1
|
Kurtović K, Schmidt V, Nehasilová M, Vosolsobě S, Petrášek J. Rediscovering Chara as a model organism for molecular and evo-devo studies. PROTOPLASMA 2024; 261:183-196. [PMID: 37880545 DOI: 10.1007/s00709-023-01900-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023]
Abstract
Chara has been used as a model for decades in the field of plant physiology, enabling the investigation of fundamental physiological processes. In electrophysiological studies, Chara has been utilized thanks to its large internodal cells that can be easily manipulated. Additionally, Chara played a pioneering role in elucidating the presence and function of the cytoskeleton in cytoplasmic streaming, predating similar findings in terrestrial plants. Its representation considerably declined following the establishment and routine application of genetic transformation techniques in Arabidopsis. Nevertheless, the recent surge in evo-devo studies can be attributed to the whole genome sequencing of the Chara braunii, which has shed light on ancestral traits prevalent in land plants. Surprisingly, the Chara braunii genome encompasses numerous genes that were previously regarded as exclusive to land plants, suggesting their acquisition prior to the colonization of terrestrial habitats. This review summarizes the established methods used to study Chara, while incorporating recent molecular data, to showcase its renewed importance as a model organism in advancing plant evolutionary developmental biology.
Collapse
Affiliation(s)
- Katarina Kurtović
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Vojtěch Schmidt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Nehasilová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Petrášek
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Heise CM, Hagemann M, Schubert H. Photosynthetic response of Chara braunii towards different bicarbonate concentrations. PHYSIOLOGIA PLANTARUM 2024; 176:e14234. [PMID: 38439180 DOI: 10.1111/ppl.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
A variety of inorganic carbon acquisition modes have been proposed in Characean algae, however, a broadly applicable inorganic carbon uptake mechanism is unknown for the genus Chara. In the present study, we analyzed if C. braunii can efficiently use HCO3 - as a carbon source for photosynthesis. For this purpose, C. braunii was exposed to different concentrations of NaHCO3 - at different time scales. The photosynthetic electron transport through photosystem I (PSI) and II (PSII), the maximum electron transport rate (ETRmax ), the efficiency of the electron transport rate (α, the initial slope of the ETR), and the light saturation point of photosynthesis (Ek ) were evaluated. Additionally, pigment contents (chlorophyll a, chlorophyll b, and carotenoids) were determined. Bicarbonate addition positively affected ETRmax , after direct HCO3 - application, of both PSII and PSI, but this effect seems to decrease after 1 h and 24 h. Similar trends were seen for Ek , but no significant effect was observed for α. Pigment contents showed no significant changes in relation to different HCO3 - concentrations. To evaluate if cyclic electron flow around PSI was involved in active HCO3 - uptake, the ratio of PSI ETRmax /PSII ETRmax was calculated but did not show a distinctive trend. These results suggest that C. braunii can utilize NaHCO3 - in short-term periods as a carbon source but could rely on other carbon acquisition mechanisms over prolonged time periods. These observations suggest that the minor role of HCO3 - as a carbon source for photosynthesis in this alga might differentiate C. braunii from other examined Chara spp.
