamura N. Reexamining the role of tissue inflammation in radiation carcinogenesis: a hypothesis to explain an earlier onset of cancer. Int J Radiat Biol 2021; 97:1341-1351. [PMID: 34270352 DOI: 10.1080/09553002.2021.1955998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Ionizing radiation is a well-known carcinogen, and epidemiologic efforts have been made to evaluate cancer risks following a radiation exposure. The basic approach has been to estimate increased levels of cancer mortality resulting from exposures to radiation, which is consistent with the somatic mutation theory of cancer. However, the possibility that an irradiation might cause an earlier onset of cancer has also been raised since the earliest days of animal studies. Recently, the mutation induction model has been challenged because it is unable to explain the observed dose-related parallel shift of entire mouse survival curves toward younger ages following an irradiation. This is because if it is assumed that only a fraction of the irradiated individuals are affected, the irradiated population would consist of two subpopulations with different mean lifespans, which makes the overall distribution of individual lifespans broader, and hence the slope of the survival curves shallower. To explain this parallel shift, it is necessary to assume that all individuals of a population are affected. As a result of these observations, possible mechanisms which could account for the parallel shift of mouse survival curves were sought by examining the radiation induction of various types of tissue damage which could facilitate an earlier onset of spontaneously arising cancers. CONCLUSION A proposed mechanism postulates that a radiation exposure leads to tissue inflammation which subsequently stimulates spontaneously arising cancers and allows them to appear earlier than usual. This notion is not unprecedented, and because the background incidence of cancer increases exponentially with an increase in age, a slight shift of the onset age toward younger ages may make it appear as if the risk is increased. In this scenario, a radiation exposure induces DNA damage, cell death, chromosome aberrations etc., which leads to the multi-pathway responses including activation of stromal fibroblasts, macrophages and various inflammatory factors. Such an inflamed microenvironment favors the growth of spontaneously arising tumor cells although currently, the sequential order or relative importance of the individual factors remains to be known.
Collapse
Affiliation(s)
- Nori Nakamura
- Department, of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
25
|
Hua D, Tang L, Wang W, Tang S, Yu L, Zhou X, Wang Q, Sun C, Shi C, Luo W, Jiang Z, Li H, Yu S. Improved Antiglioblastoma Activity and BBB Permeability by Conjugation of Paclitaxel to a Cell-Penetrative MMP-2-Cleavable Peptide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001960. [PMID: 33552853 PMCID: PMC7856885 DOI: 10.1002/advs.202001960] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/12/2020] [Indexed: 05/25/2023]
Abstract
In order to solve the problems of receptor promiscuity and poor blood-brain barrier (BBB) penetration in the treatment of glioblastomas (GBM), a novel dual-functional nanocomplex drug delivery system is developed based on the strategy of peptide-drug conjugates. In this study, SynB3-PVGLIG-PTX is designed and screened out by matrix metalloproteinase-2 (MMP-2), to which it exhibits the best affinity. The MMP-2-sensitive peptide (PVGLIG) and a cell-penetration peptide (SynB3) are combined to form a dual-functional peptide. Moreover, as a drug-peptide nanocomplex, SynB3-PVGLIG-PTX exhibited a high potential to form an aggregation with good solubility that can release paclitaxel (PTX) through the cleavage of MMP-2. From a functional perspective, it is found that SynB3-PVGLIG-PTX can specifically inhibit the proliferation, migration, and invasion of GBM cells in vitro in the presence of MMP-2, in contrast to that observed in MMP-2 siRNA transfected cells. Further investigation in vivo shows that SynB3-PVGLIG-PTX easily enters the brain of U87MG xenograft nude mice and can generate a better suppressive effect on GBM through a controlled release of PTX from SynB3-PVGLIG-PTX compared with PTX and temozolomide. Thus, it is proposed that SynB3-PVGLIG-PTX can be used as a novel drug-loading delivery system to treat GBM due to its specificity and BBB permeability.
