1
|
Abdelsalam HM, Samy A, Mosaleem EEA, Abdelhamid MS. The ameliorative potential of platelet-rich plasma and exosome on renal ischemia/reperfusion-induced uremic encephalopathy in rats. Sci Rep 2024; 14:26888. [PMID: 39505968 PMCID: PMC11541720 DOI: 10.1038/s41598-024-77094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Uremic Encephalopathy results from the elevation of toxins and blood-brain barrier (BBB) disruption. Renal Ischemia/Reperfusion (I/R) injury is the principal cause of acute kidney injury and brain tissue injury. The present study was crafted to estimate the restorative impact of platelet-rich plasma (PRP) and exosome injection before the reperfusion phase on the kidney following renal I/R injury and its influence on brain tissue by tracking the histopathological, biochemical, and Doppler ultrasonography alternations in both kidney and brain tissue. Forty mature male rats were divided into five groups as follows: control, I/R, PRP, exosome, and Exosome + PRP. Renal Doppler ultrasonography was traced for all rats. Serum kidney functions and acetylcholine esterase enzyme (AchE) were evaluated. Both Gamma-aminobutyric acid (GABA) and glutamate were assessed in brain tissues. The oxidative stress (malondialdehyde), anti-oxidative (glutathione and catalase), and pro-inflammatory (Tumor necrosis factor- α and interleukin-6) markers were estimated in renal tissues. Additionally, morphometric histological examination was performed in both renal and brain tissues. Both PRP and exosome-received rats exhibited a significant improvement in both serum kidney functions and AchE compared to I/R rats. There was a 3.39-fold increase in GABA and a 2.27-fold decrease in glutamate levels in the brain tissue of PRP rats compared to the I/R rats. A significant elevation (P ≤ 0.0001) of glutathione and catalase besides a significant reduction in the expression of TNF-α and IL-6 was observed in renal tissue compared to I/R rats. A significant severe reduction (P < 0.0001) in the number of Purkinje cells, pyramidal cells in the cerebellar cortex, and the CA1 region in the hippocampus was observed in I/R rats which was significantly alleviated by both PRP and exosome. Furthermore, there was a significant improvement in Doppler parameters. PRP exerted a significant superior impact on the restoration of kidney functions and repairing uremic-induced damage in brain tissue.
Collapse
Affiliation(s)
- Hani M Abdelsalam
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Sharkia, 44519, Egypt.
| | - Alaa Samy
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, Egypt
| | - Engy E A Mosaleem
- Department of Biochemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
2
|
Mari W, Younes S, Sheehan E, Oroszi TL, Cool DR, Suliman R, Simman R. Wound Fluid Extracellular Microvesicles: A Potential Innovative Biomarker for Wound Healing. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5781. [PMID: 38706469 PMCID: PMC11068147 DOI: 10.1097/gox.0000000000005781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/12/2024] [Indexed: 05/07/2024]
Abstract
Background Extracellular vesicles, or microvesicles, are a large family of membrane-bound fluid-filled sacs that cells release into the extracellular environment. Extracellular microvesicles (EMVs) are essential for cell-to-cell communications that promote wound healing. We hypothesize a correlation between the concentration of EMVs in wound fluid and the percentage of wound healing in treated chronic, nonhealing, wounds. A prospective, multicenter, randomized, single-blind clinical trial was conducted to evaluate EMV concentration in relation to wound healing percentages. Methods Wound fluid samples were obtained from 16 patients with stage IV trunk pressure ulcers. Patients were divided equally into two groups: (1) control group on negative pressure wound therapy (NPWT) alone and (2) study group with NPWT plus porcine extracellular matrix dressing. NPWT was replaced two times a week, and porcine extracellular matrix applied once weekly for all subjects. An NPWT canister device, called a wound vacuum-assisted closure, containing wound fluid was collected from each patient every 4 weeks. EMVs were isolated and the concentration measured by nanoparticle tracking analysis. Results The study group's total healing percentage was around 89% after 12 weeks compared with the control group's percentage of about 52% (P ≤ 0.05). Using R programming software, simple linear regression was carried out to investigate the hypothesis. Data demonstrated significant positive correlation (R2 = 0.70; P = 0.05) between EMV concentrations and the healing percentage. Conclusions There is a positive correlation between EMV concentration and wound healing percentages. Results propose that the EMVs in wound fluid could serve as a biomarker for healing.
Collapse
Affiliation(s)
- Walid Mari
- From the Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Sara Younes
- From the Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Erin Sheehan
- College of Medicine and Life Science, University of Toledo, Toledo, Ohio
| | - Terry L Oroszi
- From the Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - David R Cool
- From the Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Rajab Suliman
- Department of Information, Operation and Technology Management, John B. and Lillian E. Neff College of Business and Innovation, University of Toledo, Toledo, Ohio
| | - Richard Simman
- Department of Surgery, College of Medicine and Life Science, University of Toledo, Toledo, Ohio
- Wound Care Program, ProMedica Health Network, Jobst Vascular Institute, Toledo, Ohio
| |
Collapse
|
3
|
Ding S, Kim YJ, Huang KY, Um D, Jung Y, Kong H. Delivery-mediated exosomal therapeutics in ischemia-reperfusion injury: advances, mechanisms, and future directions. NANO CONVERGENCE 2024; 11:18. [PMID: 38689075 PMCID: PMC11061094 DOI: 10.1186/s40580-024-00423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Ischemia-reperfusion injury (IRI) poses significant challenges across various organ systems, including the heart, brain, and kidneys. Exosomes have shown great potentials and applications in mitigating IRI-induced cell and tissue damage through modulating inflammatory responses, enhancing angiogenesis, and promoting tissue repair. Despite these advances, a more systematic understanding of exosomes from different sources and their biotransport is critical for optimizing therapeutic efficacy and accelerating the clinical adoption of exosomes for IRI therapies. Therefore, this review article overviews the administration routes of exosomes from different sources, such as mesenchymal stem cells and other somatic cells, in the context of IRI treatment. Furthermore, this article covers how the delivered exosomes modulate molecular pathways of recipient cells, aiding in the prevention of cell death and the promotions of regeneration in IRI models. In the end, this article discusses the ongoing research efforts and propose future research directions of exosome-based therapies.
Collapse
Affiliation(s)
- Shengzhe Ding
- Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Yu-Jin Kim
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kai-Yu Huang
- Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Daniel Um
- Bioengineering, University of Illinois, Urbana, IL, 61801, USA
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyunjoon Kong
- Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA.
- Bioengineering, University of Illinois, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.
- Chan Zuckerberg Biohub-Chicago, Chicago, USA.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Lundy DJ, Szomolay B, Liao CT. Systems Approaches to Cell Culture-Derived Extracellular Vesicles for Acute Kidney Injury Therapy: Prospects and Challenges. FUNCTION 2024; 5:zqae012. [PMID: 38706963 PMCID: PMC11065115 DOI: 10.1093/function/zqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
Acute kidney injury (AKI) is a heterogeneous syndrome, comprising diverse etiologies of kidney insults that result in high mortality and morbidity if not well managed. Although great efforts have been made to investigate underlying pathogenic mechanisms of AKI, there are limited therapeutic strategies available. Extracellular vesicles (EV) are membrane-bound vesicles secreted by various cell types, which can serve as cell-free therapy through transfer of bioactive molecules. In this review, we first overview the AKI syndrome and EV biology, with a particular focus on the technical aspects and therapeutic application of cell culture-derived EVs. Second, we illustrate how multi-omic approaches to EV miRNA, protein, and genomic cargo analysis can yield new insights into their mechanisms of action and address unresolved questions in the field. We then summarize major experimental evidence regarding the therapeutic potential of EVs in AKI, which we subdivide into stem cell and non-stem cell-derived EVs. Finally, we highlight the challenges and opportunities related to the clinical translation of animal studies into human patients.
