1
|
Torres-Rodríguez JV, Li D, Turkus J, Newton L, Davis J, Lopez-Corona L, Ali W, Sun G, Mural RV, Grzybowski MW, Zamft BM, Thompson AM, Schnable JC. Population-level gene expression can repeatedly link genes to functions in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:844-860. [PMID: 38812347 DOI: 10.1111/tpj.16801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Transcriptome-wide association studies (TWAS) can provide single gene resolution for candidate genes in plants, complementing genome-wide association studies (GWAS) but efforts in plants have been met with, at best, mixed success. We generated expression data from 693 maize genotypes, measured in a common field experiment, sampled over a 2-h period to minimize diurnal and environmental effects, using full-length RNA-seq to maximize the accurate estimation of transcript abundance. TWAS could identify roughly 10 times as many genes likely to play a role in flowering time regulation as GWAS conducted data from the same experiment. TWAS using mature leaf tissue identified known true-positive flowering time genes known to act in the shoot apical meristem, and trait data from a new environment enabled the identification of additional flowering time genes without the need for new expression data. eQTL analysis of TWAS-tagged genes identified at least one additional known maize flowering time gene through trans-eQTL interactions. Collectively these results suggest the gene expression resource described here can link genes to functions across different plant phenotypes expressed in a range of tissues and scored in different experiments.
Collapse
Affiliation(s)
- J Vladimir Torres-Rodríguez
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Delin Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Crop Gene Resource and Germplasm Enhancement, Key Laboratory of Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jonathan Turkus
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Linsey Newton
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Jensina Davis
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Lina Lopez-Corona
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Waqar Ali
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Guangchao Sun
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Advanced Diagnostic Laboratory, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Ravi V Mural
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Marcin W Grzybowski
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Bradley M Zamft
- X, The Moonshot Factory, Mountain View, California, 94043, USA
| | - Addie M Thompson
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
| | - James C Schnable
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
2
|
Romero JM, Serrano-Bueno G, Camacho-Fernández C, Vicente MH, Ruiz MT, Pérez-Castiñeira JR, Pérez-Hormaeche J, Nogueira FTS, Valverde F. CONSTANS, a HUB for all seasons: How photoperiod pervades plant physiology regulatory circuits. THE PLANT CELL 2024; 36:2086-2102. [PMID: 38513610 PMCID: PMC11132886 DOI: 10.1093/plcell/koae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
How does a plant detect the changing seasons and make important developmental decisions accordingly? How do they incorporate daylength information into their routine physiological processes? Photoperiodism, or the capacity to measure the daylength, is a crucial aspect of plant development that helps plants determine the best time of the year to make vital decisions, such as flowering. The protein CONSTANS (CO) constitutes the central regulator of this sensing mechanism, not only activating florigen production in the leaves but also participating in many physiological aspects in which seasonality is important. Recent discoveries place CO in the center of a gene network that can determine the length of the day and confer seasonal input to aspects of plant development and physiology as important as senescence, seed size, or circadian rhythms. In this review, we discuss the importance of CO protein structure, function, and evolutionary mechanisms that embryophytes have developed to incorporate annual information into their physiology.
Collapse
Affiliation(s)
- Jose M Romero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Gloria Serrano-Bueno
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Carolina Camacho-Fernández
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
- Universidad Politécnica de Valencia, Vicerrectorado de Investigación, 46022 Valencia, Spain
| | - Mateus Henrique Vicente
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900 São Paulo, Brazil
| | - M Teresa Ruiz
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| | - J Román Pérez-Castiñeira
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Javier Pérez-Hormaeche
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900 São Paulo, Brazil
| | - Federico Valverde
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| |
Collapse
|
3
|
Zhao H, Huang X, Yang Z, Li F, Ge X. Synergistic optimization of crops by combining early maturation with other agronomic traits. TRENDS IN PLANT SCIENCE 2023; 28:1178-1191. [PMID: 37208203 DOI: 10.1016/j.tplants.2023.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
Many newly created early maturing varieties exhibit poor stress resistance and low yield, whereas stress-resistant varieties are typically late maturing. For this reason, the polymerization of early maturity and other desired agronomic qualities requires overcoming the negative connection between early maturity, multi-resistance, and yield, which presents a formidable challenge in current breeding techniques. We review the most salient constraints of early maturity breeding in current crop planting practices and the molecular mechanisms of different maturation timeframes in diverse crops from their origin center to production areas. We explore current breeding tactics and the future direction of crop breeding and the issues that must be resolved to accomplish the polymerization of desirable traits in light of the current obstacles and limitations.
