1
|
Clark TW, Tregoning JS, Lister H, Poletti T, Amin F, Nguyen-Van-Tam JS. Recent advances in the influenza virus vaccine landscape: a comprehensive overview of technologies and trials. Clin Microbiol Rev 2024:e0002524. [PMID: 39360831 DOI: 10.1128/cmr.00025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
SUMMARYIn the United Kingdom (UK) in 2022/23, influenza virus infections returned to the levels recorded before the COVID-19 pandemic, exerting a substantial burden on an already stretched National Health Service (NHS) through increased primary and emergency care visits and subsequent hospitalizations. Population groups ≤4 years and ≥65 years of age, and those with underlying health conditions, are at the greatest risk of influenza-related hospitalization. Recent advances in influenza virus vaccine technologies may help to mitigate this burden. This review aims to summarize advances in the influenza virus vaccine landscape by describing the different technologies that are currently in use in the UK and more widely. The review also describes vaccine technologies that are under development, including mRNA, and universal influenza virus vaccines which aim to provide broader or increased protection. This is an exciting and important era for influenza virus vaccinations, and advances are critical to protect against a disease that still exerts a substantial burden across all populations and disproportionately impacts the most vulnerable, despite it being over 80 years since the first influenza virus vaccines were deployed.
Collapse
Affiliation(s)
- Tristan W Clark
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
2
|
Brown DW, Wee P, Bhandari P, Bukhari A, Grin L, Vega H, Hejazi M, Sosnowski D, Ablack J, Clancy EK, Pink D, Kumar J, Solis Ares MP, Lamb S, Quevedo R, Rawal B, Elian F, Rana N, Morales L, Govindasamy N, Todd B, Delmage A, Gupta S, McMullen N, MacKenzie D, Beatty PH, Garcia H, Parmar M, Gyoba J, McAllister C, Scholz M, Duncan R, Raturi A, Lewis JD. Safe and effective in vivo delivery of DNA and RNA using proteolipid vehicles. Cell 2024; 187:5357-5375.e24. [PMID: 39260374 DOI: 10.1016/j.cell.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/08/2024] [Accepted: 07/12/2024] [Indexed: 09/13/2024]
Abstract
Genetic medicines show promise for treating various diseases, yet clinical success has been limited by tolerability, scalability, and immunogenicity issues of current delivery platforms. To overcome these, we developed a proteolipid vehicle (PLV) by combining features from viral and non-viral approaches. PLVs incorporate fusion-associated small transmembrane (FAST) proteins isolated from fusogenic orthoreoviruses into a well-tolerated lipid formulation, using scalable microfluidic mixing. Screening a FAST protein library, we identified a chimeric FAST protein with enhanced membrane fusion activity that improved gene expression from an optimized lipid formulation. Systemically administered FAST-PLVs showed broad biodistribution and effective mRNA and DNA delivery in mouse and non-human primate models. FAST-PLVs show low immunogenicity and maintain activity upon repeat dosing. Systemic administration of follistatin DNA gene therapy with FAST-PLVs raised circulating follistatin levels and significantly increased muscle mass and grip strength. These results demonstrate the promising potential of FAST-PLVs for redosable gene therapies and genetic medicines.
Collapse
Affiliation(s)
- Douglas W Brown
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Ping Wee
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Prakash Bhandari
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Amirali Bukhari
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Liliya Grin
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Hector Vega
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Maryam Hejazi
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Deborah Sosnowski
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jailal Ablack
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada; OncoSenX, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA
| | - Eileen K Clancy
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Desmond Pink
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jitendra Kumar
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | | | - Suellen Lamb
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Rodrigo Quevedo
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Bijal Rawal
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Fahed Elian
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Natasha Rana
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Luis Morales
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Natasha Govindasamy
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Brendan Todd
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Angela Delmage
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Somnath Gupta
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Nichole McMullen
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Duncan MacKenzie
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Perrin H Beatty
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Henry Garcia
- Oisin Biotechnologies, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA
| | - Manoj Parmar
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Jennifer Gyoba
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Chandra McAllister
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Matthew Scholz
- Oisin Biotechnologies, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA
| | - Roy Duncan
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Arun Raturi
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada.
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada; OncoSenX, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA; Oisin Biotechnologies, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA.