Collapse
Affiliation(s)
- David J Lundy
- Graduate Institute of Biomedical Materials & Tissue Engineering, Taipei Medical University, Taipei 235603, Taiwan
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 235603, Taiwan
- Center for Cell Therapy, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Barbara Szomolay
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Chia-Te Liao
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
5
|
Zhang X, Wang J, Zhang J, Tan Y, Li Y, Peng Z. Exosomes Highlight Future Directions in the Treatment of Acute Kidney Injury. Int J Mol Sci 2023; 24:15568. [PMID: 37958550 PMCID: PMC10650293 DOI: 10.3390/ijms242115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Acute kidney injury (AKI) is a severe health problem associated with high morbidity and mortality rates. It currently lacks specific therapeutic strategies. This review focuses on the mechanisms underlying the actions of exosomes derived from different cell sources, including red blood cells, macrophages, monocytes, mesenchymal stem cells, and renal tubular cells, in AKI. We also investigate the effects of various exosome contents (such as miRNA, lncRNA, circRNA, mRNA, and proteins) in promoting renal tubular cell regeneration and angiogenesis, regulating autophagy, suppressing inflammatory responses and oxidative stress, and preventing fibrosis to facilitate AKI repair. Moreover, we highlight the interactions between macrophages and renal tubular cells through exosomes, which contribute to the progression of AKI. Additionally, exosomes and their contents show promise as potential biomarkers for diagnosing AKI. The engineering of exosomes has improved their clinical potential by enhancing isolation and enrichment, target delivery to injured renal tissues, and incorporating small molecular modifications for clinical use. However, further research is needed to better understand the specific mechanisms underlying exosome actions, their delivery pathways to renal tubular cells, and the application of multi-omics research in studying AKI.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Jing Wang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Yuwei Tan
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
- Department of Critical Care Medicine, Center of Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Zhao X, Li Y, Wu S, Wang Y, Liu B, Zhou H, Li F. Role of extracellular vesicles in pathogenesis and therapy of renal ischemia-reperfusion injury. Biomed Pharmacother 2023; 165:115229. [PMID: 37506581 DOI: 10.1016/j.biopha.2023.115229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023] Open
Abstract
Renal ischemia-reperfusion injury (RIRI) is a complex disorder characterized by both intrinsic damage to renal tubular epithelial cells and extrinsic inflammation mediated by cytokines and immune cells. Unfortunately, there is no cure for this devastating condition. Extracellular vesicles (EVs) are nanosized membrane-bound vesicles secreted by various cell types that can transfer bioactive molecules to target cells and modulate their function. EVs have emerged as promising candidates for cell-free therapy of RIRI, owing to their ability to cross biological barriers and deliver protective signals to injured renal cells. In this review, we provide an overview of EVs, focusing on their functional role in RIRI and the signaling messengers responsible for EV-mediated crosstalk between various cell types in renal tissue. We also discuss the renoprotective role of EVs and their use as therapeutic agents for RIRI, highlighting the advantages and challenges encountered in the therapeutic application of EVs in renal disease.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
7
|
Dominguez JH, Xie D, Kelly KJ. Renal, but not platelet or skin, extracellular vesicles decrease oxidative stress, enhance nascent peptide synthesis, and protect from ischemic renal injury. Am J Physiol Renal Physiol 2023; 325:F164-F176. [PMID: 37318988 PMCID: PMC10393335 DOI: 10.1152/ajprenal.00321.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023] Open
Abstract
Acute kidney injury (AKI) is deadly and expensive, and specific, effective therapy remains a large unmet need. We have demonstrated the beneficial effects of transplanted adult tubular cells and extracellular vesicles (EVs; exosomes) derived from those renal cells on experimental ischemic AKI, even when administered after renal failure is established. To further examine the mechanisms of benefit with renal EVs, we tested the hypothesis that EVs from other epithelia or platelets (a rich source of EVs) might be protective, using a well-characterized ischemia-reperfusion model. When given after renal failure was present, renal EVs, but not those from skin or platelets, markedly improved renal function and histology. The differential effects allowed us to examine the mechanisms of benefit with renal EVs. We found significant decreases in oxidative stress postischemia in the renal EV-treated group with preservation of renal superoxide dismutase and catalase as well as increases in anti-inflammatory interleukin-10. In addition, we propose a novel mechanism of benefit: renal EVs enhanced nascent peptide synthesis following hypoxia in cells and in postischemic kidneys. Although EVs have been used therapeutically, these results serve as "proof of principle" to examine the mechanisms of injury and protection.NEW & NOTEWORTHY Acute kidney injury is common and deadly, yet the only approved treatment is dialysis. Thus, a better understanding of injury mechanisms and potential therapies is needed. We found that organ-specific, but not extrarenal, extracellular vesicles improved renal function and structure postischemia when given after renal failure occurred. Oxidative stress was decreased and anti-inflammatory interleukin-10 increased with renal, but not skin or platelet, exosomes. We also propose enhanced nascent peptide synthesis as a novel protective mechanism.
Collapse
Affiliation(s)
- Jesus H. Dominguez
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, United States
| | - Danhui Xie
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - K. J. Kelly
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, United States
| |
Collapse
|
8
|
Yao C, Zhang D, Wang H, Zhang P. Recent Advances in Cell Membrane Coated-Nanoparticles as Drug Delivery Systems for Tackling Urological Diseases. Pharmaceutics 2023; 15:1899. [PMID: 37514085 PMCID: PMC10384516 DOI: 10.3390/pharmaceutics15071899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Recent studies have revealed the functional roles of cell membrane coated-nanoparticles (CMNPs) in tackling urological diseases, including cancers, inflammation, and acute kidney injury. Cells are a fundamental part of pathology to regulate nearly all urological diseases, and, therefore, naturally derived cell membranes inherit the functional role to enhance the biopharmaceutical performance of their encapsulated nanoparticles on drug delivery. In this review, methods for CMNP synthesis and surface engineering are summarized. The application of different types of CMNPs for tackling urological diseases is updated, including cancer cell membrane, stem cell membrane, immune cell membrane, erythrocytes cell membranes, and extracellular vesicles, and their potential for clinical use is discussed.
Collapse
Affiliation(s)
- Cenchao Yao
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Heng Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
9
|
Harada H, Fukuzawa N, Abe T, Imamura R, Masaki N, Fujiyama N, Sato S, Hatakeyama S, Nishimura K, Kishikawa H, Iwami D, Hotta K, Miura M, Ide K, Nakamura M, Kosoku A, Uchida J, Murakami T, Tsuji T. Development and nationwide validation of kidney graft injury markers using urinary exosomes and microvesicles (complete English translation of the Japanese version). BMC Nephrol 2023; 24:158. [PMID: 37280521 DOI: 10.1186/s12882-023-03189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Non-invasive, prompt, and proper detection tools for kidney graft injuries (KGIs) are awaited to ensure graft longevity. We screened diagnostic biomarkers for KGIs following kidney transplantation using extracellular vesicles (EVs; exosomes and microvesicles) from the urine samples of patients. METHODS One hundred and twenty-seven kidney recipients at 11 Japanese institutions were enrolled in this study; urine samples were obtained prior to protocol/episode biopsies. EVs were isolated from urine samples, and EV RNA markers were assayed using quantitative reverse transcription polymerase chain reaction. Diagnostic performance of EV RNA markers and diagnostic formulas comprising these markers were evaluated by comparison with the corresponding pathological diagnoses. RESULTS EV CXCL9, CXCL10, and UMOD were elevated in T-cell-mediated rejection samples compared with other KGI samples, while SPNS2 was elevated in chronic antibody-mediated rejection (cABMR) samples. A diagnostic formula developed through Sparse Logistic Regression analysis using EV RNA markers allowed us to accurately (with an area under the receiver operator characteristic curve [AUC] of 0.875) distinguish cABMR from other KGI samples. EV B4GALT1 and SPNS2 were also elevated in cABMR, and a diagnostic formula using these markers was able to distinguish between cABMR and chronic calcineurin toxicity accurately (AUC 0.886). In interstitial fibrosis and tubular atrophy (IFTA) urine samples and those with high Banff chronicity score sums (BChS), POTEM levels may reflect disease severity, and diagnostic formulas using POTEM detected IFTA (AUC 0.830) and high BChS (AUC 0.850). CONCLUSIONS KGIs could be diagnosed with urinary EV mRNA analysis with relatively high accuracy.
Collapse
Affiliation(s)
- Hiroshi Harada
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, 1-1 Kita 11-jo Nishi 13-chome, Chuou- ku, Sapporo, Hokkaido, 060-8604, Japan.
- Harada Urological Clinic, 4F Hokuyaku Bldg., 1-1 Kita 11-jo Nishi 14-chome, Chuou-ku, Sapporo, Hokkaido, 060-0011, Japan.
| | - Nobuyuki Fukuzawa
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, 1-1 Kita 11-jo Nishi 13-chome, Chuou- ku, Sapporo, Hokkaido, 060-8604, Japan
| | - Toyofumi Abe
- Department of Urology, Graduate School of Medicine, Faculty of Medicine, Osaka University, 1 Machikaneyama- cho, Toyonaka, Osaka, 560-0043, Japan
| | - Ryoichi Imamura
- Department of Urology, Graduate School of Medicine, Faculty of Medicine, Osaka University, 1 Machikaneyama- cho, Toyonaka, Osaka, 560-0043, Japan
| | - Noriyuki Masaki
- Department of Kidney Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162- 8666, Japan
| | - Nobuhiro Fujiyama
- Department of Center for Kidney Disease and Transplantation, Akita University Hospital, 44-2 Hiroomote Azahasunuma, Akita, Akita, 010-8543, Japan
| | - Shigeru Sato
- Department of Center for Kidney Disease and Transplantation, Akita University Hospital, 44-2 Hiroomote Azahasunuma, Akita, Akita, 010-8543, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Kenji Nishimura
- Department of Urology, Hyogo Prefectural Nishinomiya Hospital, 13-9 Rokutanji-cho, Nishinomiya, Hyogo, Japan
| | - Hidefumi Kishikawa
- Department of Urology, Hyogo Prefectural Nishinomiya Hospital, 13-9 Rokutanji-cho, Nishinomiya, Hyogo, Japan
| | - Daiki Iwami
- Division of Renal Surgery and Transplantation, Department of Urology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kiyohiko Hotta
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Kita 15-jo Nishi 7-chome, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masayoshi Miura
- Department of Kidney Transplant Surgery, Sapporo Hokuyu Hospital, 5-1 Higashi-sapporo 6-jo 6-chome, Shiroishi- ku, Sapporo, Hokkaido, 003-0006, Japan
| | - Kentaro Ide
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biochemical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Michio Nakamura
- Department of Transplant Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Akihiro Kosoku
- Department of Urology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-Machi, Abeno-ku, Osaka, Osaka, 545- 8585, Japan
| | - Junji Uchida
- Department of Urology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-Machi, Abeno-ku, Osaka, Osaka, 545- 8585, Japan
| | - Taku Murakami
- R&D Center, Hitachi Chemical Co. America, Ltd. 1003 Health Sciences Road, Irvine, CA, 92617, USA
| | - Takahiro Tsuji
- Department of Pathology, Sapporo City General Hospital, 1-1 Kita 11-jo Nishi 13-chome, Chuou-ku, Sapporo, Hokkaido, 060-8604, Japan
| |
Collapse
|
10
|
Dominguez JH, Xie D, Kelly KJ. Impaired microvascular circulation in distant organs following renal ischemia. PLoS One 2023; 18:e0286543. [PMID: 37267281 PMCID: PMC10237479 DOI: 10.1371/journal.pone.0286543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Mortality in acute kidney injury (AKI) patients remains very high, although very important advances in understanding the pathophysiology and in diagnosis and supportive care have been made. Most commonly, adverse outcomes are related to extra-renal organ dysfunction and failure. We and others have documented inflammation in remote organs as well as microvascular dysfunction in the kidney after renal ischemia. We hypothesized that abnormal microvascular flow in AKI extends to distant organs. To test this hypothesis, we employed intravital multiphoton fluorescence imaging in a well-characterized rat model of renal ischemia/reperfusion. Marked abnormalities in microvascular flow were seen in every organ evaluated, with decreases up to 46% observed 48 hours postischemia (as compared to sham surgery, p = 0.002). Decreased microvascular plasma flow was found in areas of erythrocyte aggregation and leukocyte adherence to endothelia. Intravital microscopy allowed the characterization of the erythrocyte formations as rouleaux that flowed as one-dimensional aggregates. Observed microvascular abnormalities were associated with significantly elevated fibrinogen levels. Plasma flow within capillaries as well as microthrombi, but not adherent leukocytes, were significantly improved by treatment with the platelet aggregation inhibitor dipyridamole. These microvascular defects may, in part, explain known distant organ dysfunction associated with renal ischemia. The results of these studies are relevant to human acute kidney injury.