Collapse
Affiliation(s)
- Hang Zhao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Zhaoen Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100 Xinjiang, China; Hainan Yazhou Bay Seed Lab, Sanya 572000, Hainan, China.
| | - Xiaoyang Ge
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100 Xinjiang, China; Hainan Yazhou Bay Seed Lab, Sanya 572000, Hainan, China.
| |
Collapse
|
4
|
Wang H, Liu S, Ma S, Wang Y, Yang H, Liu J, Li M, Cui X, Liang S, Cheng Q, Shen H. Characterization of the Molecular Events Underlying the Establishment of Axillary Meristem Region in Pepper. Int J Mol Sci 2023; 24:12718. [PMID: 37628899 PMCID: PMC10454251 DOI: 10.3390/ijms241612718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Plant architecture is a major motif of plant diversity, and shoot branching patterns primarily determine the aerial architecture of plants. In this study, we identified an inbred pepper line with fewer lateral branches, 20C1734, which was free of lateral branches at the middle and upper nodes of the main stem with smooth and flat leaf axils. Successive leaf axil sections confirmed that in normal pepper plants, for either node n, Pn (Primordium n) < 1 cm and Pn+1 < 1 cm were the critical periods between the identification of axillary meristems and the establishment of the region, whereas Pn+3 < 1 cm was fully developed and formed a completely new organ. In 20C1734, the normal axillary meristematic tissue region establishment and meristematic cell identity confirmation could not be performed on the axils without axillary buds. Comparative transcriptome analysis revealed that "auxin-activated signaling pathway", "response to auxin", "response to abscisic acid", "auxin biosynthetic process", and the biosynthesis of the terms/pathways, such as "secondary metabolites", were differentially enriched in different types of leaf axils at critical periods of axillary meristem development. The accuracy of RNA-seq was verified using RT-PCR for some genes in the pathway. Several differentially expressed genes (DEGs) related to endogenous phytohormones were targeted, including several genes of the PINs family. The endogenous hormone assay showed extremely high levels of IAA and ABA in leaf axils without axillary buds. ABA content in particular was unusually high. At the same time, there is no regular change in IAA level in this type of leaf axils (normal leaf axils will be accompanied by AM formation and IAA content will be low). Based on this, we speculated that the contents of endogenous hormones IAA and ABA in 20C1734 plant increased sharply, which led to the abnormal expression of genes in related pathways, which affected the formation of Ams in leaf axils in the middle and late vegetative growth period, and finally, nodes without axillary buds and side branches appeared.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Sujun Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Shijie Ma
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Yun Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Hanyu Yang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Jiankun Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Mingxuan Li
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Xiangyun Cui
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Sun Liang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Qing Cheng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Huolin Shen
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
| |
Collapse
|
5
|
Wang N, Ryan L, Sardesai N, Wu E, Lenderts B, Lowe K, Che P, Anand A, Worden A, van Dyk D, Barone P, Svitashev S, Jones T, Gordon-Kamm W. Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum. NATURE PLANTS 2023; 9:255-270. [PMID: 36759580 PMCID: PMC9946824 DOI: 10.1038/s41477-022-01338-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 05/28/2023]
Abstract
Transformation in grass species has traditionally relied on immature embryos and has therefore been limited to a few major Poaceae crops. Other transformation explants, including leaf tissue, have been explored but with low success rates, which is one of the major factors hindering the broad application of genome editing for crop improvement. Recently, leaf transformation using morphogenic genes Wuschel2 (Wus2) and Babyboom (Bbm) has been successfully used for Cas9-mediated mutagenesis, but complex genome editing applications, requiring large numbers of regenerated plants to be screened, remain elusive. Here we demonstrate that enhanced Wus2/Bbm expression substantially improves leaf transformation in maize and sorghum, allowing the recovery of plants with Cas9-mediated gene dropouts and targeted gene insertion. Moreover, using a maize-optimized Wus2/Bbm construct, embryogenic callus and regenerated plantlets were successfully produced in eight species spanning four grass subfamilies, suggesting that this may lead to a universal family-wide method for transformation and genome editing across the Poaceae.