Collapse
Affiliation(s)
- Dan Hua
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Lida Tang
- Tianjin Institute of Pharmaceutical ResearchTianjin300301China
| | - Weiting Wang
- Tianjin Institute of Pharmaceutical ResearchTianjin300301China
| | - Shengan Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)School of PharmacyTianjin Medical UniversityTianjin300070China
| | - Lin Yu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences of Tianjin Medical UniversityTianjin300070China
| | - Xuexia Zhou
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Qian Wang
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Cuiyun Sun
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Cuijuan Shi
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Wenjun Luo
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Zhendong Jiang
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Huining Li
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Shizhu Yu
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| |
Collapse
|
26
|
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N, Martinez-Fierro ML. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci 2020; 21:E9739. [PMID: 33419373 PMCID: PMC7767220 DOI: 10.3390/ijms21249739] [Citation(s) in RCA: 703] [Impact Index Per Article: 175.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent extracellular matrix (ECM) remodeling endopeptidases that have the capacity to degrade almost every component of the ECM. The degradation of the ECM is of great importance, since it is related to embryonic development and angiogenesis. It is also involved in cell repair and the remodeling of tissues. When the expression of MMPs is altered, it can generate the abnormal degradation of the ECM. This is the initial cause of the development of chronic degenerative diseases and vascular complications generated by diabetes. In addition, this process has an association with neurodegeneration and cancer progression. Within the ECM, the tissue inhibitors of MMPs (TIMPs) inhibit the proteolytic activity of MMPs. TIMPs are important regulators of ECM turnover, tissue remodeling, and cellular behavior. Therefore, TIMPs (similar to MMPs) modulate angiogenesis, cell proliferation, and apoptosis. An interruption in the balance between MMPs and TIMPs has been implicated in the pathophysiology and progression of several diseases. This review focuses on the participation of both MMPs (e.g., MMP-2 and MMP-9) and TIMPs (e.g., TIMP-1 and TIMP-3) in physiological processes and on how their abnormal regulation is associated with human diseases. The inclusion of current strategies and mechanisms of MMP inhibition in the development of new therapies targeting MMPs was also considered.
Collapse
Affiliation(s)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| | | | | | | | | | | | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| |
Collapse
|
27
|
Weigelt MA, Sivamani R, Lev-Tov H. The therapeutic potential of cannabinoids for integumentary wound management. Exp Dermatol 2020; 30:201-211. [PMID: 33205468 DOI: 10.1111/exd.14241] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/31/2022]
Abstract
The increasing legalization of Cannabis for recreational and medicinal purposes in the United States has spurred renewed interest in the therapeutic potential of cannabinoids (CBs) for human disease. The skin has its own endocannabinoid system (eCS) which is a key regulator of various homeostatic processes, including those necessary for normal physiologic wound healing. Data on the use of CBs for wound healing are scarce. Compelling pre-clinical evidence supporting the therapeutic potential of CBs to improve wound healing by modulating key molecular pathways is herein reviewed. These findings merit further exploration in basic science, translational and clinical studies.
Collapse
Affiliation(s)
- Maximillian A Weigelt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Raja Sivamani
- Department of Dermatology, University of California-Davis, Sacramento, CA, USA.,Department of Biological Sciences, California State University, Sacramento, CA, USA.,School of Medicine, California Northstate University, Elk Grove, CA, USA.,Pacific Skin Institute, Sacramento, CA, USA.,Zen Dermatology, Sacramento, CA, USA
| | - Hadar Lev-Tov
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
28
|
Steinberger KJ, Forget MA, Bobko AA, Mihalik NE, Gencheva M, Roda JM, Cole SL, Mo X, Hoblitzell EH, Evans R, Gross AC, Moldovan L, Marsh CB, Khramstov VV, Eubank TD. Hypoxia-Inducible Factor α Subunits Regulate Tie2-Expressing Macrophages That Influence Tumor Oxygen and Perfusion in Murine Breast Cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2301-2311. [PMID: 32938724 PMCID: PMC7596922 DOI: 10.4049/jimmunol.2000185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022]
Abstract
Tie2-expressing monocytes/macrophages (TEMs) are a distinct subset of proangiogenic monocytes selectively recruited to tumors in breast cancer. Because of the hypoxic nature of solid tumors, we investigated if oxygen, via hypoxia-inducible transcription factors HIF-1α and HIF-2α, regulates TEM function in the hypoxic tumor microenvironment. We orthotopically implanted PyMT breast tumor cells into the mammary fat pads of syngeneic LysMcre, HIF-1α fl/fl /LysMcre, or HIF-2α fl/fl /LysMcre mice and evaluated the tumor TEM population. There was no difference in the percentage of tumor macrophages among the mouse groups. In contrast, HIF-1α fl/fl /LysMcre mice had a significantly smaller percentage of tumor TEMs compared with control and HIF-2α fl/fl /LysMcre mice. Proangiogenic TEMs in macrophage HIF-2α-deficient tumors presented significantly more CD31+ microvessel density but exacerbated hypoxia and tissue necrosis. Reduced numbers of proangiogenic TEMs in macrophage HIF-1α-deficient tumors presented significantly less microvessel density but tumor vessels that were more functional as lectin injection revealed more perfusion, and functional electron paramagnetic resonance analysis revealed more oxygen in those tumors. Macrophage HIF-1α-deficient tumors also responded significantly to chemotherapy. These data introduce a previously undescribed and counterintuitive prohypoxia role for proangiogenic TEMs in breast cancer which is, in part, suppressed by HIF-2α.