Collapse
Affiliation(s)
- Jesus H. Dominguez
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Danhui Xie
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - K. J. Kelly
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Medicine, Renal Section, Roudebush Veterans’ Affairs Medical Center, Indianapolis, Indiana, Unites States of America
| |
Collapse
|
11
|
Lu Y, Zhang R, Gu X, Wang X, Xi P, Chen X. Exosomes from tubular epithelial cells undergoing epithelial-to-mesenchymal transition promote renal fibrosis by M1 macrophage activation. FASEB Bioadv 2023; 5:101-113. [PMID: 36876297 PMCID: PMC9983075 DOI: 10.1096/fba.2022-00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/20/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Kidney fibrosis is the common final pathway of chronic kidney disease (CKD), and it is distinguished by inflammation, mesenchymal transition with myofibroblast formation, and epithelial-to-mesenchymal transition (EMT). Macrophages are protuberant inflammatory cells in the kidney, and their roles are dependent on their phenotypes. However, it remains unclear whether tubular epithelial cells (TECs) undergoing EMT can influence the phenotypes of macrophages and the underlying mechanisms during the development of kidney fibrosis. Here, we investigated the characteristics of TECs and macrophages during kidney fibrosis with a focus on EMT and inflammation. We found that the coculture of exosomes from transforming growth factor-beta (TGF-β)-induced TECs with macrophages induced macrophage M1 polarization, while exosomes from TECs without TGF-β stimulation or stimulation with TGF-β alone did not induce an increase in M1 macrophage-related markers. Notably, TECs induced to undergo EMT by TGF-β treatment released more exosomes than the other groups. Furthermore, it is noteworthy that when we injected exosomes from TECs undergoing EMT into mice, in addition to the high level of inflammatory response and the activation of M1 macrophages, the indicators of EMT and renal fibrosis in mouse kidney tissue were correspondingly elevated. In summary, exosomes from TECs undergoing EMT by TGF-β treatment induced M1 polarization and led to a positive feedback effect for further EMT and the development of renal fibrosis. Therefore, the obstacle to the release of such exosomes may be a novel therapeutic strategy for CKD.
Collapse
Affiliation(s)
- Yuqing Lu
- Affiliated Hospital of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| | - Rui Zhang
- Affiliated Hospital of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| | - Xiameng Gu
- Affiliated Hospital of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| | - Xuerong Wang
- Affiliated Hospital of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| | - Peipei Xi
- Affiliated Hospital of Nantong UniversityNantongChina
| | - Xiaolan Chen
- Affiliated Hospital of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| |
Collapse
|
12
|
Abstract
Mortality in acute kidney injury (AKI) remains very high, yet the cause of death is often failure of extrarenal organs. We and others have demonstrated remote organ dysfunction after renal ischemia. The term "cardiorenal syndrome" was first applied to the "cross talk" between the organs by the National Heart, Lung, and Blood Institute of the National Institutes of Health, and the clinical importance is being increasingly appreciated. Nevertheless, more information is needed to effectively address the consequences of renal injury on the heart. Since AKI often occurs in patients with comorbidities, we investigated the effect of renal ischemia in the setting of existing cardiac failure. We hypothesized that the cardiac effects of renal ischemia would be significantly amplified in experimental cardiomyopathy. Male Sprague-Dawley rats with preexisting cardiac and renal injury due to low-dose doxorubicin were subjected to bilateral renal artery occlusion. Cardiac structure and function were examined 2 days after reperfusion. Loss of functional myocardial tissue with decreases in left ventricular pressure, increases in apoptotic cell death, inflammation, and collagen, and greater disruption in ultrastructure with mitochondrial fragmentation were seen in the doxorubicin/ischemia group compared with animals in the groups treated with doxorubicin alone or following ischemia alone. Systemic inflammation and cardiac abnormalities persisted for at least 21 wk. These results suggest that preexisting comorbidities can result in much more severe distant organ effects of acute renal injury. The results of this study are relevant to human AKI.NEW & NOTEWORTHY Acute kidney injury is common, expensive, and deadly, yet morbidity and mortality are often secondary to remote organ dysfunction. We hypothesized that the effects of renal ischemia would be amplified in the setting of comorbidities. Sustained systemic inflammation and loss of functional myocardium with significantly decreased systolic and diastolic function, apoptotic cell death, and increased collagen and inflammatory cells were found in the heart after renal ischemia in the doxorubicin cardiomyopathy model (vs. renal ischemia alone). Understanding the remote effects of renal ischemia has the potential to improve outcomes in acute kidney injury.
Collapse
Affiliation(s)
- Jesus H Dominguez
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Danhui Xie
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - K J Kelly
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
13
|
Jafar Sameri M, Belali R, Neisi N, Noei Razliqi R, Mard SA, Savari F, Azandeh SS. Sodium Hydrosulfide Modification of Mesenchymal Stem Cell-Exosomes Improves Liver Function in CCL4-Induced Hepatic Injury in Mice. Rep Biochem Mol Biol 2023; 11:644-655. [PMID: 37131889 PMCID: PMC10149127 DOI: 10.52547/rbmb.11.4.644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 05/04/2023]
Abstract
Background Liver diseases and injuries are important medical problems worldwide. Acute liver failure (ALF) is a clinical syndrome characterized by severe functional impairment and widespread death of hepatocytes. Liver transplantation is the only treatment available so far. Exosomes are nanovesicles originating from intracellular organelles. They regulate the cellular and molecular mechanisms of their recipient cells and have promising potential for clinical application in acute and chronic liver injuries. This study compares the effect of Sodium hydrosulfide (NaHS) modified exosomes with non-modified exosomes in CCL4-induced acute liver injury to ascertain their role in ameliorating hepatic injury. Methods Human Mesenchymal stem cells (MSCs) were treated with or without NaHS (1 μmol) and exosomes were isolated using an exosome isolation kit. Male mice (8-12 weeks old) were randomly divided into four groups (n=6): 1-control, 2-PBS, 3- MSC-Exo, and 4- H2S-Exo. Animals received 2.8 ml/kg body weight of CCL4 solution intraperitoneally, and 24 h later MSC-Exo (non-modified), H2S-Exo (NaHS-modified), or PBS, was injected in the tail vein. Moreover, 24 h after Exo administration, mice were sacrificed for tissue and blood collection. Results Administration of both MSC-Exo and H2S-Exo reduced inflammatory cytokines (IL-6, TNF-α), total oxidant levels, liver aminotransferases, and cellular apoptosis. Conclusion MSC-Exo and H2S-Exo had hepato-protective effects against CCL4-induced liver injury in mice. Modification of cell culture medium with NaHS as an H2S donor enhances the therapeutic effects of MSC exosomes.
Collapse
Affiliation(s)
- Maryam Jafar Sameri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Physiology department, Abadan University of Medical Sciences, Abadan, Iran.
- Corresponding author: Maryam Jafar Sameri; Tel: +98 9381267697; E-mail: & Reza Noei Razliqi; Tel: +98 9381267697; E-mail:
| | - Rafeie Belali
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Niloofar Neisi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Department of Medical virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Reza Noei Razliqi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Corresponding author: Maryam Jafar Sameri; Tel: +98 9381267697; E-mail: & Reza Noei Razliqi; Tel: +98 9381267697; E-mail:
| | - Seyed Ali Mard
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Feryal Savari
- Department of basic sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| | - Seyyed Saeed Azandeh
- Department of Anatomical Sciences, School of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
14
|
Sameri MJ, Savari F, Hoseinynejad K, Danyaei A, Mard SA. The hepato-protective effect of H2S-modified and non-modified mesenchymal stem cell exosomes on liver ischemia-reperfusion injury in mice: The role of MALAT1. Biochem Biophys Res Commun 2022; 635:194-202. [PMID: 36279681 DOI: 10.1016/j.bbrc.2022.09.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Ischemia-reperfusion injury (IRI) by causing histopathological changes is considered one of the most important causes of liver failure and dysfunction after surgery which affect graft outcomes. Stem cells are new promising approaches to treating different diseases. One of the critical strategies to improve their function is the preconditioning of their culture medium. This study compared the effect of NaHS-modified and non-modified mesenchymal stem cell exosomes on liver ischemia-reperfusion injury in mice. METHODS Human umbilical cord-derived MSC (MSC) cultured in a 75 cm3 flask and when confluency reached about 80%, the culture medium replaced with a serum-free medium, and 48 h later supernatants collected, concentrated, and then MSC-Exo extracted. To obtain H2S-Exo, MSC was treated with NaHS (1 μmol),the supernatant collected after 48 h, concentrated and exosomes extracted. Twenty-four male mice were randomly divided into four groups (n = 6) including: 1-ischemia, 2-sham-operated, 3- MSC-Exo, and 4- H2S-Exo. To induce ischemia, the hepatic artery and portal vein clamped using an atraumatic clip for 60 min followed by 3 h of reperfusion. Just upon ending the time of ischemia (removal of clamp artery), animals in MSC-Exo, and H2S-Exo groups received 100 μg exosomes in 100 μl PBS via tail vein. At the end of reperfusion, blood, and liver samples were collected for further serological, molecular, and histological analyses. RESULTS Administration of both MSC-Exo and H2S-Exo improved liver function by reducing inflammatory cytokines, cellular apoptosis, liver levels of total oxidant status, and liver aminotransferases. The results showed that protecting effect of MSC exosomes enhanced following NaHS preconditioning of cell culture medium. CONCLUSION MSC-Exo and H2S-Exo had hepato-protective effects against injuries induced by ischemia-reperfusion in mice. NaHS preconditioning of mesenchymal stem cells could enhance the therapeutic effects of MSC-derived exosomes.