Collapse
Affiliation(s)
- Ning Wang
- Corteva Agriscience, Johnston, IA, USA
| | | | | | - Emily Wu
- Corteva Agriscience, Johnston, IA, USA
| | | | | | - Ping Che
- Corteva Agriscience, Johnston, IA, USA
| | - Ajith Anand
- Corteva Agriscience, Johnston, IA, USA
- MyFloraDNA, Woodland, CA, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Li B, Wang Z, Jiang H, Luo JH, Guo T, Tian F, Rossi V, He Y. ZmCCT10-relayed photoperiod sensitivity regulates natural variation in the arithmetical formation of male germinal cells in maize. THE NEW PHYTOLOGIST 2023; 237:585-600. [PMID: 36266961 DOI: 10.1111/nph.18559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Extensive mutational screening studies have documented genes regulating anther and pollen development. Knowledge concerning how formation of male germinal cell is arithmetically controlled in natural populations, under different environmental conditions, is lacking. We counted pollen number within a single anther and a maize-teosinte BC2 S3 recombinant inbred line population to identify ZmCCT10 as a major determinant of pollen number variation. ZmCCT10 was originally identified as a photoperiod-sensitive negative regulator of flowering. ZmCCT10 inactivation, after transposon insertion within its promoter, is proposed to have accelerated maize spread toward higher latitudes, thus allowing temperate maize to flower under long-day conditions. We showed that the active ZmCCT10 allele decreased pollen formation. As different active and inactive ZmCCT10 alleles have been found in natural maize populations, this represents the first report of a gene controlling pollen number in a crop natural population. These findings suggest that higher pollen number, which provides a competitive advantage in open-pollinated populations, may have been one of the major driving forces for the selection of an inactive ZmCCT10 allele during tropical maize domestication. We provide evidence that ZmCCT10 has opposite effects on cell proliferation of archesporial and tapetum cells and it modulates expression of key regulators during early anther development.
Collapse
Affiliation(s)
- Bo Li
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Zi Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Huan Jiang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Jin-Hong Luo
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Ting Guo
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Feng Tian
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Vincenzo Rossi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, 24126, Italy
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
7
|
Li Y, Sun W, Wang Z, Wan C, Zhang J, Qi X, Zhang J. SDG102, a H3K36-Methyltransferase-Encoding Gene, Plays Pleiotropic Roles in Growth and Development of Maize ( Zea mays L.). Int J Mol Sci 2022; 23:ijms23137458. [PMID: 35806471 PMCID: PMC9267571 DOI: 10.3390/ijms23137458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Although histone lysine methylation has been studied in thale cress (Arabidopsis thaliana (L.) Heynh.) and rice (Oryza sativa L.) in recent years, its function in maize (Zea mays L.) remains poorly characterized. To better understand the function of histone lysine methylation in maize, SDG102, a H3 lysine 36 (H3K36) methylase, was chosen for functional characterization using overexpressed and knockout transgenic plants. SDG102-deficiency in maize caused multiple phenotypes including yellow leaves in seedlings, late-flowering, and increased adult plant height, while the overexpression of SDG102 led to reduced adult plant height. The key flowering genes, ZCN8/ZCN7 and MADS4/MADA67, were downregulated in SDG102-deficient plants. Chromatin immunoprecipitation (ChIP) experiments showed that H3 lysine 36 trimethylation (H3K36me3) levels were reduced at these loci. Perturbation of SDG102 expression caused the misexpression of multiple genes. Interestingly, the overexpression or knockout of SDG102 also led to genome-wide decreases and increases in the H3K36me3 levels, respectively. Together, our results suggest that SDG102 is a methyltransferase that catalyzes the trimethylation of H3K36 of many genes across the maize genome, which are involved in multiple biological processes including those controlling flowering time.