| |
Collapse
|
3
|
Widge AT, Hofstetter AR, Houser KV, Awan SF, Chen GL, Florez MCB, Berkowitz NM, Mendoza F, Hendel CS, Holman LA, Gordon IJ, Apte P, Liang CJ, Gaudinski MR, Coates EE, Strom L, Wycuff D, Vazquez S, Stein JA, Gall JG, Adams WC, Carlton K, Gillespie RA, Creanga A, Crank MC, Andrews SF, Castro M, Serebryannyy LA, Narpala SR, Hatcher C, Lin BC, O’Connell S, Freyn AW, Rosado VC, Nachbagauer R, Palese P, Kanekiyo M, McDermott AB, Koup RA, Dropulic LK, Graham BS, Mascola JR, Ledgerwood JE. An influenza hemagglutinin stem nanoparticle vaccine induces cross-group 1 neutralizing antibodies in healthy adults. Sci Transl Med 2023; 15:eade4790. [PMID: 37075129 PMCID: PMC10619166 DOI: 10.1126/scitranslmed.ade4790] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
Influenza vaccines could be improved by platforms inducing cross-reactive immunity. Immunodominance of the influenza hemagglutinin (HA) head in currently licensed vaccines impedes induction of cross-reactive neutralizing stem-directed antibodies. A vaccine without the variable HA head domain has the potential to focus the immune response on the conserved HA stem. This first-in-human dose-escalation open-label phase 1 clinical trial (NCT03814720) tested an HA stabilized stem ferritin nanoparticle vaccine (H1ssF) based on the H1 HA stem of A/New Caledonia/20/1999. Fifty-two healthy adults aged 18 to 70 years old enrolled to receive either 20 μg of H1ssF once (n = 5) or 60 μg of H1ssF twice (n = 47) with a prime-boost interval of 16 weeks. Thirty-five (74%) 60-μg dose participants received the boost, whereas 11 (23%) boost vaccinations were missed because of public health restrictions in the early stages of the COVID-19 pandemic. The primary objective of this trial was to evaluate the safety and tolerability of H1ssF, and the secondary objective was to evaluate antibody responses after vaccination. H1ssF was safe and well tolerated, with mild solicited local and systemic reactogenicity. The most common symptoms included pain or tenderness at the injection site (n = 10, 19%), headache (n = 10, 19%), and malaise (n = 6, 12%). We found that H1ssF elicited cross-reactive neutralizing antibodies against the conserved HA stem of group 1 influenza viruses, despite previous H1 subtype head-specific immunity. These responses were durable, with neutralizing antibodies observed more than 1 year after vaccination. Our results support this platform as a step forward in the development of a universal influenza vaccine.
Collapse
Affiliation(s)
- Alicia T. Widge
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amelia R. Hofstetter
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine V. Houser
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seemal F. Awan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grace L. Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria C. Burgos Florez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina M. Berkowitz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Floreliz Mendoza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia S. Hendel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - LaSonji A. Holman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ingelise J. Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Preeti Apte
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - C. Jason Liang
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin R. Gaudinski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily E. Coates
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Larisa Strom
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diane Wycuff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra Vazquez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Judy A. Stein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason G. Gall
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - William C. Adams
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Carlton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca A. Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michelle C. Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F. Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mike Castro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leonid A. Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep R. Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian Hatcher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C. Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah O’Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alec W. Freyn
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Victoria C. Rosado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lesia K. Dropulic
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Baghban R, Ghasemian A, Mahmoodi S. Nucleic acid-based vaccine platforms against the coronavirus disease 19 (COVID-19). Arch Microbiol 2023; 205:150. [PMID: 36995507 PMCID: PMC10062302 DOI: 10.1007/s00203-023-03480-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/11/2023] [Accepted: 03/11/2023] [Indexed: 03/31/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has infected 673,010,496 patients and caused the death of 6,854,959 cases globally until today. Enormous efforts have been made to develop fundamentally different COVID-19 vaccine platforms. Nucleic acid-based vaccines consisting of mRNA and DNA vaccines (third-generation vaccines) have been promising in terms of rapid and convenient production and efficient provocation of immune responses against the COVID-19. Several DNA-based (ZyCoV-D, INO-4800, AG0302-COVID19, and GX-19N) and mRNA-based (BNT162b2, mRNA-1273, and ARCoV) approved vaccine platforms have been utilized for the COVID-19 prevention. mRNA vaccines are at the forefront of all platforms for COVID-19 prevention. However, these vaccines have lower stability, while DNA vaccines are needed with higher doses to stimulate the immune responses. Intracellular delivery of nucleic acid-based vaccines and their adverse events needs further research. Considering re-emergence of the COVID-19 variants of concern, vaccine reassessment and the development of polyvalent vaccines, or pan-coronavirus strategies, is essential for effective infection prevention.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
5
|
Trombetta CM, Marchi S, Montomoli E. The baculovirus expression vector system: a modern technology for the future of influenza vaccine manufacturing. Expert Rev Vaccines 2022; 21:1233-1242. [DOI: 10.1080/14760584.2022.2085565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
- VisMederi Research srl, Siena, Italy
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Influenza vaccines are the most useful strategy for preventing influenza illness, especially in the setting of the COVID-19 pandemic. For the coming year (2021/2022) all vaccines will be quadrivalent and contain two influenza A strains [(H1N1)pdm09-like and (H3N2)-like viruses] and two influenza B strains (Victoria lineage-like and Yamagata lineage-like viruses). However, the currently licensed have suboptimal efficacy due to the emergence of new strains and vaccine production limitations. In this review, we summarize the current recommendations as well as new advancements in influenza vaccinations. RECENT FINDINGS Recent advances have been aimed at moving away from egg-based vaccines and toward cell culture and recombinant vaccines. This removes egg adaptations that decrease vaccine efficacy, removes the reliance on egg availability and decreases the time necessary to manufacture vaccines. However, even more radical changes are needed if we are to reach the ultimate goal of a universal vaccine capable of providing long-lasting protection against all or at least most influenza strains. We discuss various strategies, including using more stable influenza antigens such as the hemagglutinin stalk and internal proteins as well as new adjuvants, new vaccine formulations, and DNA/RNA-based vaccines that are currently being developed. SUMMARY The currently available vaccines have suboptimal efficacy and do not provide adequate protection against drifted and shifted strains. Thus, the development of a universal influenza vaccine that induces long-lasing immunity and protects against a broad range of strains is crucial.