Collapse
Affiliation(s)
- Maryam J Sameri
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Feryal Savari
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Khojasteh Hoseinynejad
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Danyaei
- Department of Medical Physics, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ali Mard
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
15
|
Oz Oyar E, Aciksari A, Azak Pazarlar B, Egilmez CB, Duruksu G, Rencber SF, Yardimoglu Yilmaz M, Ozturk A, Yazir Y. The therapeutical effects of damage-specific stress induced exosomes on the cisplatin nephrotoxicity IN VIVO. Mol Cell Probes 2022; 66:101861. [PMID: 36162595 DOI: 10.1016/j.mcp.2022.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 12/30/2022]
Abstract
Cisplatin is one of the metal containing drugs for the solid cancer treatments. However, its side-effects limit its application in the cancer treatment. Stem cell therapy is a promising treatment for the tissue damage caused by the chemotherapeutic agents, like cisplatin. Exosomes secreted by mesenchymal stem cells (MSCs) could be used for cell-free regenerative treatment, but their potency and reproducibility are questionable. In this study, the microenvironment of the renal tubular epithelial cells was mimicked by coculture of endothelial-, renal proximal tubule epithelial- and fibroblast cells. Cisplatin was applied to this tricell culture model, and the secreted rescue signals were collected and used to induce MSCs. From these stress-induced MSCs, the (stress-induced) exosomes were collected and used for the cell-free therapeutic treatment of cisplatin-treated rats with acute kidney injury. The composition of the stress-induces exosomes was compared with the non-induced exosomes and found that the expression of some critical factors for cell proliferation, repair mechanism and oxidative stress was improved. The cisplatin-damaged renal tissue showed substantial recovery after the treatment with stress-induced exosomes compared to the treatment with non-induced exosomes. Although, the non-induced exosomes showed their activity mostly as cytoprotective, the induced exosomes further involved actively in the tissue regeneration, like MSCs. It was shown that the exosomes could be reprogrammed to improve their therapeutic effect to be used in cell-free regenerative medicine. Further, cisplatin-induced tissue damage in the kidney might be effectively prevented and used for tissue regeneration by use of induced exosomes generated for a particular damage.
Collapse
Affiliation(s)
- Eser Oz Oyar
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey.
| | - Aysegul Aciksari
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Izmit, Kocaeli, Turkey.
| | - Burcu Azak Pazarlar
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey.
| | - Cansu Bilister Egilmez
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey.
| | - Gokhan Duruksu
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Izmit, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Izmit, Kocaeli, Turkey.
| | - Selenay Furat Rencber
- Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Izmit, Kocaeli, Turkey.
| | - Melda Yardimoglu Yilmaz
- Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Izmit, Kocaeli, Turkey.
| | - Ahmet Ozturk
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Izmit, Kocaeli, Turkey.
| | - Yusufhan Yazir
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Izmit, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Izmit, Kocaeli, Turkey; Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Izmit, Kocaeli, Turkey.
| |
Collapse
|
16
|
Dominguez JH, Xie D, Dominguez JM, Kelly KJ. Role of coagulation in persistent renal ischemia following reperfusion in an animal model. Am J Physiol Renal Physiol 2022; 323:F590-F601. [PMID: 36007891 PMCID: PMC9602917 DOI: 10.1152/ajprenal.00162.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic acute kidney injury is common, deadly, and accelerates the progression of chronic kidney disease, yet has no specific therapy. After ischemia, reperfusion is patchy with early and persistent impairment in regional renal blood flow and cellular injury. We tested the hypothesis that intrarenal coagulation results in sustained renal ischemia following reperfusion, using a well-characterized model. Markedly decreased, but heterogeneous, microvascular plasma flow with microthrombi was found postischemia by intravital microscopy. Widespread tissue factor expression and fibrin deposition were also apparent. Clotting was accompanied by complement activation and inflammation. Treatment with exosomes derived from renal tubular cells or with the fibrinolytic urokinase, given 24 h postischemia when renal failure was established, significantly improved microvascular flow, coagulation, serum creatinine, and histological evidence of injury. These data support the hypothesis that intrarenal clotting occurs early and the resultant sustained ischemia is a critical determinant of renal failure following ischemia; they demonstrate that the coagulation abnormalities are amenable to therapy and that therapy results in improvement in both function and postischemic inflammation.NEW & NOTEWORTHY Ischemic renal injury carries very high morbidity and mortality, yet has no specific therapy. We found markedly decreased, heterogeneous microvascular plasma flow, tissue factor induction, fibrin deposition, and microthrombi after renal ischemia-reperfusion using a well-characterized model. Renal exosomes or the fibrinolytic urokinase, administered after renal failure was established, improved microvascular flow, coagulation, renal function, and histology. Data demonstrate that intrarenal clotting results in sustained ischemia amenable to therapy that improves both function and postischemic inflammation.
Collapse
Affiliation(s)
- Jesus H. Dominguez
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush Veterans Administration Hospital, Indianapolis, Indiana
| | - Danhui Xie
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - James M. Dominguez
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - K. J. Kelly
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush Veterans Administration Hospital, Indianapolis, Indiana
| |
Collapse
|
17
|
Xiang H, Zhang C, Xiong J. Emerging role of extracellular vesicles in kidney diseases. Front Pharmacol 2022; 13:985030. [PMID: 36172178 PMCID: PMC9510773 DOI: 10.3389/fphar.2022.985030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Many types of renal disease eventually progress to end-stage renal disease, which can only be maintained by renal replacement therapy. Therefore, kidney diseases now contribute significantly to the health care burden in many countries. Many new advances and strategies have been found in the research involving kidney diseases; however, there is still no efficient treatment. Extracellular vesicles (EVs) are cell-derived membrane structures, which contains proteins, lipids, and nucleic acids. After internalization by downstream cells, these components can still maintain functional activity and regulate the phenotype of downstream cells. EVs drive the information exchange between cells and tissues. Majority of the cells can produce EVs; however, its production, contents, and transportation may be affected by various factors. EVs have been proved to play an important role in the occurrence, development, and treatment of renal diseases. However, the mechanism and potential applications of EVs in kidney diseases remain unclear. This review summarizes the latest research of EVs in renal diseases, and provides new therapeutic targets and strategies for renal diseases.
Collapse
|
18
|
Huang W, Zhu XY, Lerman A, Lerman LO. Extracellular Vesicles as Theranostic Tools in Kidney Disease. Clin J Am Soc Nephrol 2022; 17:1418-1429. [PMID: 35260417 PMCID: PMC9625088 DOI: 10.2215/cjn.16751221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles are important vectors for cell-cell communication and show potential value for diagnosis and treatment of kidney diseases. The pathologic diagnosis of kidney diseases relies on kidney biopsy, whereas collection of extracellular vesicles from urine or circulating blood may constitute a less invasive diagnostic tool. In particular, urinary extracellular vesicles released mainly from resident kidney cells might provide an alternative tool for detection of kidney injury. Because extracellular vesicles mirror many features of their parent cells, cargoes of several populations of urinary extracellular vesicles are promising biomarkers for disease processes, like diabetic kidney disease, kidney transplant, and lupus nephritis. Contrarily, extracellular vesicles derived from reparative cells, such as mesenchymal stem cells, tubular epithelial progenitor cells, and human umbilical cord blood represent promising regenerative tools for treatment of kidney diseases. Furthermore, induced pluripotent stem cells-derived and engineered extracellular vesicles are being developed for specific applications for the kidney. Nevertheless, some assumptions regarding the specificity and immunogenicity of extracellular vesicles remain to be established. This review focuses on the utility of extracellular vesicles as therapeutic and diagnostic (theranostic) tools in kidney diseases and future directions for studies.
Collapse
Affiliation(s)
- Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
19
|
Tang TT, Wang B, Lv LL, Dong Z, Liu BC. Extracellular vesicles for renal therapeutics: State of the art and future perspective. J Control Release 2022; 349:32-50. [PMID: 35779658 DOI: 10.1016/j.jconrel.2022.06.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/21/2022]
Abstract
With the ever-increasing burden of kidney disease, the need for developing new therapeutics to manage this disease has never been greater. Extracellular vesicles (EVs) are natural membranous nanoparticles present in virtually all organisms. Given their excellent delivery capacity in the body, EVs have emerged as a frontier technology for drug delivery and have the potential to usher in a new era of nanomedicine for kidney disease. This review is focused on why EVs are such compelling drug carriers and how to release their fullest potentiality in renal therapeutics. We discuss the unique features of EVs compared to artificial nanoparticles and outline the engineering technologies and steps in developing EV-based therapeutics, with an emphasis on the emerging approaches to target renal cells and prolong kidney retention. We also explore the applications of EVs as natural therapeutics or as drug carriers in the treatment of renal disorders and present our views on the critical challenges in manufacturing EVs as next-generation renal therapeutics.
Collapse
Affiliation(s)
- Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China; Department of Pathology and Pathophysiology, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China.
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China.
| |
Collapse
|
20
|
Brahmadhi A, Chuang YK, Wang SY, Kao CC, Tsai IL. Exosomal proteomics in kidney disease: From technical approaches to clinical applications. J Food Drug Anal 2022; 30:202-222. [PMID: 39666305 PMCID: PMC9635898 DOI: 10.38212/2224-6614.3409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/16/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2024] Open
Abstract
Exosomes are small extracellular vesicles (sEVs) secreted from cells and have a general diameter ranging from 30-150 nm. It was reported that exosomes have essential roles in intercellular communication and can be targeted as biomarkers of disease or as therapeutic agents. Among the different techniques used for exosome investigation, the mass spectrometry-based proteomics approach has accelerated the unraveling of the molecular composition of exosomes and has contributed to improved knowledge of molecular processes in various diseases. In this review, we focused on proteomics-based studies of exosomes and clinical applications in kidney diseases. A general introduction of exosomes, isolation and characterization techniques, and proteomics-based study workflows are included in this article. We also categorized applications in acute kidney injury, chronic kidney disease, renal transplantation, congenital kidney disease, and malignant kidney disorder to show the important findings from proteomics-based exosomal investigations.