Collapse
Affiliation(s)
- Yongjian Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Weifeng Sun
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Chang Wan
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Jun Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Xin Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
- Correspondence: (X.Q.); (J.Z.)
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
- Department of Biology, University of British Columbia, Okanagan, Kelowna, BC V1V 1V7, Canada
- Correspondence: (X.Q.); (J.Z.)
| |
Collapse
|
8
|
Michel KJ, Lima DC, Hundley H, Singan V, Yoshinaga Y, Daum C, Barry K, Broman KW, Buell CR, de Leon N, Kaeppler SM. Genetic mapping and prediction of flowering time and plant height in a maize Stiff Stalk MAGIC population. Genetics 2022; 221:6571196. [PMID: 35441688 PMCID: PMC9157087 DOI: 10.1093/genetics/iyac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/08/2022] [Indexed: 11/12/2022] Open
Abstract
The Stiff Stalk heterotic pool is a foundation of US maize seed parent germplasm and has been heavily utilized by both public and private maize breeders since its inception in the 1930's. Flowering time and plant height are critical characteristics for both inbred parents and their test crossed hybrid progeny. To study these traits, a six parent multiparent advanced generation intercross (MAGIC) population was developed including maize inbred lines B73, B84, PHB47 (B37 type), LH145 (B14 type), PHJ40 (novel early Stiff Stalk), and NKH8431 (B73/B14 type). A set of 779 doubled haploid lines were evaluated for flowering time and plant height in two field replicates in 2016 and 2017, and a subset of 689 and 561 doubled haploid lines were crossed to two testers, respectively, and evaluated as hybrids in two locations in 2018 and 2019 using an incomplete block design. Markers were derived from a Practical Haplotype Graph built from the founder whole genome assemblies and genotype-by-sequencing and exome capture-based sequencing of the population. Genetic mapping utilizing an update to R/qtl2 revealed differing profiles of significant loci for both traits between 635 of the DH lines and two sets of 570 and 471 derived hybrids. Genomic prediction was used to test the feasibility of predicting hybrid phenotypes based on the per se data. Predictive abilities were highest on direct models trained using the data they would predict (0.55 to 0.63), and indirect models trained using per se data to predict hybrid traits had slightly lower predictive abilities (0.49 to 0.55). Overall, this finding is consistent with the overlapping and non-overlapping significant QTL found within the per se and hybrid populations and suggests that selections for phenology traits can be made effectively on doubled haploid lines before hybrid data is available.
Collapse
Affiliation(s)
- Kathryn J Michel
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dayane C Lima
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hope Hundley
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Vasanth Singan
- Ambry Genetics, 1 Enterprise, Aliso Viejo, CA-92656, USA.,U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Yuko Yoshinaga
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Karl W Broman
- Departments of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI 53706, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.,Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.,Center for Applied Genetic Technologies, Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA.,Wisconsin Crop Innovation Center, University of Wisconsin-Madison, Middleton, WI 53562, USA
| |
Collapse
|
9
|
G. Viana W, Scharwies JD, Dinneny JR. Deconstructing the root system of grasses through an exploration of development, anatomy and function. PLANT, CELL & ENVIRONMENT 2022; 45:602-619. [PMID: 35092025 PMCID: PMC9303260 DOI: 10.1111/pce.14270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 05/16/2023]
Abstract
Well-adapted root systems allow plants to grow under resource-limiting environmental conditions and are important determinants of yield in agricultural systems. Important staple crops such as rice and maize belong to the family of grasses, which develop a complex root system that consists of an embryonic root system that emerges from the seed, and a postembryonic nodal root system that emerges from basal regions of the shoot after germination. While early seedling establishment is dependent on the embryonic root system, the nodal root system, and its associated branches, gains in importance as the plant matures and will ultimately constitute the bulk of below-ground growth. In this review, we aim to give an overview of the different root types that develop in cereal grass root systems, explore the different physiological roles they play by defining their anatomical features, and outline the genetic networks that control their development. Through this deconstructed view of grass root system function, we provide a parts-list of elements that function together in an integrated root system to promote survival and crop productivity.