Collapse
Affiliation(s)
- Nadim Khalil
- Division of Pediatric Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Infectious Diseases, Department Pediatrics, London Health Sciences Centre, London, Ontario, Canada
| | - David I Bernstein
- Division of Pediatric Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Sun Y, Zhang X, Yang S, Hu C, Pan J, Liu T, Ding J, Han C, Huang Y, Yang K. Preparation of antibodies against TXR1 and construction of a new DNA tumor vaccine. Int Immunopharmacol 2022; 103:108505. [PMID: 34995995 DOI: 10.1016/j.intimp.2021.108505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Taxol-resistance gene 1 (TXR1) is closely correlated with the paclitaxel resistance in the cancer chemotherapy. However, due to the lack of monoclonal antibodies (mAbs) with strong specificity and high sensitivity, little information is found about TXR1 target-related tumor therapy. METHODS We developed an TXR1 recombinant DNA vaccine by inserting TXR1 DNA sequence into lysosome-associated membrane protein 1 (LAMP1). Adaptive immune responses were assessed by indirect enzyme-linked immunosorbent assay (ELISA), Enzyme-linked immunospot test (ELISpot), and cytotoxic T-lymphocyte (CTL) cytotoxicity. RESULTS The pGEX4T-1-TXR1 reconstructed prokaryotic expression plasmid was constructed for producing high-purity TXR1 protein. Subsequently, a total of four mAbs for TXR1 and two PcAbs were successfully constructed and identified. We further found that TXR1 was highly expressed in breast cancer tissue than normal controls. Therefore, we constructed four tumor vectors, pVAX1-LAMP/TXR1, pVAX1-LAMP, pVAX1/TXR1 and pVAX1, for immunization. After three times of immunization, ELISpot data showed that single peptide 6,9,11 could stimulate T cells secreting IFN-γ in pVAX1-LAMP/TXR1 group. Moreover, the number of specific T cells and immune response effects significantly increased comparing to the pVAX1-LAMP control group. In addition, cytotoxicity showed that when the effect to target ratio was 40:l the killing effect of pVAX1-LAMP/TXR1 group was significantly higher than the pVAX1-TXR1 group. CONCLUSION Our results provides new evidence for the TXR1 related tumor immunology and aids the early prevention of cancer.
Collapse
Affiliation(s)
- Yuanjie Sun
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiyang Zhang
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| | - Shuya Yang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Chenchen Hu
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jingyu Pan
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Tianyue Liu
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jiaqi Ding
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Chenying Han
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yinan Huang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Kun Yang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
8
|
Chen Y, Zhu L, Huang W, Tong X, Wu H, Tao Y, Tong B, Huang H, Chen J, Zhao X, Lou Y, Wu C. Potent RBD-specific neutralizing rabbit monoclonal antibodies recognize emerging SARS-CoV-2 variants elicited by DNA prime-protein boost vaccination. Emerg Microbes Infect 2021; 10:1390-1403. [PMID: 34120577 PMCID: PMC8274519 DOI: 10.1080/22221751.2021.1942227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 06/06/2021] [Indexed: 01/10/2023]
Abstract
Global concerns arose as the emerged and rapidly spreading SARS-CoV-2 variants might escape host immunity induced by vaccination. In this study, a heterologous prime-boost immunization strategy for COVID-19 was designed to prime with a DNA vaccine encoding wild type (WT) spike protein receptor-binding domain (RBD) followed by S1 protein-based vaccine in rabbits. Four vaccine-elicited rabbit monoclonal antibodies (RmAbs), including 1H1, 9H1, 7G5, and 5E1, were isolated for biophysical property, neutralization potency and sequence analysis. All RmAbs recognized RBD or S1 protein with KD in the low nM or sub nM range. 1H1 and 9H1, but neither 7G5 nor 5E1, can bind to all RBD protein variants derived from B.1.351. All four RmAbs were able to neutralize wild type (WT) SARS-CoV-2 strain in pseudovirus assay, and 1H1 and 9H1 could neutralize the SARS-CoV-2 WT authentic virus with IC50 values of 0.136 and 0.026 μg/mL, respectively. Notably, 1H1 was able to neutralize all 6 emerging SARS-CoV-2 variants tested including D614G, B.1.1.7, B.1.429, P.1, B.1.526, and B.1.351 variants, and 5E1 could neutralize against the above 5 variants except P.1. Epitope binning analysis revealed that 9H1, 5E1 and 1H1 recognized distinct epitopes, while 9H1 and 7G5 may have overlapping but not identical epitope. In conclusion, DNA priming protein boost vaccination was an effective strategy to induce RmAbs with potent neutralization capability against not only SARS-CoV-2 WT strain but also emergent variants, which may provide a new avenue for effective therapeutics and point-of-care diagnostic measures.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Liguo Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People’s Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institute for Food and Drug Control, Beijing, People’s Republic of China