Collapse
Affiliation(s)
- Ageng Brahmadhi
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei,
Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei,
Taiwan
- Faculty of Medicine, Universitas Muhammadiyah Purwokerto, Purwokerto, Central Java,
Indonesia
| | - Yung-Kun Chuang
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei,
Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei,
Taiwan
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei,
Taiwan
| | - San-Yuan Wang
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei,
Taiwan
| | - Chih-Chin Kao
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei,
Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei,
Taiwan
- Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei,
Taiwan
| | - I-Lin Tsai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei,
Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei,
Taiwan
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei,
Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei,
Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei,
Taiwan
| |
Collapse
|
21
|
Quaglia M, Merlotti G, Colombatto A, Bruno S, Stasi A, Franzin R, Castellano G, Grossini E, Fanelli V, Cantaluppi V. Stem Cell-Derived Extracellular Vesicles as Potential Therapeutic Approach for Acute Kidney Injury. Front Immunol 2022; 13:849891. [PMID: 35359949 PMCID: PMC8960117 DOI: 10.3389/fimmu.2022.849891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury is a frequent complication of hospitalized patients and significantly increases morbidity and mortality, worsening costs and length of hospital stay. Despite this impact on healthcare system, treatment still remains only supportive (dialysis). Stem cell-derived extracellular vesicles are a promising option as they recapitulate stem cells properties, overcoming safety issues related to risks or rejection or aberrant differentiation. A growing body of evidence based on pre-clinical studies suggests that extracellular vesicles may be effective to treat acute kidney injury and to limit fibrosis through direct interference with pathogenic mechanisms of vascular and tubular epithelial cell damage. We herein analyze the state-of-the-art knowledge of therapeutic approaches with stem cell-derived extracellular vesicles for different forms of acute kidney injury (toxic, ischemic or septic) dissecting their cytoprotective, regenerative and immunomodulatory properties. We also analyze the potential impact of extracellular vesicles on the mechanisms of transition from acute kidney injury to chronic kidney disease, with a focus on the pivotal role of the inhibition of complement cascade in this setting. Despite some technical limits, nowadays the development of therapies based on stem cell-derived extracellular vesicles holds promise as a new frontier to limit acute kidney injury onset and progression.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Andrea Colombatto
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Kidney Transplantation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Vito Fanelli
- Department of Anesthesiology and Intensive Care, University of Torino, Torino, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| |
Collapse
|
22
|
Ghorbani F, Movassaghpour AA, Talebi M, Yousefi M, Abbaszadeh H. Renoprotective effects of extracellular vesicles: A systematic review. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Lee SA, Yoo TH. Therapeutic application of extracellular vesicles for various kidney diseases: a brief review. BMB Rep 2022. [PMID: 34903318 PMCID: PMC8810552 DOI: 10.5483/bmbrep.2022.55.1.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sul A Lee
- Department of Medicine, MetroWest Medical Center/Tufts University School of Medicine, Framingham, MA 01702, USA
| | - Tae Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
24
|
Zhou YK, Patel HH, Roth DM. Extracellular Vesicles: A New Paradigm for Cellular Communication in Perioperative Medicine, Critical Care, and Pain Management. Anesth Analg 2021; 133:1162-1179. [PMID: 34304233 PMCID: PMC8542619 DOI: 10.1213/ane.0000000000005655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Extracellular vesicles (EVs) play critical roles in many health and disease states, including ischemia, inflammation, and pain, which are major concerns in the perioperative period and in critically ill patients. EVs are functionally active, nanometer-sized, membrane-bound vesicles actively secreted by all cells. Cell signaling is essential to physiological and pathological processes, and EVs have recently emerged as key players in intercellular communication. Recent studies in EV biology have improved our mechanistic knowledge of the pathophysiological processes in perioperative and critical care patients. Studies also show promise in using EVs in novel diagnostic and therapeutic clinical applications. This review considers the current advances and gaps in knowledge of EVs in the areas of ischemia, inflammation, pain, and in organ systems that are most relevant to anesthesiology, perioperative medicine, critical care, and pain management. We expect the reader will better understand the relationship between EVs and perioperative and critical care pathophysiological states and their potential use as novel diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Yingqiu K. Zhou
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA and Department of Anesthesiology, UCSD School of Medicine, San Diego, CA, USA
| | - Hemal H. Patel
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA and Department of Anesthesiology, UCSD School of Medicine, San Diego, CA, USA
| | - David M. Roth
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA and Department of Anesthesiology, UCSD School of Medicine, San Diego, CA, USA
| |
Collapse
|
25
|
Zhou X, Zhao S, Li W, Ruan Y, Yuan R, Ning J, Jiang K, Xie J, Yao X, Li H, Li C, Rao T, Yu W, Cheng F. Tubular cell-derived exosomal miR-150-5p contributes to renal fibrosis following unilateral ischemia-reperfusion injury by activating fibroblast in vitro and in vivo. Int J Biol Sci 2021; 17:4021-4033. [PMID: 34671216 PMCID: PMC8495396 DOI: 10.7150/ijbs.62478] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Unilateral ischemia reperfusion injury (UIRI) with longer ischemia time is associated with an increased risk of acute renal injury and chronic kidney disease. Exosomes can transport lipid, protein, mRNA, and miRNA to corresponding target cells and mediate intercellular information exchange. In this study, we aimed to investigate whether exosome-derived miRNA mediates epithelial-mesenchymal cell communication relevant to renal fibrosis after UIRI. The secretion of exosomes increased remarkably in the kidney after UIRI and in rat renal tubular epithelium cells (NRK-52E) after hypoxia treatment. The inhibition of exosome secretion by Rab27a knockout or GW4869 treatment ameliorates renal fibrosis following UIRI in vivo. Purified exosomes from NRK-52E cells after hypoxia treatment could activate rat kidney fibroblasts (NRK-49F). The inhibition of exosome secretion in hypoxic NRK-52E cells through Rab27a knockdown or GW4869 treatment abolished NRK-49F cell activation. Interestingly, exosomal miRNA array analysis revealed that miR-150-5p expression was increased after hypoxia compared with the control group. The inhibition of exosomal miR-150-5p abolished the ability of hypoxic NRK-52E cells to promote NRK-49F cell activation in vitro, injections of miR-150-5p enriched exosomes from hypoxic NRK-52E cells aggravated renal fibrosis following UIRI, and renal fibrosis after UIRI was alleviated by miR-150-5p-deficient exosome in vivo. Furthermore, tubular cell-derived exosomal miR-150-5p could negatively regulate the expression of suppressor of cytokine signaling 1 to activate fibroblast. Thus, our results suggest that the blockade of exosomal miR-150-5p mediated tubular epithelial cell-fibroblast communication may provide a novel therapeutic target to prevents UIRI progression to renal fibrosis.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sheng Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Run Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Kun Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jinna Xie
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaobin Yao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Haoyong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
26
|
Zhao S, Li W, Yu W, Rao T, Li H, Ruan Y, Yuan R, Li C, Ning J, Li S, Chen W, Cheng F, Zhou X. Exosomal miR-21 from tubular cells contributes to renal fibrosis by activating fibroblasts via targeting PTEN in obstructed kidneys. Am J Cancer Res 2021; 11:8660-8673. [PMID: 34522205 PMCID: PMC8419054 DOI: 10.7150/thno.62820] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Rationale: Ureteral obstruction-induced hydronephrosis is associated with renal fibrosis and progressive chronic kidney disease (CKD). Exosome-mediated cell-cell communication has been suggested to be involved in various diseases, including renal fibrosis. However, little is known regarding how exosomes regulate renal fibrosis in obstructed kidneys. Methods: We first examined the secretion of exosomes in UUO (unilateral ureteral obstruction) mouse kidneys and TGF-β1-stimulated tubular epithelial cells (NRK-52E). Exosomes from NRK-52E cells were subsequently harvested and incubated with fibroblasts (NRK-49F) or injected into UUO mice via the tail vein. We next constructed Rab27a knockout mice to further confirm the role of exosome-mediated epithelial-fibroblast communication relevant to renal fibrosis in UUO mice. High-throughput miRNA sequencing was performed to detect the miRNA profiles of TGFβ1-Exos. The roles of candidate miRNAs, their target genes and relevant pathways were predicted and assessed in vitro and in vivo by setting specific miRNA mimic, miRNA inhibitor, siRNA or miRNA LNA groups. Results: Increased renal fibrosis was associated with prolonged UUO days, and the secretion of exosomes was markedly increased in UUO kidneys and TGF-β1-stimulated NRK-52E cells. Purified exosomes from TGF-β1-stimulated NRK-52E cells could activate fibroblasts and aggravate renal fibrosis in vitro and in vivo. In addition, the inhibition of exosome secretion by Rab27a knockout or GW4869 treatment abolished fibroblast activation and ameliorated renal fibrosis. Exosomal miR-21 was significantly increased in TGFβ1-Exos compared with Ctrl-Exos, and PTEN is a certain target of miR-21. The promotion or inhibition of epithelial exosomal miR-21 correspondingly accelerated or abolished fibroblast activation in vitro, and renal fibrosis after UUO was alleviated by miR-21-deficient exosomes in vivo through the PTEN/Akt pathway. Conclusion: Our findings reveal that exosomal miR-21 from tubular epithelial cells may accelerate the development of renal fibrosis by activating fibroblasts via the miR-21/PTEN/Akt pathway in obstructed kidneys.
Collapse
|
27
|
Lerman LO. Cell-based regenerative medicine for renovascular disease. Trends Mol Med 2021; 27:882-894. [PMID: 34183258 PMCID: PMC8403163 DOI: 10.1016/j.molmed.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022]
Abstract
Renal artery stenosis (RAS) elicits the development of hypertension and post-stenotic kidney damage, which may become irresponsive to restoration of arterial patency. Rather than mere losses of blood flow or oxygen supply, irreversible intrarenal microvascular rarefaction, tubular injury, and interstitial fibrosis are now attributed to intrinsic pathways activated within the kidney, focusing attention on the kidney parenchyma as a therapeutic target. Several regenerative approaches involving the delivery of reparative cells or products have achieved kidney repair in experimental models of RAS and the delivery of mesenchymal stem/stromal cells (MSCs) has already been translated to human subjects with RAS with promising results. The ongoing development of innovative approaches in kidney disease awaits application, validation, and acceptance as routine clinical treatment to avert kidney damage in RAS.