Collapse
Affiliation(s)
| | | | - José R. Dinneny
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
10
|
Carvalho RF, Aguiar-Perecin MLR, Clarindo WR, Fristche-Neto R, Mondin M. A Heterochromatic Knob Reducing the Flowering Time in Maize. Front Genet 2022; 12:799681. [PMID: 35280927 PMCID: PMC8908004 DOI: 10.3389/fgene.2021.799681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Maize flowering time is an important agronomic trait, which has been associated with variations in the genome size and heterochromatic knobs content. We integrated three steps to show this association. Firstly, we selected inbred lines varying for heterochromatic knob composition at specific sites in the homozygous state. Then, we produced homozygous and heterozygous hybrids for knobs. Second, we measured the genome size and flowering time for all materials. Knob composition did not affect the genome size and flowering time. Finally, we developed an association study and identified a knob marker on chromosome 9 showing the strongest association with flowering time. Indeed, modelling allele substitution and dominance effects could offer only one heterochromatic knob locus that could affect flowering time, making it earlier rather than the knob composition.
Collapse
Affiliation(s)
- Renata Flávia Carvalho
- “Luiz de Queiroz” College of Agriculture, ESALQ, University of São Paulo, Piracicaba, Brazil
| | | | | | - Roberto Fristche-Neto
- “Luiz de Queiroz” College of Agriculture, ESALQ, University of São Paulo, Piracicaba, Brazil
- International Rice Research Institute (IRRI) - Breeding Analytics and Data, Management Unit, Laguna, Philippines
| | - Mateus Mondin
- “Luiz de Queiroz” College of Agriculture, ESALQ, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
11
|
Abraham-Juárez MJ, Barnes AC, Aragón-Raygoza A, Tyson D, Kur A, Strable J, Rellán-Álvarez R. The arches and spandrels of maize domestication, adaptation, and improvement. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102124. [PMID: 34715472 DOI: 10.1016/j.pbi.2021.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
People living in the Balsas River basin in southwest México domesticated maize from the bushy grass teosinte. Nine thousand years later, in 2021, Ms. Deb Haaland - a member of the Pueblo of Laguna tribe of New Mexico - wore a dress adorned with a cornstalk when she was sworn in as the Secretary of Interior of the United States of America. This choice of garment highlights the importance of the coevolution of maize and the farmers who, through careful selection over thousands of years, domesticated maize and adapted the physiology and shoot architecture of maize to fit local environments and growth habits. Some traits such as tillering were directly selected on (arches), and others such as tassel size are the by-products (spandrels) of maize evolution. Here, we review current knowledge of the underlying cellular, developmental, physiological, and metabolic processes that were selected by farmers and breeders, which have positioned maize as a top global staple crop.
Collapse
Affiliation(s)
- María Jazmín Abraham-Juárez
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Irapuato, 36821, Mexico
| | - Allison C Barnes
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alejandro Aragón-Raygoza
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA; Unidad de Genómica Avanzada, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Guanajuato, Mexico
| | - Destiny Tyson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Andi Kur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Josh Strable
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Rubén Rellán-Álvarez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
12
|
Simmons CR, Lafitte HR, Reimann KS, Brugière N, Roesler K, Albertsen MC, Greene TW, Habben JE. Successes and insights of an industry biotech program to enhance maize agronomic traits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110899. [PMID: 33902858 DOI: 10.1016/j.plantsci.2021.110899] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 05/18/2023]
Abstract
Corteva Agriscience™ ran a discovery research program to identify biotech leads for improving maize Agronomic Traits such as yield, drought tolerance, and nitrogen use efficiency. Arising from many discovery sources involving thousands of genes, this program generated over 3331 DNA cassette constructs involving a diverse set of circa 1671 genes, whose transformed maize events were field tested from 2000 to 2018 under managed environments designed to evaluate their potential for commercialization. We demonstrate that a subgroup of these transgenic events improved yield in field-grown elite maize breeding germplasm. A set of at least 22 validated gene leads are identified and described which represent diverse molecular and physiological functions. These leads illuminate sectors of biology that could guide crop improvement in maize and perhaps other crops. In this review and interpretation, we share some of our approaches and results, and key lessons learned in discovering and developing these maize Agronomic Traits leads.