| | - Xin Tong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Hai Wu
- Yurogen Biosystem LLC, Worcester, MA, USA
| | - Yue Tao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Bei Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, People’s Republic of China
| | | | | | - Xiangan Zhao
- Department of Gastroenterology, Northern Jiangsu People’s Hospital, Clinical Medical College of Yangzhou University, Yangzhou, People’s Republic of China
| | - Yang Lou
- Yurogen Biosystem LLC, Worcester, MA, USA
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People’s Republic of China
| |
Collapse
|
9
|
Sekiya T, Ohno M, Nomura N, Handabile C, Shingai M, Jackson DC, Brown LE, Kida H. Selecting and Using the Appropriate Influenza Vaccine for Each Individual. Viruses 2021; 13:971. [PMID: 34073843 PMCID: PMC8225103 DOI: 10.3390/v13060971] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
Despite seasonal influenza vaccines having been routinely used for many decades, influenza A virus continues to pose a global threat to humans, causing high morbidity and mortality each year. The effectiveness of the vaccine is largely dependent on how well matched the vaccine strains are with the circulating influenza virus strains. Furthermore, low vaccine efficacy in naïve populations such as young children, or in the elderly, who possess weakened immune systems, indicates that influenza vaccines need to be more personalized to provide broader community protection. Advances in both vaccine technologies and our understanding of influenza virus infection and immunity have led to the design of a variety of alternate vaccine strategies to extend population protection against influenza, some of which are now in use. In this review, we summarize the progress in the field of influenza vaccines, including the advantages and disadvantages of different strategies, and discuss future prospects. We also highlight some of the challenges to be faced in the ongoing effort to control influenza through vaccination.
Collapse
Affiliation(s)
- Toshiki Sekiya
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Marumi Ohno
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Naoki Nomura
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Chimuka Handabile
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Masashi Shingai
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
| | - David C. Jackson
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Lorena E. Brown
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- Collaborating Research Center for the Control of Infectious Diseases, Nagasaki University, Nagasaki 852-8521, Japan
| |
Collapse
|
10
|
B Carvalho S, Peixoto C, T Carrondo MJ, S Silva RJ. Downstream processing for influenza vaccines and candidates: An update. Biotechnol Bioeng 2021; 118:2845-2869. [PMID: 33913510 DOI: 10.1002/bit.27803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Seasonal and pandemic influenza outbreaks present severe health and economic burdens. To overcome limitations on influenza vaccines' availability and effectiveness, researchers chase universal vaccines providing broad, long-lasting protection against multiple influenza subtypes, and including pandemic ones. Novel influenza vaccine designs are under development, in clinical trials, or reaching the market, namely inactivated, or live-attenuated virus, virus-like particles, or recombinant antigens, searching for improved effectiveness; all these bring downstream processing (DSP) new challenges. Having to deal with new influenza strains, including pandemics, requires shorter development time, driving the development of faster bioprocesses. To cope with better upstream processes, new regulatory demands for quality and safety, and cost reduction requirements, new unit operations and integrated processes are increasing DSP efficiency for novel vaccine formats. This review covers recent advances in DSP strategies of different influenza vaccine formats. Focus is given to the improvements on relevant state-of-the-art unit operations, from harvest and clarification to purification steps, ending with sterile filtration and formulation. The development of more efficient unit operations to cope with biophysical properties of the new candidates is discussed: emphasis is given to the design of new stationary phases, 3D printing approaches, and continuous processing tools, such as continuous chromatography. The impact of the production platforms and vaccine designs on the downstream operations for the different influenza vaccine formats approved for this season are highlighted.