Collapse
Affiliation(s)
- Carolin Magdalene Heise
- Institute of Biosciences, Department of Aquatic Ecology, University of Rostock, Rostock, Germany
- Institute of Biosciences, Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Martin Hagemann
- Institute of Biosciences, Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Hendrik Schubert
- Institute of Biosciences, Department of Aquatic Ecology, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Bulychev AA, Krupenina NA, Shapiguzov SY, Alova AV. Plasma membrane-chloroplast interactions activated by the hyperpolarizing response in characean cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107836. [PMID: 37329688 DOI: 10.1016/j.plaphy.2023.107836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Signaling pathways in plant cells often comprise electrical phenomena developing at the plasma membrane. The action potentials in excitable plants like characean algae have a marked influence on photosynthetic electron transport and CO2 assimilation. The internodal cells of Characeae can also generate active electrical signals of a different type. The so called hyperpolarizing response develops under the passage of electric current whose strength is comparable to physiological currents circulating between nonuniform cell regions. The plasma membrane hyperpolarization is involved in multiple physiological events in aquatic and terrestrial plants. The hyperpolarizing response may represent an unexplored tool for studying the plasma membrane-chloroplast interactions in vivo. This study shows that the hyperpolarizing response of Chara australis internodes whose plasmalemma was preliminary converted into the K+-conductive state induces transient changes in maximal (Fm') and actual (F') fluorescence yields of chloroplasts in vivo. These fluorescence transients were light dependent, suggesting their relation to photosynthetic electron and H+ transport. The cell hyperpolarization promoted H+ influx that was inactivated after a single electric stimulus. The results indicate that the plasma membrane hyperpolarization drives transmembrane ion fluxes and modifies the ionic composition of cytoplasm, which indirectly (via envelope transporters) affects the pH of chloroplast stroma and chlorophyll fluorescence. Remarkably, the functioning of envelope ion transporters can be revealed in short-term experiments in vivo, without growing plants on solutions with various mineral compositions.
Collapse
Affiliation(s)
| | | | | | - Anna V Alova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
4
|
Bulychev AA, Eremin A, von Rüling F, Alova AV. Effects of cell excitation on photosynthetic electron flow and intercellular transport in Chara. PROTOPLASMA 2023; 260:131-143. [PMID: 35482255 DOI: 10.1007/s00709-022-01747-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Impact of membrane excitability on fluidic transport of photometabolites and their cell-to-cell passage via plasmodesmata was examined by pulse-modulated chlorophyll (Chl) microfluorometry in Chara australis internodes exposed to dim background light. The cells were subjected to a series of local light (LL) pulses with a 3-min period and a 30-s pulse width, which induced Chl fluorescence transients propagating in the direction of cytoplasmic streaming along the photostimulated and the neighboring internodes. By comparing Chl fluorescence changes induced in the LL-irradiated and the adjoining internodes, the permeability of the nodal complex for the photometabolites was assessed in the resting state and after the action potential (AP) generation. The electrically induced AP had no influence on Chl fluorescence in noncalcified cell regions but disturbed temporarily the metabolite transport along the internode and caused a disproportionally strong inhibition of intercellular metabolite transmission. In chloroplasts located close to calcified zones, Chl fluorescence increased transiently after cell excitation, which indicated the deceleration of photosynthetic electron flow on the acceptor side of photosystem I. Functional distinctions of chloroplasts located in noncalcified and calcified cell areas were also manifested in different modes of LL-induced changes of Chl fluorescence, which were accompanied by dissimilar changes in efficiency of PSII-driven electron flow. We conclude that chloroplasts located near the encrusted areas and in the incrustation-free cell regions are functionally distinct even in the absence of large-scale variations of cell surface pH. The inhibition of transnodal transport after AP generation is probably due to Ca2+-regulated changes in plasmodesmal aperture.
Collapse
Affiliation(s)
| | - Alexey Eremin
- Institute of Physics, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Anna V Alova
- Faculty of Biology, Moscow State University, Moscow, Russia.
| |
Collapse
|
5
|
Domozych DS, Bagdan K. The cell biology of charophytes: Exploring the past and models for the future. PLANT PHYSIOLOGY 2022; 190:1588-1608. [PMID: 35993883 PMCID: PMC9614468 DOI: 10.1093/plphys/kiac390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Charophytes (Streptophyta) represent a diverse assemblage of extant green algae that are the sister lineage to land plants. About 500-600+ million years ago, a charophyte progenitor successfully colonized land and subsequently gave rise to land plants. Charophytes have diverse but relatively simple body plans that make them highly attractive organisms for many areas of biological research. At the cellular level, many charophytes have been used for deciphering cytoskeletal networks and their dynamics, membrane trafficking, extracellular matrix secretion, and cell division mechanisms. Some charophytes live in challenging habitats and have become excellent models for elucidating the cellular and molecular effects of various abiotic stressors on plant cells. Recent sequencing of several charophyte genomes has also opened doors for the dissection of biosynthetic and signaling pathways. While we are only in an infancy stage of elucidating the cell biology of charophytes, the future application of novel analytical methodologies in charophyte studies that include a broader survey of inclusive taxa will enhance our understanding of plant evolution and cell dynamics.