Collapse
Affiliation(s)
- Carl R Simmons
- Corteva Agriscience, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA.
| | - H Renee Lafitte
- Corteva Agriscience, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Kellie S Reimann
- Corteva Agriscience, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Norbert Brugière
- Corteva Agriscience, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Keith Roesler
- Corteva Agriscience, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Marc C Albertsen
- Corteva Agriscience, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Thomas W Greene
- Corteva Agriscience, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Jeffrey E Habben
- Corteva Agriscience, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| |
Collapse
|
13
|
Arefian M, Bhagya N, Prasad TSK. Phosphorylation-mediated signalling in flowering: prospects and retrospects of phosphoproteomics in crops. Biol Rev Camb Philos Soc 2021; 96:2164-2191. [PMID: 34047006 DOI: 10.1111/brv.12748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022]
Abstract
Protein phosphorylation is a major post-translational modification, regulating protein function, stability, and subcellular localization. To date, annotated phosphorylation data are available mainly for model organisms and humans, despite the economic importance of crop species and their large kinomes. Our understanding of the phospho-regulation of flowering in relation to the biology and interaction between the pollen and pistil is still significantly lagging, limiting our knowledge on kinase signalling and its potential applications to crop production. To address this gap, we bring together relevant literature that were previously disconnected to present an overview of the roles of phosphoproteomic signalling pathways in modulating molecular and cellular regulation within specific tissues at different morphological stages of flowering. This review is intended to stimulate research, with the potential to increase crop productivity by providing a platform for novel molecular tools.
Collapse
Affiliation(s)
- Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - N Bhagya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| |
Collapse
|
14
|
Over-Expression of Endogenous SUGARWIN Genes Exalted Tolerance against Colletotrichum Infection in Sugarcane. PLANTS 2021; 10:plants10050869. [PMID: 33925956 PMCID: PMC8146068 DOI: 10.3390/plants10050869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022]
Abstract
Sugarcane being the major contributor of sugar and potential source of biofuel around the globe, occupies significant commercial importance. Red rot is the most devastating disease of sugarcane, severely affecting its quality as well as yield. Here we report the overexpression of SUGARWIN1 and SUGARWIN2 genes in any field crop for the first time. For this purpose, SUGAWIN1 and SUGARWIN2 were cloned downstream of maize ubiquitin (Ubi-1) promoter to construct two independent expression cassettes. The bar gene conferring resistance against phosphinothricin was used as selectable marker. Embryogenic calli of sugarcane were bombarded with both expression cassettes and selected on regeneration medium supplemented with phosphinothricin. The phosphinothricin-resistant shoots were rooted and then, analyzed using molecular tools at the genomic as well as transcriptomic levels. The transcriptomic analysis, using real time qPCR, showed that expression of SUGARWIN1 (SWO) and SUGARWIN2 (SWT) was higher in transgenic plants as compared to untransformed plants. Our results further demonstrated that over expression of these genes under maize ubiquitin (Ubi-1) promoter causes significant restriction in proliferation of red rot causal agent, Colletotrichum falcatum in sugarcane transgenic plants, under in vitro conditions. This report may open up exciting possibilities to extend this technology to other monocots for the development of crops with better ability to withstand fungal pathogens.