Collapse
Affiliation(s)
- Sofia B Carvalho
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ricardo J S Silva
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
11
|
Alves AMB, Costa SM, Pinto PBA. Dengue Virus and Vaccines: How Can DNA Immunization Contribute to This Challenge? FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:640964. [PMID: 35047911 PMCID: PMC8757892 DOI: 10.3389/fmedt.2021.640964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
Dengue infections still have a tremendous impact on public health systems in most countries in tropical and subtropical regions. The disease is systemic and dynamic with broad range of manifestations, varying from mild symptoms to severe dengue (Dengue Hemorrhagic Fever and Dengue Shock Syndrome). The only licensed tetravalent dengue vaccine, Dengvaxia, is a chimeric yellow fever virus with prM and E genes from the different dengue serotypes. However, recent results indicated that seronegative individuals became more susceptible to develop severe dengue when infected after vaccination, and now WHO recommends vaccination only to dengue seropositive people. One possibility to explain these data is the lack of robust T-cell responses and antibody-dependent enhancement of virus replication in vaccinated people. On the other hand, DNA vaccines are excellent inducers of T-cell responses in experimental animals and it can also elicit antibody production. Clinical trials with DNA vaccines have improved and shown promising results regarding the use of this approach for human vaccination. Therefore, in this paper we review preclinical and clinical tests with DNA vaccines against the dengue virus. Most of the studies are based on the E protein since this antigen is the main target for neutralizing antibody production. Yet, there are other reports with DNA vaccines based on non-structural dengue proteins with protective results, as well. Combining structural and non-structural genes may be a solution for inducing immune responses aging in different infection moments. Furthermore, DNA immunizations are also a very good approach in combining strategies for vaccines against dengue, in heterologous prime/boost regimen or even administering different vaccines at the same time, in order to induce efficient humoral and cellular immune responses.
Collapse
Affiliation(s)
- Ada Maria Barcelos Alves
- Laboratory of Biotechnology and Physiology of Viral Infections, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | | |
Collapse
|
12
|
Pushparajah D, Jimenez S, Wong S, Alattas H, Nafissi N, Slavcev RA. Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Adv Drug Deliv Rev 2021; 170:113-141. [PMID: 33422546 PMCID: PMC7789827 DOI: 10.1016/j.addr.2021.01.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 01/07/2023]
Abstract
The novel betacoronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has spread across the globe at an unprecedented rate since its first emergence in Wuhan City, China in December 2019. Scientific communities around the world have been rigorously working to develop a potent vaccine to combat COVID-19 (coronavirus disease 2019), employing conventional and novel vaccine strategies. Gene-based vaccine platforms based on viral vectors, DNA, and RNA, have shown promising results encompassing both humoral and cell-mediated immune responses in previous studies, supporting their implementation for COVID-19 vaccine development. In fact, the U.S. Food and Drug Administration (FDA) recently authorized the emergency use of two RNA-based COVID-19 vaccines. We review current gene-based vaccine candidates proceeding through clinical trials, including their antigenic targets, delivery vehicles, and route of administration. Important features of previous gene-based vaccine developments against other infectious diseases are discussed in guiding the design and development of effective vaccines against COVID-19 and future derivatives.
Collapse
Affiliation(s)
- Deborah Pushparajah
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Salma Jimenez
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada
| | - Shirley Wong
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Hibah Alattas
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Nafiseh Nafissi
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Roderick A Slavcev
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada.
| |
Collapse
|
13
|
Rockman S, Laurie KL, Parkes S, Wheatley A, Barr IG. New Technologies for Influenza Vaccines. Microorganisms 2020; 8:microorganisms8111745. [PMID: 33172191 PMCID: PMC7694987 DOI: 10.3390/microorganisms8111745] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
Vaccine development has been hampered by the long lead times and the high cost required to reach the market. The 2020 pandemic, caused by a new coronavirus (SARS-CoV-2) that was first reported in late 2019, has seen unprecedented rapid activity to generate a vaccine, which belies the traditional vaccine development cycle. Critically, much of this progress has been leveraged off existing technologies, many of which had their beginnings in influenza vaccine development. This commentary outlines the most promising of the next generation of non-egg-based influenza vaccines including new manufacturing platforms, structure-based antigen design/computational biology, protein-based vaccines including recombinant technologies, nanoparticles, gene- and vector-based technologies, as well as an update on activities around a universal influenza vaccine.
Collapse
Affiliation(s)
- Steven Rockman
- Technical Development, Seqirus Ltd, Parkville, Victoria 3052, Australia; (S.R.); (S.P.)
- Department of Immunology and Microbiology, The University of Melbourne, Parkville, Victoria 3052, Australia; (A.W.); (I.G.B.)
| | - Karen L. Laurie
- Technical Development, Seqirus Ltd, Parkville, Victoria 3052, Australia; (S.R.); (S.P.)
- Correspondence:
| | - Simone Parkes
- Technical Development, Seqirus Ltd, Parkville, Victoria 3052, Australia; (S.R.); (S.P.)
| | - Adam Wheatley
- Department of Immunology and Microbiology, The University of Melbourne, Parkville, Victoria 3052, Australia; (A.W.); (I.G.B.)
| | - Ian G. Barr
- Department of Immunology and Microbiology, The University of Melbourne, Parkville, Victoria 3052, Australia; (A.W.); (I.G.B.)