Collapse
Affiliation(s)
| | - Kaylee Bagdan
- Department of Biology, Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|
6
|
Quade BN, Parker MD, Hoepflinger MC, Phipps S, Bisson MA, Foissner I, Beilby MJ. The molecular identity of the characean OH - transporter: a candidate related to the SLC4 family of animal pH regulators. PROTOPLASMA 2022; 259:615-626. [PMID: 34232395 PMCID: PMC8738779 DOI: 10.1007/s00709-021-01677-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Characeae are closely related to the ancient algal ancestors of all land plants. The long characean cells display a pH banding pattern to facilitate inorganic carbon import in the acid zones for photosynthetic efficiency. The excess OH-, generated in the cytoplasm after CO2 is taken into the chloroplasts, is disposed of in the alkaline band. To identify the transporter responsible, we searched the Chara australis transcriptome for homologues of mouse Slc4a11, which functions as OH-/H+ transporter. We found a single Slc4-like sequence CL5060.2 (named CaSLOT). When CaSLOT was expressed in Xenopus oocytes, an increase in membrane conductance and hyperpolarization of resting potential difference (PD) was observed with external pH increase to 9.5. These features recall the behavior of Slc4a11 in oocytes and are consistent with the action of a pH-dependent OH-/H+ conductance. The large scatter in the data might reflect intrinsic variability of CaSLOT transporter activation, inefficient expression in the oocyte due to evolutionary distance between ancient algae and frogs, or absence of putative activating factor present in Chara cytoplasm. CaSLOT homologues were found in chlorophyte and charophyte algae, but surprisingly not in related charophytes Zygnematophyceae or Coleochaetophyceae.
Collapse
Affiliation(s)
- Bianca N Quade
- Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, USA
| | - Marion C Hoepflinger
- Department of Biosciences, University of Salzburg, Hellbrunner Str. 34, 5020, Salzburg, Austria
| | - Shaunna Phipps
- Department of Biological Sciences and Program in Evolution, Ecology, and Behavior, The State University of New York: The University at Buffalo, Hochstetter 623, Buffalo, NY, USA
| | - Mary A Bisson
- Department of Biological Sciences and Program in Evolution, Ecology, and Behavior, The State University of New York: The University at Buffalo, Hochstetter 623, Buffalo, NY, USA
| | - Ilse Foissner
- Department of Biosciences, University of Salzburg, Hellbrunner Str. 34, 5020, Salzburg, Austria
| | - Mary J Beilby
- School of Physics, The University of NSW, Kensington, Sydney, NSW, 2052, Australia.
| |
Collapse
|
7
|
El-Adl MF, El-Katony TM, Nada RM. High external Na +, but not K +, stimulates the growth of Ulva lactuca (L.) via induction of the plasma membrane ATPases and achievement of K +/Na + homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:239-249. [PMID: 33866145 DOI: 10.1016/j.plaphy.2021.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
This study aims at investigating the specific ion effects of Na+ and K+ on Ulva lactuca (L.) growth. U. lactuca was grown in balanced nutrient solutions with 10, 100, 300 and 600 mM NaCl or KCl. The growth was significantly higher at 300 and 600 mM NaCl compared to KCl, with the highest growth rate at 300 mM NaCl. NaCl-treated alga showed increases in the photosynthetic pigments and Rubisco protein content. However, KCl treatments adversely affected these photosynthetic attributes. U. lactuca needs adjusted, but not high K+/Na+ ratio for a proper growth, since the high K+/Na+ ratio in KCl-treated alga was associated with growth retardation. The cell wall was more extensible at high concentrations of NaCl compared to KCl. Therefore, the deleterious effect of K+ could be mainly on the cell wall and hence inhibiting the growth and perhaps the vitality of the whole cell. The transcript of plasma membrane (PM) H+-ATPase was detected only at 300 and 600 mM NaCl, implying that this gene was specifically induced by high concentrations of Na+ but not K+. The transcript of PM-Na+/K+-ATPase-like exhibited no Na+ specificity and its induction alone could not improve the growth of KCl-treated U. lactuca. The simultaneous induction of the two PM-ATPases could positively affect the algal growth at high NaCl concentrations by maintaining the proper cellular K+/Na+ ratio. Also, both PM-ATPases might contribute to energizing the plasma membrane and thereby promoting the cellular growth of U. lactuca at high Na+, but not K+, concentrations.