Collapse
Affiliation(s)
- Kayla J Steinberger
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26506
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Mary A Forget
- Division of Pulmonary Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| | - Andrey A Bobko
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
- West Virginia University Cancer Institute, Morgantown, WV 26506
| | - Nicole E Mihalik
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
- West Virginia University Cancer Institute, Morgantown, WV 26506
| | - Marieta Gencheva
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26506
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
| | - Julie M Roda
- Division of Pulmonary Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Sara L Cole
- Division of Pulmonary Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
- Campus Microscopy and Imaging Facility, The Ohio State University, Columbus, OH 43210
| | - Xiaokui Mo
- Division of Pulmonary Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210; and
| | - E Hannah Hoblitzell
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26506
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
| | - Randall Evans
- Division of Pulmonary Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Amy C Gross
- Division of Pulmonary Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Leni Moldovan
- Division of Pulmonary Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Clay B Marsh
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
| | - Valery V Khramstov
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26506
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
- West Virginia University Cancer Institute, Morgantown, WV 26506
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26506;
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- West Virginia University Cancer Institute, Morgantown, WV 26506
| |
Collapse
|
29
|
Zundler S, Tauschek V, Neurath MF. Immune Cell Circuits in Mucosal Wound Healing: Clinical Implications. Visc Med 2020; 36:129-136. [PMID: 32355670 DOI: 10.1159/000506846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background An intact mucosal barrier is essential for homeostasis in the gastrointestinal tract. Various pathological conditions such as infection or immune-mediated inflammation as well as therapeutic interventions like bowel surgery can result in injury of the intestinal mucosa. To counteract potential negative sequelae and to restore integrity of the tissue, a tightly regulated machinery of mechanisms exists, which crucially depends on the presence and absence of various immune cell subsets in different phases of intestinal wound healing. Cell trafficking is an increasingly acknowledged process that steers the localization of cells in tissues and the circulation. Thus, such cell circuits also crucially impact on the recruitment of immune cells in wound healing. Summary We performed a selective literature research. In our review, we will shortly delineate some basic principles of intestinal immune cell trafficking before discussing the contribution of different immune cells to wound healing. Finally, we will discuss potential clinical implications of immune cell trafficking and wound healing interactions in inflammatory bowel disease (IBD) and bowel surgery. Key Messages Intestinal wound healing has immense importance in pathological conditions like IBD, anastomotic healing, and others. Immune cell trafficking is indispensable for the correct temporal and spatial interaction of the cells involved. Further research is required to understand the final consequences of interfering with immune cell trafficking for intestinal wound healing.