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3052, Australia
| |
Collapse
|
14
|
Pan J, Cui Z. Self-Assembled Nanoparticles: Exciting Platforms for Vaccination. Biotechnol J 2020; 15:e2000087. [PMID: 33411412 DOI: 10.1002/biot.202000087] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/25/2020] [Indexed: 12/14/2022]
Abstract
Vaccination is successfully advanced to control several fatal diseases and improve human life expectancy. However, additional innovations are required in this field because there are no effective vaccines to prevent some infectious diseases. The shift from the attenuated or inactivated pathogens to safer but less immunogenic protein or peptide antigens has led to a search for effective antigen delivery carriers that can function as both antigen vehicles and intrinsic adjuvants. Among these carriers, self-assembled nanoparticles (SANPs) have shown great potential to be the best representative. For the nanoscale and multiple presentation of antigens, with accurate control over size, geometry, and functionality, these nanoparticles are assembled spontaneously and mimic pathogens, resulting in enhanced antigen presentation and increased cellular and humoral immunity responses. In addition, they may be applied through needle-free routes due to their adhesive ability, which gives them a great future in vaccination applications. This review provides an overview of various SANPs and their applications in prophylactic vaccines.
Collapse
Affiliation(s)
- Jingdi Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
A brief outline of respiratory viral disease outbreaks: 1889-till date on the public health perspectives. Virusdisease 2020; 31:441-449. [PMID: 32905186 PMCID: PMC7466926 DOI: 10.1007/s13337-020-00628-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently causing the respiratory illness termed as the coronavirus disease 2019 or the COVID-19 pandemic. Indeed, the significant increase in deaths in the current days due to influenza around the world started in 1889 is a continued public health threat because of its intermittent style of pandemic outbreaks. An array of research on the influenza viruses has been conducted especially pointing on (1) the development of the anti-viral drugs and the design of probable vaccines on trial basis, (2) the biochemical and genetic aspects underlying the viral pathogenicity, (3) the viral epidemiology, and on (4) the protective immunity against the influenza viruses. Current review briefly discussed the epidemic/ pandemic history of influenza and correlated with the current epidemiology, the possible preventive measures that may be taken by the public health professionals as well as to increase the protective awareness among the general people. The viral reassortments during the initiation of pandemics have also been focused based on the previous literatures.
Collapse
|
16
|
Gary EN, Weiner DB. DNA vaccines: prime time is now. Curr Opin Immunol 2020; 65:21-27. [PMID: 32259744 PMCID: PMC7195337 DOI: 10.1016/j.coi.2020.01.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 01/07/2023]
Abstract
Recently newer synthetic DNA vaccines have been rapidly advanced to clinical study and have demonstrated an impressive degree of immune potency and tolerability. Improvements in DNA delivery over prior needle and syringe approaches include jet delivery, gene gun delivery, among others. Among the most effective of these new delivery methods, advanced electroporation (EP), combined with other advances, induces robust humoral and cellular immunity in both preventative as well as therapeutic studies. Advancements in the design of the DNA inserts include leader sequence changes, RNA and codon optimizations, improved insert designs, increased concentrations of DNA, and skin delivery, appear to complement newer delivery strategies. These advances also provide a framework for the in vivo production of synthetic DNA biologics. In this review, we focus on recent studies of synthetic DNA vaccines in the clinic for the prevention or treatment of infectious diseases with a focus on adaptive electroporation for delivery, and briefly summarize novel preclinical data advancing the in vivo delivery of DNA-encoded antibody-like biologics.
Collapse
|
17
|
Demchuk AM, Patel TR. The biomedical and bioengineering potential of protein nanocompartments. Biotechnol Adv 2020; 41:107547. [PMID: 32294494 DOI: 10.1016/j.biotechadv.2020.107547] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/21/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
Protein nanocompartments (PNCs) are self-assembling biological nanocages that can be harnessed as platforms for a wide range of nanobiotechnology applications. The most widely studied examples of PNCs include virus-like particles, bacterial microcompartments, encapsulin nanocompartments, enzyme-derived nanocages (such as lumazine synthase and the E2 component of the pyruvate dehydrogenase complex), ferritins and ferritin homologues, small heat shock proteins, and vault ribonucleoproteins. Structural PNC shell proteins are stable, biocompatible, and tolerant of both interior and exterior chemical or genetic functionalization for use as vaccines, therapeutic delivery vehicles, medical imaging aids, bioreactors, biological control agents, emulsion stabilizers, or scaffolds for biomimetic materials synthesis. This review provides an overview of the recent biomedical and bioengineering advances achieved with PNCs with a particular focus on recombinant PNC derivatives.
Collapse
Affiliation(s)
- Aubrey M Demchuk
- Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada.