Collapse
Affiliation(s)
- Magda F El-Adl
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| | - Taha M El-Katony
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Reham M Nada
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| |
Collapse
|
8
|
Phipps S, Goodman CA, Delwiche CF, Bisson MA. The role of ion-transporting proteins in the evolution of salt tolerance in charophyte algae. JOURNAL OF PHYCOLOGY 2021; 57:1014-1025. [PMID: 33655493 DOI: 10.1111/jpy.13160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Species within the genus Chara have variable salinity tolerance. Their close evolutionary relationship with embryophytes makes their study crucial to understanding the evolution of salt tolerance and key evolutionary processes shared among the phyla. We examined salt-tolerant Chara longifolia and salt-sensitive Chara australis for mechanisms of salt tolerance and their potential role in adaptation to salt. We hypothesize that there are shared mechanisms similar to those in embryophytes, which assist in conferring salt tolerance in Chara, including a cation transporter (HKT), a Na+ /H+ antiport (NHX), a H+ -ATPase (AHA), and a Na+ -ATPase (ENA). Illumina transcriptomes were created using cultures grown in freshwater and exposed to salt stress. The presence of these candidate genes, identified by comparing with genes known from embryophytes, has been confirmed in both species of Chara, with the exception of ENA, present only in salt-tolerant C. longifolia. These transcriptomes provide evidence for the contribution of these mechanisms to differences in salt tolerance in the two species and for the independent evolution of the Na+ -ATPase. We also examined genes that may have played a role in important evolutionary processes, suggested by previous work on the Chara braunii genome. Among the genes examined, cellulose synthase protein (GT43) and response regulator (RRB) were confirmed in both species. Genes absent from all three Chara species were members of the GRAS family, microtubule-binding protein (TANGLED1), and auxin synthesizers (YUCCA, TAA). Results from this study shed light on the evolutionary relationship between Chara and embryophytes through confirmation of shared salt tolerance mechanisms, as well as unique mechanisms that do not occur in angiosperms.
Collapse
Affiliation(s)
- Shaunna Phipps
- Department of Environment & Sustainability, State University at Buffalo, Buffalo, New York, USA
- Department of Biological Sciences, State University at Buffalo, Buffalo, New York, USA
| | - Charles A Goodman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Charles F Delwiche
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Mary A Bisson
- Department of Environment & Sustainability, State University at Buffalo, Buffalo, New York, USA
- Department of Biological Sciences, State University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
9
|
Adamo G, Fierli D, Romancino DP, Picciotto S, Barone ME, Aranyos A, Božič D, Morsbach S, Raccosta S, Stanly C, Paganini C, Gai M, Cusimano A, Martorana V, Noto R, Carrotta R, Librizzi F, Randazzo L, Parkes R, Capasso Palmiero U, Rao E, Paterna A, Santonicola P, Iglič A, Corcuera L, Kisslinger A, Di Schiavi E, Liguori GL, Landfester K, Kralj-Iglič V, Arosio P, Pocsfalvi G, Touzet N, Manno M, Bongiovanni A. Nanoalgosomes: Introducing extracellular vesicles produced by microalgae. J Extracell Vesicles 2021; 10:e12081. [PMID: 33936568 PMCID: PMC8077145 DOI: 10.1002/jev2.12081] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022] Open
Abstract
Cellular, inter-organismal and cross kingdom communication via extracellular vesicles (EVs) is intensively studied in basic science with high expectation for a large variety of bio-technological applications. EVs intrinsically possess many attributes of a drug delivery vehicle. Beyond the implications for basic cell biology, academic and industrial interests in EVs have increased in the last few years. Microalgae constitute sustainable and renewable sources of bioactive compounds with a range of sectoral applications, including the formulation of health supplements, cosmetic products and food ingredients. Here we describe a newly discovered subtype of EVs derived from microalgae, which we named nanoalgosomes. We isolated these extracellular nano-objects from cultures of microalgal strains, including the marine photosynthetic chlorophyte Tetraselmis chuii, using differential ultracentrifugation or tangential flow fractionation and focusing on the nanosized small EVs (sEVs). We explore different biochemical and physical properties and we show that nanoalgosomes are efficiently taken up by mammalian cell lines, confirming the cross kingdom communication potential of EVs. This is the first detailed description of such membranous nanovesicles from microalgae. With respect to EVs isolated from other organisms, nanoalgosomes present several advantages in that microalgae are a renewable and sustainable natural source, which could easily be scalable in terms of nanoalgosome production.