Collapse
Affiliation(s)
- Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
28
|
Karpman D, Tontanahal A. Extracellular vesicles in renal inflammatory and infectious diseases. Free Radic Biol Med 2021; 171:42-54. [PMID: 33933600 DOI: 10.1016/j.freeradbiomed.2021.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles can mediate cell-to-cell communication, or relieve the parent cell of harmful substances, in order to maintain cellular integrity. The content of extracellular vesicles includes miRNAs, mRNAs, growth factors, complement factors, cytokines, chemokines and receptors. These may contribute to inflammatory and infectious diseases by the exposure or transfer of potent effectors that induce vascular inflammation by leukocyte recruitment and thrombosis. Furthermore, vesicles release cytokines and induce their release from cells. Extracellular vesicles possess immune modulatory and anti-microbial properties, and induce receptor signaling in the recipient cell, not least by the transfer of pro-inflammatory receptors. Additionally, the vesicles may carry virulence factors systemically. Extracellular vesicles in blood and urine can contribute to the development of kidney diseases or exhibit protective effects. In this review we will describe the role of EVs in inflammation, thrombosis, immune modulation, angiogenesis, oxidative stress, renal tubular regeneration and infection. Furthermore, we will delineate their contribution to renal ischemia/reperfusion, vasculitis, glomerulonephritis, lupus nephritis, thrombotic microangiopathies, IgA nephropathy, acute kidney injury, urinary tract infections and renal transplantation. Due to their content of miRNAs and growth factors, or when loaded with nephroprotective modulators, extracellular vesicles have the potential to be used as therapeutics for renal regeneration.
Collapse
Affiliation(s)
- Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185, Lund, Sweden.
| | - Ashmita Tontanahal
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185, Lund, Sweden
| |
Collapse
|
29
|
Extracellular Vesicles in Organ Fibrosis: Mechanisms, Therapies, and Diagnostics. Cells 2021; 10:cells10071596. [PMID: 34202136 PMCID: PMC8305303 DOI: 10.3390/cells10071596] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is the unrelenting deposition of excessively large amounts of insoluble interstitial collagen due to profound matrigenic activities of wound-associated myofibroblasts during chronic injury in diverse tissues and organs. It is a highly debilitating pathology that affects millions of people globally and leads to decreased function of vital organs and increased risk of cancer and end-stage organ disease. Extracellular vesicles (EVs) produced within the chronic wound environment have emerged as important vehicles for conveying pro-fibrotic signals between many of the cell types involved in driving the fibrotic response. On the other hand, EVs from sources such as stem cells, uninjured parenchymal cells, and circulation have in vitro and in vivo anti-fibrotic activities that have provided novel and much-needed therapeutic options. Finally, EVs in body fluids of fibrotic individuals contain cargo components that may have utility as fibrosis biomarkers, which could circumvent current obstacles to fibrosis measurement in the clinic, allowing fibrosis stage, progression, or regression to be determined in a manner that is accurate, safe, minimally-invasive, and conducive to repetitive testing. This review highlights the rapid and recent progress in our understanding of EV-mediated fibrotic pathogenesis, anti-fibrotic therapy, and fibrosis staging in the lung, kidney, heart, liver, pancreas, and skin.
Collapse
|
30
|
Park DJ, Seo YJ. Engineering of Extracellular Vesicles Based on Payload Changes for Tissue Regeneration. Tissue Eng Regen Med 2021; 18:485-497. [PMID: 34050888 DOI: 10.1007/s13770-021-00349-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
In the field of tissue regeneration and tissue engineering, many years ago, various nano to macroscopic-sized materials have been used to reduce inflammation and restore damaged tissue. Whether it is safe to study the regeneration of all tissues based on the biological mechanisms of an organism composed of cells is still debated, and studies using extracellular vesicles derived from cells have become popular in the past decade. It has been reported that exosomes with a size of 100 nm or less, which plays an important role in cell-cell communication, contain various factors, such as proliferation, anti-inflammatory, and growth factors. In addition, the payload of exosomes varies depending on the parent cell and the recipient cell, and a technology to differentiate the selective payload must treat specific diseases. In this review, we examined the current trends in research using exosomes derived from cells or tissues and analyzed various research reports on factors that can affect tissue regeneration.
Collapse
Affiliation(s)
- Dong Jun Park
- Department of Surgery, University of California San Diego, 212 Dickinson Street, MC 8236, San Diego, CA, 92103, USA.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, South Korea.,Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, 26426, South Korea
| | - Young Joon Seo
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, South Korea. .,Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, 26426, South Korea. .,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
31
|
Lee SA, Choi C, Yoo TH. Extracellular vesicles in kidneys and their clinical potential in renal diseases. Kidney Res Clin Pract 2021; 40:194-207. [PMID: 33866768 PMCID: PMC8237124 DOI: 10.23876/j.krcp.20.209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, are cell-derived lipid bilayer membrane particles, which deliver information from host cells to recipient cells. EVs are involved in various biological processes including the modulation of the immune response, cell-to-cell communications, thrombosis, and tissue regeneration. Different types of kidney cells are known to release EVs under physiologic as well as pathologic conditions, and recent studies have found that EVs have a pathophysiologic role in different renal diseases. Given the recent advancement in EV isolation and analysis techniques, many studies have shown the diagnostic and therapeutic potential of EVs in various renal diseases, such as acute kidney injury, polycystic kidney disease, chronic kidney disease, kidney transplantation, and renal cell carcinoma. This review updates recent clinical and experimental findings on the role of EVs in renal diseases and highlights the potential clinical applicability of EVs as novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Sul A Lee
- Department of Internal Medicine and Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, MetroWest Medical Center, Framingham, MA, USA
| | - Chulhee Choi
- ILIAS Biologics Inc., Daejeon, Republic of Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine and Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
32
|
Mesenchymal stem cells and extracellular vesicles in therapy against kidney diseases. Stem Cell Res Ther 2021; 12:219. [PMID: 33789750 PMCID: PMC8011150 DOI: 10.1186/s13287-021-02289-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Kidney diseases pose a threat to human health due to their rising incidence and fatality rate. In preclinical and clinical studies, it has been acknowledged that mesenchymal stem cells (MSCs) are effective and safe when used to treat kidney diseases. MSCs play their role mainly by secreting trophic factors and delivering extracellular vesicles (EVs). The genetic materials and proteins contained in the MSC-derived EVs (MSC-EVs), as an important means of cellular communication, have become a research focus for targeted therapy of kidney diseases. At present, MSC-EVs have shown evident therapeutic effects on acute kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy (DN), and atherosclerotic renovascular disease (ARVD); however, their roles in the transplanted kidney remain controversial. This review summarises the mechanisms by which MSC-EVs treat these diseases in animal models and proposes certain problems, expecting to facilitate corresponding future clinical practice.
Collapse
|
33
|
Zhou S, Fang J, Hu M, Pan S, Liu D, Xing G, Liu Z. Determining the influence of high glucose on exosomal lncRNAs, mRNAs, circRNAs and miRNAs derived from human renal tubular epithelial cells. Aging (Albany NY) 2021; 13:8467-8480. [PMID: 33714195 PMCID: PMC8034913 DOI: 10.18632/aging.202656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy is a lethal disease that can lead to chronic kidney disease and end-stage kidney disease. Exosomes, which are nanosized extracellular vesicles, are closely involved in intercellular communication. Most importantly, exosomes play critical roles in disease occurrence and development. However, the function of exosomes in diabetic nephropathy progression has not been fully elucidated. In the present study, we determined the expression profiles and differences of lncRNAs, mRNAs, circRNAs and miRNAs in exosomes derived from human renal tubular epithelial cells with or without high glucose (HG) treatment. A total of 169 lncRNAs, 885 mRNAs, 3 circRNAs and 152 miRNAs were differentially expressed in exosomes secreted by HG-challenged HK-2 cells (HG group) compared with controls (NC group). The functions of differentially expressed mRNAs, mRNAs colocalized or coexpressed with differentially expressed lncRNAs (DElncRNAs), potential target genes of miRNAs and source genes of circRNAs were investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. According to these differentially expressed RNAs, we established an integrated circRNA-lncRNA-miRNA-mRNA regulatory network. In conclusion, our study suggested that exosomal lncRNAs, mRNAs, circRNAs and miRNAs participate in the progression of diabetic nephropathy and may be possible biomarkers and therapeutic targets in diabetic nephropathy.
Collapse
Affiliation(s)
- Sijie Zhou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Center for Kidney Disease, Henan Province, Zhengzhou 450052, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, P. R. China
| | - Jiuyuan Fang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Mingyang Hu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Center for Kidney Disease, Henan Province, Zhengzhou 450052, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, P. R. China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Center for Kidney Disease, Henan Province, Zhengzhou 450052, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, P. R. China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Center for Kidney Disease, Henan Province, Zhengzhou 450052, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, P. R. China
| | - Guolan Xing
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Center for Kidney Disease, Henan Province, Zhengzhou 450052, P. R. China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P. R. China.,Research Center for Kidney Disease, Henan Province, Zhengzhou 450052, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, P. R. China
| |
Collapse
|
34
|
Behrens F, Holle J, Kuebler WM, Simmons S. Extracellular vesicles as regulators of kidney function and disease. Intensive Care Med Exp 2020; 8:22. [PMID: 33336297 PMCID: PMC7746786 DOI: 10.1186/s40635-020-00306-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are small, lipid bilayer-delimited particles of cellular origin that recently gained increasing attention for their potential use as diagnostic biomarkers, and beyond that for their role in intercellular communication and as regulators of homeostatic and disease processes. In acute kidney injury (AKI) and chronic kidney disease (CKD), the potential use of EVs as diagnostic and prognostic markers has been evaluated in a series of clinical studies and contributions to pathophysiologic pathways have been investigated in experimental models. While EV concentrations in biofluids could not distinguish renal patients from healthy subjects or determine disease progression, specific EV subpopulations have been identified that may provide useful diagnostic and prognostic tools in AKI. Specific EV subpopulations are also associated with clinical complications in sepsis-induced AKI and in CKD. Beyond their role as biomarkers, pathophysiologic involvement of EVs has been shown in hemolytic uremic syndrome- and sepsis-induced AKI as well as in cardiovascular complications of CKD. On the other hand, some endogenously formed or therapeutically applied EVs demonstrate protective effects pointing toward their usefulness as emerging treatment strategy in kidney disease.