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming, School of Medicine, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 1N4, Canada; Li Ka Shing Institute of Virology and Discovery Lab, Faculty of Medicine & Dentistry, University of Alberta, 6-010 Katz Center for Health Research, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
18
|
Wei CJ, Crank MC, Shiver J, Graham BS, Mascola JR, Nabel GJ. Next-generation influenza vaccines: opportunities and challenges. Nat Rev Drug Discov 2020; 19:239-252. [PMID: 32060419 PMCID: PMC7223957 DOI: 10.1038/s41573-019-0056-x] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Seasonal influenza vaccines lack efficacy against drifted or pandemic influenza strains. Developing improved vaccines that elicit broader immunity remains a public health priority. Immune responses to current vaccines focus on the haemagglutinin head domain, whereas next-generation vaccines target less variable virus structures, including the haemagglutinin stem. Strategies employed to improve vaccine efficacy involve using structure-based design and nanoparticle display to optimize the antigenicity and immunogenicity of target antigens; increasing the antigen dose; using novel adjuvants; stimulating cellular immunity; and targeting other viral proteins, including neuraminidase, matrix protein 2 or nucleoprotein. Improved understanding of influenza antigen structure and immunobiology is advancing novel vaccine candidates into human trials.
Collapse
Affiliation(s)
- Chih-Jen Wei
- Sanofi Global Research and Development, Cambridge, MA, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Barney S Graham
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gary J Nabel
- Sanofi Global Research and Development, Cambridge, MA, USA.
| |
Collapse
|
19
|
Jazayeri SD, Poh CL. Development of Universal Influenza Vaccines Targeting Conserved Viral Proteins. Vaccines (Basel) 2019; 7:E169. [PMID: 31683888 PMCID: PMC6963725 DOI: 10.3390/vaccines7040169] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
Vaccination is still the most efficient way to prevent an infection with influenza viruses. Nevertheless, existing commercial vaccines face serious limitations such as availability during epidemic outbreaks and their efficacy. Existing seasonal influenza vaccines mostly induce antibody responses to the surface proteins of influenza viruses, which frequently change due to antigenic shift and or drift, thus allowing influenza viruses to avoid neutralizing antibodies. Hence, influenza vaccines need a yearly formulation to protect against new seasonal viruses. A broadly protective or universal influenza vaccine must induce effective humoral as well as cellular immunity against conserved influenza antigens, offer good protection against influenza pandemics, be safe, and have a fast production platform. Nanotechnology has great potential to improve vaccine delivery, immunogenicity, and host immune responses. As new strains of human epidemic influenza virus strains could originate from poultry and swine viruses, development of a new universal influenza vaccine will require the immune responses to be directed against viruses from different hosts. This review discusses how the new vaccine platforms and nanoparticles can be beneficial in the development of a broadly protective, universal influenza vaccine.
Collapse
Affiliation(s)
- Seyed Davoud Jazayeri
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia.
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
20
|
Carter C, Houser KV, Yamshchikov GV, Bellamy AR, May J, Enama ME, Sarwar U, Larkin B, Bailer RT, Koup R, Chen GL, Patel SM, Winokur P, Belshe R, Dekker CL, Graham BS, Ledgerwood JE. Safety and immunogenicity of investigational seasonal influenza hemagglutinin DNA vaccine followed by trivalent inactivated vaccine administered intradermally or intramuscularly in healthy adults: An open-label randomized phase 1 clinical trial. PLoS One 2019; 14:e0222178. [PMID: 31532789 PMCID: PMC6750650 DOI: 10.1371/journal.pone.0222178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/28/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Seasonal influenza results in significant morbidity and mortality worldwide, but the currently licensed inactivated vaccines generally have low vaccine efficacies and could be improved. In this phase 1 clinical trial, we compared seasonal influenza vaccine regimens with different priming strategies, prime-boost intervals, and administration routes to determine the impact of these variables on the resulting antibody response. METHODS Between August 17, 2012 and January 25, 2013, four sites enrolled healthy adults 18-70 years of age. Subjects were randomized to receive one of the following vaccination regimens: trivalent hemagglutinin (HA) DNA prime followed by trivalent inactivated influenza vaccine (IIV3) boost with a 3.5 month interval (DNA-IIV3), IIV3 prime followed by IIV3 boost with a 10 month interval (IIV3-IIV3), or concurrent DNA and IIV3 prime followed by IIV3 boost with a 10 month interval (DNA/IIV3-IIV3). Each regimen was additionally stratified by an IIV3 administration route of either intramuscular (IM) or intradermal (ID). DNA vaccines were administered by a needle-free jet injector (Biojector). Study objectives included evaluating the safety and tolerability of each regimen and measuring the antibody response by hemagglutination inhibition (HAI). RESULTS Three hundred and sixteen subjects enrolled. Local reactogenicity was mild to moderate in severity, with higher frequencies recorded following DNA vaccine administered by Biojector compared to IIV3 by either route (p <0.02 for pain, swelling, and redness) and following IIV3 by ID route compared to IM route (p <0.001 for swelling and redness). Systemic reactogenicity was similar between regimens. Though no overall differences were observed between regimens, the highest titers post boost were observed in the DNA-IIV3 group by ID route and in the IIV3-IIV3 group by IM route. CONCLUSIONS All vaccination regimens were found to be safe and tolerable. While there were no overall differences between regimens, the DNA-IIV3 group by ID route, and the IIV3-IIV3 group by IM route, showed higher responses compared to the other same-route regimens.