Collapse
Affiliation(s)
- Giorgia Adamo
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - David Fierli
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Daniele P Romancino
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - Sabrina Picciotto
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - Maria E Barone
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Anita Aranyos
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Darja Božič
- University of Ljubljana (UL) Ljubljana Slovene
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research (MPIP) Mainz Germany
| | - Samuele Raccosta
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Christopher Stanly
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Carolina Paganini
- Department of Chemistry and Applied Biosciences ETH Zurich Zurich Switzerland
| | - Meiyu Gai
- Max Planck Institute for Polymer Research (MPIP) Mainz Germany
| | - Antonella Cusimano
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - Vincenzo Martorana
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Rosina Noto
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Rita Carrotta
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Fabio Librizzi
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Loredana Randazzo
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Rachel Parkes
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | | | - Estella Rao
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Angela Paterna
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Ales Iglič
- University of Ljubljana (UL) Ljubljana Slovene
| | | | - Annamaria Kisslinger
- Institute of Experimental Endocrinology and Oncology (IEOS) - National Research Council of Italy (CNR) Naples Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Giovanna L Liguori
- Institute of Genetics and Biophysics (IGB) - National Research Council of Italy (CNR) Naples Italy
| | | | | | - Paolo Arosio
- Department of Chemistry and Applied Biosciences ETH Zurich Zurich Switzerland
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Nicolas Touzet
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Mauro Manno
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Antonella Bongiovanni
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| |
Collapse
|
10
|
Gylytė B, Jurkonienė S, Cimmperman R, Šveikauskas V, Manusadžianas L. Biomarker identification of isolated compartments of the cell wall, cytoplasm and vacuole from the internodal cell of characean Nitellopsis obtusa. PeerJ 2021; 9:e10930. [PMID: 33643716 PMCID: PMC7896509 DOI: 10.7717/peerj.10930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
Cells of characean algae are attractive for plant cell physiologists because of their large size and their close relation to higher plant cells. The objective of our study was to evaluate the purity of the compartments (cell wall, cytoplasm with plastids, mitochondria, nuclei and endomembrane system, and vacuole) separated mechanically from the internodal cells of Nitellopsis obtusa using enzymatic markers. These included α-mannosidase and malate dehydrogenase, vacuolar and cytoplasmic enzymes, respectively. The biomarkers applied revealed the degree of compartment contamination with the material from unwanted cell parts. The cell wall was contaminated slightly by vacuole and cytoplasm residuals, respectively by 12.3 and 1.96% of corresponding biomarker activities. Relatively high activity of vacuolar marker in the cell wall could be associated with the cell vacuoles in the multicellular structure of the nodes. The biomarkers confirmed highly purified vacuolar (99.5%) and cytoplasmic (86.7%) compartments. Purity estimation of the cell fractions enabled reevaluating nCuO related Cu concentrations in the compartments of charophyte cell. The internalisation of CuO nanoparticles in N. obtusa cell occurred already after 0.5h. In general, the approach seems to be useful for assessing the accumulation and distribution of various xenobiotics and/or metabolites within plant cell. All this justifies N.obtusa internodal cells as a model organism for modern studies in cell biology and nanotoxicology.