Collapse
Affiliation(s)
- Felix Behrens
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Johannes Holle
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10117, Berlin, Germany. .,The Keenan Research Centre for Biomedical Science at St. Michael's, Toronto, Canada. .,Departments of Surgery and Physiology, University of Toronto, Toronto, Canada.
| | - Szandor Simmons
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10117, Berlin, Germany
| |
Collapse
|
35
|
Ali M, Pham A, Wang X, Wolfram J, Pham S. Extracellular vesicles for treatment of solid organ ischemia-reperfusion injury. Am J Transplant 2020; 20:3294-3307. [PMID: 32594616 DOI: 10.1111/ajt.16164] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 01/25/2023]
Abstract
As the incidence of ischemia-reperfusion (I-R) injury has substantially increased, there is a pressing need to develop effective strategies to treat this global health issue. I-R injury can affect all organs and is associated with high morbidity and mortality rates. Pathological settings such as myocardial infarction, stroke, hemorrhagic shock, and solid organ transplant are particularly prone to cause I-R injury. Ischemia (hypoxia) and/or reperfusion (reoxygenation) induces various forms of cellular and structural damage. A major cause of damage is local inflammatory responses, which may spread to produce more advanced systemic inflammation. Management of I-R injury relies primarily on supportive measures, as specific treatment strategies are lacking. Extracellular vesicles (EVs) are cell-secreted nano-scale structures containing various biomolecules involved in cell communication and multiple physiological processes. EVs derived from certain cell types have been shown to exhibit anti-inflammatory, antioxidant, and angiogenic properties. This review provides an overview of EV-based therapeutics for I-R injury in kidneys, liver, heart, lungs, and brain. Additionally, the mechanisms by which EVs protect against I-R injury are discussed. Promising preclinical findings highlight the potential clinical use of EVs for I-R injury.
Collapse
Affiliation(s)
- Mojahid Ali
- Department of Cardiothoracic Surgery, Mayo Clinic, Jacksonville, Florida, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, Florida, USA
| | - Anthony Pham
- Department of Cardiothoracic Surgery, Mayo Clinic, Jacksonville, Florida, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, Florida, USA
| | - Xinghua Wang
- Department of Cardiothoracic Surgery, Mayo Clinic, Jacksonville, Florida, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, Florida, USA
| | - Joy Wolfram
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, Florida, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida, USA.,Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Si Pham
- Department of Cardiothoracic Surgery, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
36
|
Martinez-Arroyo O, Ortega A, Redon J, Cortes R. Therapeutic Potential of Extracellular Vesicles in Hypertension-Associated Kidney Disease. Hypertension 2020; 77:28-38. [PMID: 33222549 DOI: 10.1161/hypertensionaha.120.16064] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertension-mediated organ damage frequently includes renal function decline in which several mechanisms are involved. The present review outlines the state of the art on extracellular vesicles in hypertension and hypertension-related renal damage. Emerging evidence indicates that extracellular vesicles, small vesicles secreted by most cell types and body fluids, are involved in cell-to-cell communication and are key players mediating biological processes such as inflammation, endothelial dysfunction or fibrosis, mechanisms present the onset and progression of hypertension-associated kidney disease. We address the potential use of extracellular vesicles as markers of hypertension-mediated kidney damage severity and their application as therapeutic agents in hypertension-associated renal damage. The capacity of exosomes to deliver a wide variety of cargos to the target cell efficiently makes them a potential drug delivery system for treatment of renal diseases.
Collapse
Affiliation(s)
- Olga Martinez-Arroyo
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (O.M.-A., A.O., J.R., R.C.)
| | - Ana Ortega
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (O.M.-A., A.O., J.R., R.C.)
| | - Josep Redon
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (O.M.-A., A.O., J.R., R.C.).,Internal Medicine, Clinic Universitary Hospital, Valencia, Spain (J.R.).,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Minister of Health, Madrid, Spain (J.R.)
| | - Raquel Cortes
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (O.M.-A., A.O., J.R., R.C.)
| |
Collapse
|
37
|
Recent Advances in Extracellular Vesicles as Drug Delivery Systems and Their Potential in Precision Medicine. Pharmaceutics 2020; 12:pharmaceutics12111006. [PMID: 33105857 PMCID: PMC7690579 DOI: 10.3390/pharmaceutics12111006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bilayered nanoparticles released by most cell types. Recently, an enormous number of studies have been published on the potential of EVs as carriers of therapeutic agents. In contrast to systems such as liposomes, EVs exhibit less immunogenicity and higher engineering potential. Here, we review the most relevant publications addressing the potential and use of EVs as a drug delivery system (DDS). The information is divided based on the key steps for designing an EV-mediated delivery strategy. We discuss possible sources and isolation methods of EVs. We address the administration routes that have been tested in vivo and the tissue distribution observed. We describe the current knowledge on EV clearance, a significant challenge towards enhancing bioavailability. Also, EV-engineering approaches are described as alternatives to improve tissue and cell-specificity. Finally, a summary of the ongoing clinical trials is performed. Although the application of EVs in the clinical practice is still at an early stage, a high number of studies in animals support their potential as DDS. Thus, better treatment options could be designed to precisely increase target specificity and therapeutic efficacy while reducing off-target effects and toxicity according to the individual requirements of each patient.
Collapse
|
38
|
AKI: an increasingly recognized risk factor for CKD development and progression. J Nephrol 2020; 33:1171-1187. [PMID: 32651850 DOI: 10.1007/s40620-020-00793-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is an increasing health burden with high morbidity and mortality rates worldwide. AKI is a risk factor for chronic kidney disease (CKD) development and progression to end stage renal disease (ESRD). Rapid action is required to find treatment options for AKI, plus to anticipate the development of CKD and other complications. Therefore, it is essential to understand the pathophysiology of AKI to CKD transition. Over the last several years, research has revealed maladaptive repair to be an interplay of cell death, endothelial dysfunction, tubular epithelial cell senescence, inflammatory processes and more-terminating in fibrosis. Various pathological mechanisms have been discovered and reveal targets for potential interventions. Furthermore, there have been clinical efforts measures for AKI prevention and progression including the development of novel biomarkers and prediction models. In this review, we provide an overview of pathophysiological mechanisms involved in kidney fibrosis. Furthermore, we discuss research gaps and promising therapeutic approaches for AKI to CKD progression.
Collapse
|
39
|
Popowski K, Lutz H, Hu S, George A, Dinh PU, Cheng K. Exosome therapeutics for lung regenerative medicine. J Extracell Vesicles 2020; 9:1785161. [PMID: 32944172 PMCID: PMC7480570 DOI: 10.1080/20013078.2020.1785161] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are 30 to 100 nm extracellular vesicles that are secreted by many cell types. Initially viewed as cellular garbage with no biological functions, exosomes are now recognized for their therapeutic potential and used in regenerative medicine. Cell-derived exosomes are released into almost all biological fluids, making them abundant and accessible vesicles for a variety of diseases. These naturally occurring nanoparticles have a wide range of applications including drug delivery and regenerative medicine. Exosomes sourced from a specific tissue have been proven to provide greater therapeutic effects to their native tissue, expanding exosome sources beyond traditional cell lines such as mesenchymal stem cells. However, standardizing production and passing regulations remain obstacles, due to variations in methods and quantification techniques across studies. Additionally, obtaining pure exosomes at sufficient quantities remains difficult due to the heterogeneity of exosomes. In this review, we will underline the uses of exosomes as a therapy and their roles in lung regenerative medicine, as well as current challenges in exosome therapies.
Collapse
Affiliation(s)
- Kristen Popowski
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Halle Lutz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Arianna George
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Phuong-Uyen Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State
University, NC, USA
- Division of Pharmacoengineering and Molecular
Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC,
USA
| |
Collapse
|
40
|
Thongboonkerd V. Roles for Exosome in Various Kidney Diseases and Disorders. Front Pharmacol 2020; 10:1655. [PMID: 32082158 PMCID: PMC7005210 DOI: 10.3389/fphar.2019.01655] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Exosome is a nanoscale vesicle with a size range of 30–100 nm. It is secreted from cell to extracellular space by exocytosis after fusion of multivesicular body (MVB) (formed by endocytic vesicles) with plasma membrane. Exosome plays several important roles in cellular homeostasis and intercellular communications. During the last two decades, exosome has acquired a wide attention to explore its additional roles in various aspects of cell biology and function in several organ systems. For the kidney, several lines of evidence have demonstrated 1that exosome is involved in the renal physiology and pathogenic mechanisms of various kidney diseases/disorders. This article summarizes roles of the exosome as the potential source of biomarkers, pathogenic molecules, and therapeutic biologics that have been extensively investigated in many kidney diseases/disorders, including lupus nephritis (LN), other glomerular diseases, acute kidney injury (AKI), diabetic nephropathy (DN), as well as in the process of renal fibrosis and chronic kidney disease (CKD) progression, in addition to polycystic kidney disease (PKD), kidney transplantation, and renal cell carcinoma (RCC). Moreover, the most recent evidence has shown its emerging role in kidney stone disease (or nephrolithiasis), involving inflammasome activation and inflammatory cascade frequently found in kidney stone pathogenesis.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
41
|
Liu C, Wang J, Hu J, Fu B, Mao Z, Zhang H, Cai G, Chen X, Sun X. Extracellular vesicles for acute kidney injury in preclinical rodent models: a meta-analysis. Stem Cell Res Ther 2020; 11:11. [PMID: 31900218 PMCID: PMC6942291 DOI: 10.1186/s13287-019-1530-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction Extracellular vesicles (EVs), especially stem cell-derived EVs, have emerged as a potential novel therapy for acute kidney injury (AKI). However, their effects remain incompletely understood. Therefore, we performed this meta-analysis to systematically review the efficacy of EVs on AKI in preclinical rodent models. Methods We searched PubMed, EMBASE, and the Web of Science up to March 2019 to identify studies that reported the treatment effects of EVs in a rodent AKI model. The primary outcome was serum creatinine (Scr) levels. The secondary outcomes were the blood urea nitrogen (BUN) levels, renal injury score, percentage of apoptotic cells, and interleukin (IL)-10 and tumour necrosis factor (TNF)-α levels. Two authors independently screened articles based on the inclusion and exclusion criteria. The meta-analysis was conducted using RevMan 5.3 and R software. Results Thirty-one studies (n = 552) satisfied the inclusion criteria. Pooled analyses demonstrated that the levels of Scr (SMD = − 3.71; 95% CI = − 4.32, − 3.10; P < 0.01), BUN (SMD = − 3.68; 95% CI = − 4.42, − 2.94; P < 0.01), and TNF-α (SMD = − 2.65; 95% CI = − 4.98, − 0.32; P < 0.01); the percentage of apoptotic cells (SMD = − 6.25; 95% CI = − 8.10, − 4.39; P < 0.01); and the injury score (SMD = − 3.90; 95% CI = − 5.26, − 2.53; P < 0.01) were significantly decreased in the EV group, and the level of IL-10 (SMD = 2.10; 95% CI = 1.18, 3.02; P < 0.01) was significantly increased. Meanwhile, no significant difference was found between stem cell-derived EVs and stem cells. Conclusion The present meta-analysis confirmed that EV therapy could improve renal function and the inflammatory response status and reduce cell apoptosis in a preclinical rodent AKI model. This provides important clues for human clinical trials on EVs.