Collapse
|
15
|
Wang C, Yang X, Li G. Molecular Insights into Inflorescence Meristem Specification for Yield Potential in Cereal Crops. Int J Mol Sci 2021; 22:3508. [PMID: 33805287 PMCID: PMC8037405 DOI: 10.3390/ijms22073508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Flowering plants develop new organs throughout their life cycle. The vegetative shoot apical meristem (SAM) generates leaf whorls, branches and stems, whereas the reproductive SAM, called the inflorescence meristem (IM), forms florets arranged on a stem or an axis. In cereal crops, the inflorescence producing grains from fertilized florets makes the major yield contribution, which is determined by the numbers and structures of branches, spikelets and florets within the inflorescence. The developmental progression largely depends on the activity of IM. The proper regulations of IM size, specification and termination are outcomes of complex interactions between promoting and restricting factors/signals. Here, we focus on recent advances in molecular mechanisms underlying potential pathways of IM identification, maintenance and differentiation in cereal crops, including rice (Oryza sativa), maize (Zea mays), wheat (Triticum aestivum), and barley (Hordeum vulgare), highlighting the researches that have facilitated grain yield by, for example, modifying the number of inflorescence branches. Combinatorial functions of key regulators and crosstalk in IM determinacy and specification are summarized. This review delivers the knowledge to crop breeding applications aiming to the improvements in yield performance and productivity.
Collapse
Affiliation(s)
- Chengyu Wang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Campus, The University of Adelaide, Glen Osmond, SA 5064, Australia;
| | - Gang Li
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Campus, The University of Adelaide, Glen Osmond, SA 5064, Australia;
| |
Collapse
|
16
|
Hostetler AN, Khangura RS, Dilkes BP, Sparks EE. Bracing for sustainable agriculture: the development and function of brace roots in members of Poaceae. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101985. [PMID: 33418403 DOI: 10.1016/j.pbi.2020.101985] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 05/28/2023]
Abstract
Optimization of crop production requires root systems to function in water uptake, nutrient use, and anchorage. In maize, two types of nodal roots-subterranean crown and aerial brace roots function in anchorage and water uptake and preferentially express multiple water and nutrient transporters. Brace root development shares genetic control with juvenile-to-adult phase change and flowering time. We present a comprehensive list of the genes known to alter brace roots and explore these as candidates for QTL studies in maize and sorghum. Brace root development and function may be conserved in other members of Poaceae, however research is limited. This work highlights the critical knowledge gap of aerial nodal root development and function and suggests new focus areas for breeding resilient crops.
Collapse
Affiliation(s)
- Ashley N Hostetler
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, United States
| | - Rajdeep S Khangura
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Brian P Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Erin E Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, United States.
| |
Collapse
|
17
|
Wang G, Wang C, Lu G, Wang W, Mao G, Habben JE, Song C, Wang J, Chen J, Gao Y, Liu J, Greene TW. Knockouts of a late flowering gene via CRISPR-Cas9 confer early maturity in rice at multiple field locations. PLANT MOLECULAR BIOLOGY 2020; 104:137-150. [PMID: 32623622 DOI: 10.1007/s11103-020-01031-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
OsGhd7 gene was discovered by screening our rice activation tagging population. CRISPR-Cas9 created knockouts of OsGhd7 conferred early flowering and early maturity in rice varieties across multiple geographical locations in China. Our research shows that OsGhd7 is a good target for breeding early maturity rice varieties, and an excellent example of the advantages of applying the CRISPR-Cas9 technology for trait improvement. Flowering time (heading date) is an important trait for crop cultivation and yield. In this study, we discovered a late flowering gene OsGhd7 by screening our rice activation tagging population, and demonstrated that overexpression of OsGhd7 delayed flowering time in rice, and the delay in flowering time depended on the transgene expression level. OsGhd7 is a functional allele of the Ghd7 gene family; knockouts of OsGhd7 generated by CRISPR-Cas9 significantly accelerated flowering time and the earliness of the flowering time depended on field location. The homozygous OsGhd7 knockout lines showed approximately 8, 10, and 20 days earlier flowering than controls at three different locations in China (Changsha City, Sanya City, and Beijing City, respectively) that varied from 18.25° N to 39.90° N. Furthermore, knockouts of OsGhd7 also showed an early flowering phenotype in different rice varieties, indicating OsGhd7 can be used as a common target gene for using the CRISPR technology to modulate rice flowering time. The importance of OsGhd7 and CRISPR technology for breeding early maturity rice varieties are discussed.