Collapse
Affiliation(s)
- Brigita Gylytė
- Institute of Botany, Nature Research Centre, Vilnius, Lithuania
| | | | - Reda Cimmperman
- Institute of Botany, Nature Research Centre, Vilnius, Lithuania
| | | | | |
Collapse
|
11
|
Raven JA, Beilby MJ. Protein assemblages and tight curves in the plasma membranes of photosynthetic eukaryotes. JOURNAL OF PLANT PHYSIOLOGY 2021; 256:153330. [PMID: 33290987 DOI: 10.1016/j.jplph.2020.153330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Protein assemblages in the plasma membrane of photosynthetic organisms include the polar occurrence of PIN proteins permitting polar auxin transport in embryophytes and Charales, and the H+ ATPase in acid zones of Charales cells. Production of small radius of curvature membrane areas in transfer cells and charasomes is incompletely understood.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK; University of Technology, Sydney, Climate Change Cluster, Faculty of Science, Sydney, Ultimo NSW 2007, Australia; School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia.
| | - Mary J Beilby
- School of Physics, University of NSW, Kensington, NSW 2052, Australia
| |
Collapse
|
12
|
Foissner I, Hoeftberger M, Hoepflinger MC, Sommer A, Bulychev AA. Brefeldin A inhibits clathrin-dependent endocytosis and ion transport in Chara internodal cells. Biol Cell 2020; 112:317-334. [PMID: 32648585 DOI: 10.1111/boc.202000031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The Characeae are multicellular green algae, which are closely related to higher plants. Their internodal cells are a convenient model to study membrane transport and organelle interactions. RESULTS In this study, we report on the effect of brefeldin A (BFA), an inhibitor of vesicle trafficking, on internodal cells of Chara australis. BFA induced the commonly observed agglomeration of Golgi bodies and trans Golgi network into 'brefeldin compartments' at concentrations between 6 and 500 μM and within 30-120 min treatment. In contrast to most other cells, however, BFA inhibited endocytosis and significantly decreased the number of clathrin-coated pits and clathrin-coated vesicles at the plasma membrane. BFA did not inhibit secretion of organelles at wounds induced by puncturing or local light damage but prevented the formation of cellulosic wound walls probably because of insufficient membrane recycling. We also found that BFA inhibited the formation of alkaline and acid regions along the cell surface ('pH banding pattern') which facilitates carbon uptake required for photosynthesis; we hypothesise that this is due to insufficient recycling of ion transporters. During long-term treatments over several days, BFA delayed the formation of complex 3D plasma membranes (charasomes). Interestingly, BFA had no detectable effect on clathrin-dependent charasome degradation. Protein sequence analysis suggests that the peculiar effects of BFA in Chara internodal cells are due to a mutation in the guanine-nucleotide exchange factor GNOM required for recruitment of membrane coats via activation of ADP-ribosylation factor proteins. CONCLUSIONS AND SIGNIFICANCE This work provides an overview on the effects of BFA on different processes in C. australis. It revealed similarities but also distinct differences in vesicle trafficking between higher plant and algal cells. It shows that characean internodal cells are a promising model to study interactions between seemingly distant metabolic pathways.