Collapse
Affiliation(s)
- Chao Liu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Jin Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Jie Hu
- Department of Critical Care Medicine, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, China.,Master Program of Medical Science in Clinical Investigation, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
| | - Bo Fu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Zhi Mao
- Department of Critical Care Medicine, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, China
| | - Hengda Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Xuefeng Sun
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China.
| |
Collapse
|
42
|
Liu X, Miao J, Wang C, Zhou S, Chen S, Ren Q, Hong X, Wang Y, Hou FF, Zhou L, Liu Y. Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis. Kidney Int 2019; 97:1181-1195. [PMID: 32139089 DOI: 10.1016/j.kint.2019.11.026] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles such as exosomes are involved in mediating cell-cell communication by shuttling an assortment of proteins and genetic information. Here, we tested whether renal tubule-derived exosomes play a central role in mediating kidney fibrosis. The production of exosomes was found to be increased in the early stage of unilateral ureteral obstruction, ischemia reperfusion injury or 5/6 nephrectomy models of kidney disease. Exosome production occurred primarily in renal proximal tubular epithelium and was accompanied by induction of sonic hedgehog (Shh). In vitro, upon stimulation with transforming growth factor-β1, kidney proximal tubular cells (HKC-8) increased exosome production. Purified exosomes from these cells were able to induce renal interstitial fibroblast (NRK-49F) activation. Conversely, pharmacologic inhibition of exosome secretion with dimethyl amiloride, depletion of exosome from the conditioned media or knockdown of Shh expression abolished the ability of transforming growth factor-β1-treated HKC-8 cells to induce NRK-49F activation. In vivo, injections of tubular cell-derived exosomes aggravated kidney injury and fibrosis, which was negated by an Shh signaling inhibitor. Blockade of exosome secretion in vivo ameliorated renal fibrosis after either ischemic or obstructive injury. Furthermore, knockdown of Rab27a, a protein that is essential for exosome formation, also preserved kidney function and attenuated renal fibrotic lesions in mice. Thus, our results suggest that tubule-derived exosomes play an essential role in renal fibrogenesis through shuttling Shh ligand. Hence, strategies targeting exosomes could be a new avenue in developing therapeutics against renal fibrosis.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cong Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuangqin Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Ren
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongping Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
43
|
Cobbs A, Chen X, Zhang Y, George J, Huang MB, Bond V, Thompson W, Zhao X. Saturated fatty acid stimulates production of extracellular vesicles by renal tubular epithelial cells. Mol Cell Biochem 2019; 458:113-124. [PMID: 30993495 PMCID: PMC7027953 DOI: 10.1007/s11010-019-03535-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
Lipotoxicity, an accumulation of intracellular lipid metabolites, has been proposed as an important pathogenic mechanism contributing to kidney dysfunction in the context of metabolic disease. Palmitic acid, a predominant lipid derivative, can cause lipoapoptosis and the release of inflammatory extracellular vesicles (EVs) in hepatocytes, but the effect of lipids on EV production in chronic kidney disease remains vaguely explored. This study was aimed to investigate whether palmitic acid would stimulate EV release from renal proximal tubular epithelial cells. Human and rat proximal tubular epithelial cells, HK-2 and NRK-52E, were incubated with 1% bovine serum albumin (BSA), BSA-conjugated palmitic acid (PA), and BSA-conjugated oleic acid (OA) for 24-48 h. The EVs released into conditioned media were isolated by ultracentrifugation and quantified by nanoparticle-tracking analysis (NTA). According to NTA, the size distribution of EVs was 30-150 nm with similar mode sizes in all experimental groups. Moreover, BSA-induced EV release was significantly enhanced in the presence of PA, whereas EV release was not altered by the addition of OA. In NRK-52E cells, PA-enhanced EV release was associated with an induction of cell apoptosis reflected by an increase in cleaved caspase-3 protein by Western blot and Annexin V positive cells analyzed by flow cytometry. Additionally, confocal microscopy confirmed the uptake of lipid-induced EVs by recipient renal proximal tubular cells. Collectively, our results indicate that PA stimulates EV release from cultured proximal tubular epithelial cells. Thus, extended characterization of lipid-induced EVs may constitute new signaling paradigms contributing to chronic kidney disease pathology.
Collapse
Affiliation(s)
- Alyssa Cobbs
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Xiaoming Chen
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Yuanyuan Zhang
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Jasmine George
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Ming-Bo Huang
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Vincent Bond
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Winston Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Xueying Zhao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| |
Collapse
|
44
|
Alzahrani FA. Melatonin improves therapeutic potential of mesenchymal stem cells-derived exosomes against renal ischemia-reperfusion injury in rats. Am J Transl Res 2019; 11:2887-2907. [PMID: 31217862 PMCID: PMC6556638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Renal ischemia-reperfusion injury (RIRI) is one of the main causes for acute kidney injury (AKI). Many previous attempts failed to adopt a suitable treatment regimen for AKI. Recently, combined melatonin (Mel) and mesenchymal stem cell (MSC)-derived exosomes (Exo) therapy gave a promising therapeutic option for acute liver ischemic injury, however this treatment approach has not been tested against RIRI yet. This study tested the hypothesis that administration of exosomes derived from MSCs preconditioned with Mel gave best protection against RIRI as compared to therapy by MSCs or exosomes derived from non-preconditioned MSCs. Female adult rats (n = 60) equally divided into control group, sham group, RIRI group (induced by bilateral renal arteries clamping), RIRI + MSCs group (1 × 106 bone marrow derived MSCs), RIRI + Exo group (250 μg Exo derived from no-preconditioned MSCs), and RIRI + Mel + Exo group (250 μg Exo derived from Mel preconditioned MSCs). MSCs or Exo was bilaterally injected once in each renal artery during reperfusion. The obtained results revealed notable improvement in RIRI following all treatment (MSCs, Exo, and Exo + Mel) with best improvement in Exo + Mel group as evidenced by: 1) decreased kidney injury histopathological score; 2) reduced blood levels of kidney damage markers [blood urea nitrogen (BUN) and creatinine]; 3) declined oxidative stress status (MDA level, HIF1α gene, and NOX2 protein); 4) increased anti-oxidant status (HO1 gene, and SOD, CAT, GPX activities); 5) declined apoptosis (caspase 3 activity and mRNA, and PARP1, Bax genes), 6) induced anti-apoptotic effect (Bcl2 gene); 7) inhibition of inflammation (decreased MPO activity and ICAM1, IL1B, NFkB genes and increased IL10 genes); 8) improved regeneration (bFGF, HGF and SOX9 proteins); and 9) enhanced angiogenesis (VEGF gene). These data indicate that treatment with exosomes derived from MSCs preconditioned with melatonin gave best protective effect against renal ischemia-reperfusion injury as compared to therapy by non-preconditioned MSCs or their exosomes.
Collapse
Affiliation(s)
- Faisal A Alzahrani
- Department of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University, Jeddah, Rabigh BranchRabigh 21589, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz UniversityJeddah 21589, Saudi Arabia
- Embryonic Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz UniversityJeddah 21589, Saudi Arabia
| |
Collapse
|
45
|
Lv LL, Feng Y, Tang TT, Liu BC. New insight into the role of extracellular vesicles in kidney disease. J Cell Mol Med 2018; 23:731-739. [PMID: 30585399 PMCID: PMC6349185 DOI: 10.1111/jcmm.14101] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/25/2022] Open
Abstract
Extracellular vesicles (EVs) are released to maintain cellular homeostasis as well as to mediate cell communication by spreading protective or injury signals to neighbour or remote cells. In kidney, increasing evidence support that EVs are signalling vesicles for different segments of tubules, intra‐glomerular, glomerular‐tubule and tubule‐interstitial communication. EVs released by kidney resident and infiltrating cells can be isolated from urine and were found to be promising biomarkers for kidney disease, reflecting deterioration of renal function and histological change. We have here summarized the recent progress about the functional role of EVs in kidney disease as well as challenges and future directions involved.
Collapse
Affiliation(s)
- Lin-Li Lv
- Zhongda Hospital, Institute of Nephrology, Southeast University School of Medicine, Nanjing, China
| | - Ye Feng
- Zhongda Hospital, Institute of Nephrology, Southeast University School of Medicine, Nanjing, China
| | - Tao-Tao Tang
- Zhongda Hospital, Institute of Nephrology, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Zhongda Hospital, Institute of Nephrology, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|