Collapse
Affiliation(s)
- Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Erlangen, Germany
| | - Verena Tauschek
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
30
|
Wang Q, Liu F, Wang L, Xie C, Wu P, Du S, Zhou S, Sun Z, Liu Q, Yu L, Liu B, Li R. Enhanced and Prolonged Antitumor Effect of Salinomycin-Loaded Gelatinase-Responsive Nanoparticles via Targeted Drug Delivery and Inhibition of Cervical Cancer Stem Cells. Int J Nanomedicine 2020; 15:1283-1295. [PMID: 32161458 PMCID: PMC7049776 DOI: 10.2147/ijn.s234679] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/26/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cervical cancer stem cells (CCSCs) represent a subpopulation of tumor cells that possess self-renewal capacity and numerous intrinsic mechanisms of resistance to conventional chemotherapy and radiotherapy. These cells play a crucial role in relapse and metastasis of cervical cancer. Therefore, eradication of CCSCs is the primary objective in cervical cancer therapy. Salinomycin (Sal) is an agent used for the elimination of cancer stem cells (CSCs); however, the occurrence of several side effects hinders its application. Nanoscale drug-delivery systems offer great promise for the diagnosis and treatment of tumors. These systems can be used to reduce the side effects of Sal and improve clinical benefit. METHODS Sal-loaded polyethylene glycol-peptide-polycaprolactone nanoparticles (Sal NPs) were fabricated under mild and non-toxic conditions. The real-time biodistribution of Sal NPs was investigated through non-invasive near-infrared fluorescent imaging. The efficacy of tumor growth inhibition by Sal NPs was evaluated using tumor xenografts in nude mice. Flow cytometry, immunohistochemistry, and Western blotting were used to detect the apoptosis of CSCs after treatment with Sal NPs. Immunohistochemistry and Western blotting were used to examine epithelial-mesenchymal transition (epithelial interstitial transformation) signal-related molecules. RESULTS Sal NPs exhibited antitumor efficacy against cervical cancers by inducing apoptosis of CCSCs and inhibiting the epithelial-mesenchymal transition pathway. Besides, tumor pieces resected from Sal NP-treated mice showed decreased reseeding ability and growth speed, further demonstrating the significant inhibitory ability of Sal NPs against CSCs. Moreover, owing to targeted delivery based on the gelatinase-responsive strategy, Sal NPs was more effective and tolerable than free Sal. CONCLUSION To the best of our knowledge, this is the first study to show that CCSC-targeted Sal NPs provide a potential approach to selectively target and efficiently eradicate CCSCs. This renders them a promising strategy to improve the therapeutic effect against cervical cancer.
Collapse
Affiliation(s)
- Qin Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Fangcen Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Lifeng Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing210023, People’s Republic of China
| | - Puyuan Wu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Shiyao Du
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Shujuan Zhou
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Zhichen Sun
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Qin Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Rutian Li
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| |
Collapse
|
31
|
Kashefi B, Mohammadi M, Rezaei F, Ghadami N, Jalili K, Jalili A. The Clinical Effect of Electroconvulsive Therapy and Its Relationship with Serum Levels of MMP-9 and CXCL12 in Patients with Mania. Neuropsychiatr Dis Treat 2020; 16:909-914. [PMID: 32308394 PMCID: PMC7147616 DOI: 10.2147/ndt.s234013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/05/2020] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Electroconvulsive therapy (ECT) is a non-pharmacological method for the treatment of psychiatric disorders. The precise biochemical mechanism of the effects of ECT is not clear, and since the two factors including matrix metalloproteinase-9 (MMP-9) and stromal cell-derived factor-1 alpha (CXCL12) play an important role in improving nerve damage, the effects of ECT and its relation with serum levels of MMP-9 and CXCL12 in patients with mania were investigated in this study. METHODS In this before and after intervention study, the patients with mania, referring to the Qods Hospital in Sanandaj, were selected by the census method during the years 2015-2018. Young's test was performed 24 hrs before and after the first, third, and sixth sessions of ECT. For biochemical analysis, 3 mL of peripheral blood were taken prior to any anesthesia and 6 hrs after the first, third, and sixth sessions. Data were analyzed by two-way ANOVA and Pearson correlation coefficient by using the SPSS16 software. RESULTS The results showed a significant decrease in Young's test scores during the first to the sixth session of ECT (P≤0.05). Although the levels of CXCL12 were slightly increased after the sixth course of ECT, they were not significant. Moreover, there were no significant relationship between the Young's test score and the serum levels of both MMP-9 and CXCL12 (P≥0.05). CONCLUSION ECT improved patients clinically, but this effect was independent of serum levels of MMP-9 and CXCL12, and possibly other biochemical factors are involved in this pathway.