Collapse
Affiliation(s)
- Ilse Foissner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | | | | - Aniela Sommer
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Alexander A Bulychev
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
Baquero Forero A, Cvrčková F. SH3Ps-Evolution and Diversity of a Family of Proteins Engaged in Plant Cytokinesis. Int J Mol Sci 2019; 20:ijms20225623. [PMID: 31717902 PMCID: PMC6888108 DOI: 10.3390/ijms20225623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/02/2023] Open
Abstract
SH3P2 (At4g34660), an Arabidopsis thaliana SH3 and Bin/amphiphysin/Rvs (BAR) domain-containing protein, was reported to have a specific role in cell plate assembly, unlike its paralogs SH3P1 (At1g31440) and SH3P3 (At4g18060). SH3P family members were also predicted to interact with formins—evolutionarily conserved actin nucleators that participate in microtubule organization and in membrane–cytoskeleton interactions. To trace the origin of functional specialization of plant SH3Ps, we performed phylogenetic analysis of SH3P sequences from selected plant lineages. SH3Ps are present in charophytes, liverworts, mosses, lycophytes, gymnosperms, and angiosperms, but not in volvocal algae, suggesting association of these proteins with phragmoplast-, but not phycoplast-based cell division. Separation of three SH3P clades, represented by SH3P1, SH3P2, and SH3P3 of A. thaliana, appears to be a seed plant synapomorphy. In the yeast two hybrid system, Arabidopsis SH3P3, but not SH3P2, binds the FH1 and FH2 domains of the formin FH5 (At5g54650), known to participate in cytokinesis, while an opposite binding specificity was found for the dynamin homolog DRP1A (At5g42080), confirming earlier findings. This suggests that the cytokinetic role of SH3P2 is not due to its interaction with FH5. Possible determinants of interaction specificity of SH3P2 and SH3P3 were identified bioinformatically.
Collapse
|
14
|
Eremin A, Bulychev AA, Kluge C, Harbinson J, Foissner I. PH-dependent cell-cell interactions in the green alga Chara. PROTOPLASMA 2019; 256:1737-1751. [PMID: 31367920 PMCID: PMC6820879 DOI: 10.1007/s00709-019-01392-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Characean internodal cells develop alternating patterns of acid and alkaline zones along their surface in order to facilitate uptake of carbon required for photosynthesis. In this study, we used a pH-indicating membrane dye, 4-heptadecylumbiliferone, to study the kinetics of alkaline band formation and decomposition. The differences in growth/decay kinetics suggested that growth occurred as an active, autocatalytic process, whereas decomposition was due to diffusion. We further investigated mutual interactions between internodal cells and found that their alignment parallel to each other induced matching of the pH banding patterns, which was mirrored by chloroplast activity. In non-aligned cells, the lowered photosynthetic activity was noted upon a rise of the external pH, suggesting that the matching of pH bands was due to a local elevation of membrane conductance by the high pH of the alkaline zones of neighboured cells. Finally, we show that the altered pH banding pattern caused the reorganization of the cortical cytoplasm. Complex plasma membrane elaborations (charasomes) were degraded via endocytosis, and mitochondria were moved away from the cortex when a previously acid region became alkaline and vice versa. Our data show that characean internodal cells react flexibly to environmental cues, including those originating from neighboured cells.
Collapse
Affiliation(s)
- Alexey Eremin
- Institute of Physics, Otto von Guericke University of Magdeburg, 39016, Magdeburg, Germany
| | - Alexander A Bulychev
- Department of Biophysics, Faculty of Biology, Moscow State University, Moscow, 119991, Russia
| | - Christopher Kluge
- Institute of Physics, Otto von Guericke University of Magdeburg, 39016, Magdeburg, Germany
| | - Jeremy Harbinson
- Department of Plant Sciences, University of Wageningen, 6708 PB, Wageningen, The Netherlands
| | - Ilse Foissner
- Department of Biosciences, University of Salzburg, 5020, Salzburg, Austria.
| |
Collapse
|
15
|
Chara braunii genome: a new resource for plant electrophysiology. Biophys Rev 2019; 11:235-239. [PMID: 30830677 DOI: 10.1007/s12551-019-00512-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022] Open
Abstract
The large-celled green alga Chara provided early electrophysiological data, but this model organism lost popularity once the smaller cells of higher plants became accessible to electrophysiology and genetic manipulation. However, with the sequencing of the Chara braunii genome (Nishiyama et al. Cell 174: 448-464, 2018), the molecular identity of the underlaying ion transporters in Characeae can be found and placed in evolutionary context. As Characeae are close to ancestors of land plants, the wealth of electrophysiological data will provide insights into important aspects of plant physiology, such as salt tolerance and sensitivity, carbon concentrating mechanisms, pH banding and the action potential generation.
Collapse
|