Collapse
Affiliation(s)
- Guokui Wang
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Changgui Wang
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Guihua Lu
- Corteva™ Agriscience, Johnston, IA, USA.
| | - Wei Wang
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Guanfan Mao
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | | | - Chao Song
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Jiantao Wang
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Jian Chen
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Yang Gao
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Junhua Liu
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China.
| | | |
Collapse
|
18
|
Maize adaptation across temperate climates was obtained via expression of two florigen genes. PLoS Genet 2020; 16:e1008882. [PMID: 32673315 DOI: 10.1371/journal.pgen.1008882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 07/28/2020] [Accepted: 05/22/2020] [Indexed: 11/19/2022] Open
Abstract
Expansion of the maize growing area was central for food security in temperate regions. In addition to the suppression of the short-day requirement for floral induction, it required breeding for a large range of flowering time that compensates the effect of South-North gradients of temperatures. Here we show the role of a novel florigen gene, ZCN12, in the latter adaptation in cooperation with ZCN8. Strong eQTLs of ZCN8 and ZCN12, measured in 327 maize lines, accounted for most of the genetic variance of flowering time in platform and field experiments. ZCN12 had a strong effect on flowering time of transgenic Arabidopsis thaliana plants; a path analysis showed that it directly affected maize flowering time together with ZCN8. The allelic composition at ZCN QTLs showed clear signs of selection by breeders. This suggests that florigens played a central role in ensuring a large range of flowering time, necessary for adaptation to temperate areas.
Collapse
|
19
|
Shi Y, Zhao X, Guo S, Dong S, Wen Y, Han Z, Jin W, Chen Y. ZmCCA1a on Chromosome 10 of Maize Delays Flowering of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:78. [PMID: 32153606 PMCID: PMC7044342 DOI: 10.3389/fpls.2020.00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/20/2020] [Indexed: 06/01/2023]
Abstract
Maize (Zea mays) is a major cereal crop that originated at low latitudes, and thus photoperiod sensitivity is an important barrier to the use of tropical/subtropical germplasm in temperate regions. However, studies of the mechanisms underlying circadian regulation in maize are at an early stage. In this study we cloned ZmCCA1a on chromosome 10 of maize by map-based cloning. The gene is homologous to the Myb transcription factor genes AtCCA1/AtLHY in Arabidopsis thaliana; the deduced Myb domain of ZmCCA1a showed high similarity with that of AtCCA1/AtLHY and ZmCCA1b. Transiently or constitutively expressed ZmCCA1a-YFPs were localized to nuclei of Arabidopsis mesophyll protoplasts, agroinfiltrated tobacco leaves, and leaf and root cells of transgenic seedlings of Arabidopsis thaliana. Unlike AtCCA1/AtLHY, ZmCCA1a did not form homodimers nor interact with ZmCCA1b. Transcripts of ZmCCA1a showed circadian rhythm with peak expression around sunrise in maize inbred lines CML288 (photoperiod sensitive) and Huangzao 4 (HZ4; photoperiod insensitive). Under short days, transcription of ZmCCA1a in CML288 and HZ4 was repressed compared with that under long days, whereas the effect of photoperiod on ZmCCA1a expression was moderate in HZ4. In ZmCCA1a-overexpressing A. thaliana (ZmCCA1a-ox) lines, the circadian rhythm was disrupted under constant light and flowering was delayed under long days, but the hypocotyl length was not affected. In addition, expression of endogenous AtCCA1/AtLHY and the downstream genes AtGI, AtCO, and AtFt was repressed in ZmCCA1a-ox seedlings. The present results suggest that the function of ZmCCA1a is similar, at least in part, to that of AtCCA1/AtLHY and ZmCCA1b, implying that ZmCCA1a is likely to be an important component of the circadian clock pathway in maize.
Collapse
Affiliation(s)
- Yong Shi
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Xiyong Zhao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Sha Guo
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Shifeng Dong
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yanpeng Wen
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zanping Han
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Weihuan Jin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yanhui Chen
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|