Collapse
MESH Headings
- Administration, Intranasal
- Adult
- Aged
- Female
- Healthy Volunteers
- Hemagglutinins/administration & dosage
- Hemagglutinins/adverse effects
- Hemagglutinins/immunology
- Humans
- Immunization, Secondary
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/adverse effects
- Influenza Vaccines/immunology
- Influenza, Human/prevention & control
- Injections, Intradermal
- Male
- Middle Aged
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/adverse effects
- Vaccines, DNA/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/adverse effects
- Vaccines, Inactivated/immunology
- Young Adult
Collapse
Affiliation(s)
- Cristina Carter
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Katherine V. Houser
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Galina V. Yamshchikov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | | | - Jeanine May
- The Emmes Corporation, Rockville, MD, United States of America
| | - Mary E. Enama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Uzma Sarwar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Brenda Larkin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Robert T. Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Richard Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Grace L. Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Shital M. Patel
- Departments of Medicine and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Patricia Winokur
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Robert Belshe
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO, United States of America
| | - Cornelia L. Dekker
- Department of Pediatrics (Infectious Diseases), Stanford University Medical Center, Stanford, CA, United States of America
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | | |
Collapse
|
21
|
Immunogenicity and Protection Efficacy of a Naked Self-Replicating mRNA-Based Zika Virus Vaccine. Vaccines (Basel) 2019; 7:vaccines7030096. [PMID: 31450775 PMCID: PMC6789535 DOI: 10.3390/vaccines7030096] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022] Open
Abstract
To combat emerging infectious diseases like Zika virus (ZIKV), synthetic messenger RNAs (mRNAs) encoding viral antigens are very attractive as they allow a rapid, generic, and flexible production of vaccines. In this work, we engineered a self-replicating mRNA (sr-mRNA) vaccine encoding the pre-membrane and envelope (prM-E) glycoproteins of ZIKV. Intradermal electroporation of as few as 1 µg of this mRNA-based ZIKV vaccine induced potent humoral and cellular immune responses in BALB/c and especially IFNAR1-/- C57BL/6 mice, resulting in a complete protection of the latter mice against ZIKV infection. In wild-type C57BL/6 mice, the vaccine resulted in very low seroconversion rates and antibody titers. The potency of the vaccine was inversely related to the dose of mRNA used in wild-type BALB/c or C57BL/6 mice, as robust type I interferon (IFN) response was determined in a reporter mice model (IFN-β+/Δβ-luc). We further investigated the inability of the sr-prM-E-mRNA ZIKV vaccine to raise antibodies in wild-type C57BL/6 mice and found indications that type I IFNs elicited by this naked sr-mRNA vaccine might directly impede the induction of a robust humoral response. Therefore, we assume that the efficacy of sr-mRNA vaccines after intradermal electroporation might be increased by strategies that temper their inherent innate immunogenicity.
Collapse
|
22
|
Trombetta CM, Marchi S, Manini I, Lazzeri G, Montomoli E. Challenges in the development of egg-independent vaccines for influenza. Expert Rev Vaccines 2019; 18:737-750. [DOI: 10.1080/14760584.2019.1639503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giacomo Lazzeri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
| |
Collapse
|
23
|
Switzer C, Babiuk L, Loeb M. Determining optimal community protection strategies for the influenza vaccine. Expert Rev Vaccines 2019; 18:755-764. [PMID: 31288585 DOI: 10.1080/14760584.2019.1642110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Seasonal influenza poses a major risk to the health of the population. Optimal strategies for influenza vaccination can help to reduce this risk. Areas covered: Systematic evaluations of the burden of influenza are first reviewed. Key meta-analysis, randomized trials, and observational studies are critically reviewed to provide the best estimates of the efficacy of influenza vaccine. The concept of herd effect is first introduced and this is followed by the rationale and the evidence to support herd effect that can be provided with strategic use of influenza vaccination in populations. Challenges including the effect of repeated influenza vaccination and vaccine hesitancy are reviewed. The citations were selected by the authors based on PubMed searches of the literature. Expert opinion: Efforts to develop new vaccines, including a universal vaccine, offer the best prospects for improved herd effect. Increasing uptake in new populations can increase likelihood of a herd effect.
Collapse
Affiliation(s)
- Charlotte Switzer
- a Department of Health Research Evidence, and Impact, McMaster University , Hamilton , Ontario , Canada
| | - Lorne Babiuk
- b Department of Agricultural Life and Environmental Sciences, University of Alberta , Edmonton , Alberta , Canada
| | - Mark Loeb
- a Department of Health Research Evidence, and Impact, McMaster University , Hamilton , Ontario , Canada
| |
Collapse
|