Collapse
Affiliation(s)
- Babak Kashefi
- Neurosciences Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mehdi Mohammadi
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Farzin Rezaei
- Neurosciences Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Narges Ghadami
- Neurosciences Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Khashaiar Jalili
- Faculty of Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Ali Jalili
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
32
|
Jung H, Kim HS, Lee JH, Lee JJ, Park HS. Wound Healing Promoting Activity of Tonsil-Derived Stem Cells on 5-Fluorouracil-Induced Oral Mucositis Model. Tissue Eng Regen Med 2019; 17:105-119. [PMID: 32002842 DOI: 10.1007/s13770-019-00226-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/10/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We first determined the efficacy of lesional injection of tonsil-derived MSCs (mesenchymal stem cells) for the treatment of 5-fluorouracil induced oral mucositis. METHODS Oral mucositis was induced in hamsters by administration of 5-fluorouracil (day 0, 2, 4) followed by mechanical trauma (day 1, 2, 4). The experimental groups included MT (mechanical trauma only), 5-FU + MT (mechanical trauma with 5-fluorouracil administration), TMSC (mechanical trauma with 5-fluorouracil administration, tonsil-derived mesenchymal stem cells injection), DEXA (mechanical trauma with 5-fluorouracil administration, dexamethasone injection), and saline (mechanical trauma with 5-fluorouracil administration, saline injection). RESULTS On day 10, gross and histologic analyses showed that nearly complete healing and epithelialization of the cheek mucosa of the TMSC group, whereas the other groups showed definite ulcerative lesions. Compared with the MT and DEXA groups, CD31 expression was greater in the TMSC group on days 10 and 14. Tendency towards a decrease in MMP2 expression with the time in the TMSC group was observed. In addition, the TMSC group showed higher expression of TGF-β, and NOX4 on day 10 compared with the other groups. Scratch assay demonstrated that the conditioned media harvested from tonsil-derived MSCs significantly increased migratory efficacy of NIH3T3 cells. Transwell assay showed that the preferential migration of tonsil-derived MSCs to the wound area. CONCLUSION Intralesional administration of tonsil-derived MSCs may accelerate wound healing of 5-fluorouracil induced oral mucositis by upregulating neovascularization and effective wound contraction. In addition, tonsil-derived MSCs might contribute to oral ulcer regeneration via the stimulation of fibroblast proliferation and migration.
Collapse
Affiliation(s)
- Harry Jung
- Institute of New Frontier Research Team, Hallym University, Hallym Clinical and Translation Science Institute, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Seoul, 07985, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Chuncheon Sacred Heart Hospital, Hallym University, 77 Sakju-ro, Chuncheon, Gangwon-do, 24253, Republic of Korea
| | - Jae Jun Lee
- Department of Anesthesiology and Pain Medicine, College of Medicine, Hallym University, 77 Sakju-ro, Chuncheon, Gangwon-do, 24253, Republic of Korea
| | - Hae Sang Park
- Institute of New Frontier Research Team, Hallym University, Hallym Clinical and Translation Science Institute, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea. .,Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Chuncheon Sacred Heart Hospital, Hallym University, 77 Sakju-ro, Chuncheon, Gangwon-do, 24253, Republic of Korea.
| |
Collapse
|
33
|
Increased in vitro migration of human umbilical cord mesenchymal stem cells toward acellular foreskin treated with bacterial derivatives of monophosphoryl lipid A or supernatant of Lactobacillus acidophilus. Hum Cell 2019; 33:10-22. [PMID: 31811569 DOI: 10.1007/s13577-019-00308-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Abstract
Migration and homing are known as critical steps toward regeneration of damaged tissues via cell therapies. Among various cellular sources of stem cells, the umbilical cord has been thus recognized as an interesting one endowed with high benefits. Accordingly, the main objective of the present study was to determine whether monophosphoryl lipid A (MPLA) or supernatant of Lactobacillus acidophilus (SLA) could increase migration of human umbilical cord mesenchymal stem cells (hUMSCs) toward acellular foreskin or not. In this study, the hUMSCs were isolated and cultured through acellular MPLA- or SLA-treated foreskin. Expression of some migration genes (i.e., VCAM-1, MMP-2, VLA-4, CXCR-4, and VEGF) was also investigated using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Moreover; vimentin, cytokeratin 5 (CK5), and matrix metalloproteinases-2 (MMP-2) were detected via immunohistochemistry (IHC) analysis. The hUMSCs in the presence of MPLA- or SLA-treated foreskin showed more tissue tropism compared with those in the control group. Besides, the scanning electron microscopy (SEM) results established that the hUMSCs had more migratory activity in the presence of MPLA- or SLA-treated foreskin than the untreated one. The IHC analysis results correspondingly indicated that expression of vimentin, CK5, and MMP-2 proteins had augmented in both treatments compared with those in the control group. It was concluded that MPLA had revealed more prominent results than SLA, even though both treatments could be regarded as inducing factors in migration. Ultimately, it was suggested to introduce the use of MPLA and probiotic components as a promising approach to improve therapies in regenerative medicine.
Collapse
|