1
|
Hao Y, Ge X, Xu R, Zhao X, Zhai M. Transcriptome analysis of lipid biosynthesis during kernel development in two walnut (Juglans regia L.) varieties of 'Xilin 3' and 'Xiangling'. BMC PLANT BIOLOGY 2024; 24:828. [PMID: 39227757 PMCID: PMC11373280 DOI: 10.1186/s12870-024-05546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Walnut is an oilseed tree species and an ecologically important woody tree species that is rich in oil and nutrients. In light of differences in the lipid content, fatty acid composition and key genes expression patterns in different walnut varieties, the key gene regulatory networks for lipid biosynthesis in different varieties of walnuts were intensively investigated. RESULTS The kernels of two walnut varieties, 'Xilin 3' (X3) and 'Xiangling' (XL) were sampled at 60, 90, and 120 days post-anthesis (DPA) to construct 18 cDNA libraries, and the candidate genes related to oil synthesis were identified via sequencing and expression analysis. A total of 106 differentially expressed genes associated with fatty acid biosynthesis, fatty acid elongation, unsaturated fatty acid biosynthesis, triglyceride assembly, and oil body storage were selected from the transcriptomes. Weighted gene co-expression network analysis (WGCNA), correlation analysis and quantitative validation confirmed the key role of the FAD3 (109002248) gene in lipid synthesis in different varieties. CONCLUSIONS These results provide valuable resources for future investigations and new insights into genes related to oil accumulation and lipid metabolism in walnut seed kernels. The findings will also aid future molecular studies and ongoing efforts to genetically improve walnut.
Collapse
Affiliation(s)
- Yuanru Hao
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xiangrui Ge
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Rui Xu
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xiaona Zhao
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Meizhi Zhai
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Walnut Engineering Technology Research Center, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Singh P, Sharma A, Tandon V, Salgotra RK, Sharma M, Gupta V, Sharma D. Genetic diversity and population structure of Bael [Aegle marmelos (L.) Correa] genotypes using molecular markers in the North-Western plains of India. Sci Rep 2024; 14:18032. [PMID: 39098938 PMCID: PMC11298521 DOI: 10.1038/s41598-024-69030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Bael is a fruit crop that is extensively distributed throughout South-East Asia and is underutilized in medicine. The potential applications of bael's therapeutic and nutritional qualities in diverse ethnic communities are enormous. This study focuses on evaluating the morpho-pomological and molecular characteristics, utilizing SSR markers, of 80 wild bael genotypes alongside the NB-5 and NB-9 cultivars, derived from the North Western plains of India. Based on the evaluated morpho-pomological features, substantial variations were found between all genotypes. The fruit's inner diameter and pulp weight varied from 4.41 to 11.54 cm and 34.63 to 786.41 g, respectively. Numerous variations in the genotypes were observed in the shell weight/fruit, fruit skull thickness and fruit yield/plant. The bael fruit mucilage's total soluble solids (TSS) and total sugar content varied from 40.10 to 49.60 obrix and 8.11 to 21.17%, respectively. Using ward cluster analysis, the genotypes were divided into two primary clusters. Among the bael genotypes, the population structure analysis identified three subpopulations. SSR markers are used to measure genetic variety; of the 27 polymorphic markers, 17 show allelic diversity between genotypes. Molecular genetic diversity analysis, on the other hand, highlighted the genotypes genetic distinctiveness by classifying them into three major clusters. These findings offer valuable insights into the rich diversity and intricate interactions among the bael genotypes under investigation, paving the way for more strategic future breeding and selection efforts to elevate the quality of this remarkable fruit.
Collapse
Affiliation(s)
- Prabhdeep Singh
- Division of Fruit Science, Sher-E-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus, Chatha, Jammu, 180009, India.
| | - Akash Sharma
- Division of Fruit Science, Sher-E-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus, Chatha, Jammu, 180009, India
| | - Vikas Tandon
- Advanced Centre for Horticulture Research, Udheywalla, Sher-E-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, 180018, India
| | - Romesh Kumar Salgotra
- School of Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus, Chatha, Jammu, 180009, India
| | - Manish Sharma
- Division of Statistics and Computer Sciences, Sher-E-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus, Chatha, Jammu, 180009, India
| | - Vishal Gupta
- Division of Plant Pathology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus, Chatha, Jammu, 180009, India
| | - Devinder Sharma
- Division of Entomology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus, Chatha, Jammu, 180009, India
| |
Collapse
|
3
|
Durney C, Boussageon R, El-Mjiyad N, Wipf D, Courty PE. Arbuscular mycorrhizal symbiosis with Rhizophagus irregularis DAOM197198 modifies the root transcriptome of walnut trees. MYCORRHIZA 2024; 34:341-350. [PMID: 38801470 DOI: 10.1007/s00572-024-01152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Walnut trees are cultivated and exploited worldwide for commercial timber and nut production. They are heterografted plants, with the rootstock selected to grow in different soil types and conditions and to provide the best anchorage, vigor, and resistance or tolerance to soil borne pests and diseases. However, no individual rootstock is tolerant of all factors that impact walnut production. In Europe, Juglans regia is mainly used as a rootstock. Like most terrestrial plants, walnut trees form arbuscular mycorrhizal symbioses, improving water and nutrient uptake and providing additional ecosystem services. Effects of arbuscular mycorrhizal symbiosis on root gene regulation, however, has never been assessed. We analyzed the response of one rootstock of J. regia to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM197198. Plant growth as well as the nitrogen and phosphorus concentrations in roots and shoots were significantly increased in mycorrhizal plants versus non-colonized plants. In addition, we have shown that 1,549 genes were differentially expressed, with 832 and 717 genes up- and down-regulated, respectively. The analysis also revealed that some rootstock genes involved in plant nutrition through the mycorrhizal pathway, are regulated similarly as in other mycorrhizal woody species: Vitis vinifera and Populus trichocarpa. In addition, an enrichment analysis performed on GO and KEGG pathways revealed some regulation specific to J. regia (i.e., the juglone pathway). This analysis reinforces the role of arbuscular mycorrhizal symbiosis on root gene regulation and on the need to finely study the effects of diverse arbuscular mycorrhizal fungi on root gene regulation, but also of the scion on the functioning of an arbuscular mycorrhizal fungus in heterografted plants such as walnut tree.
Collapse
Affiliation(s)
- Célien Durney
- Agroécologie INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Raphael Boussageon
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Noureddine El-Mjiyad
- Agroécologie INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Daniel Wipf
- Agroécologie INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
4
|
Manthos I, Sotiropoulos T, Karapetsi L, Ganopoulos I, Pratsinakis ED, Maloupa E, Madesis P. Molecular Characterization of Local Walnut ( Juglans regia) Genotypes in the North-East Parnon Mountain Region of Greece. Int J Mol Sci 2023; 24:17230. [PMID: 38139058 PMCID: PMC10743642 DOI: 10.3390/ijms242417230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Walnut is one of the most important nuts regarding their production and consumption. The available but uncharacterized genetic resources of walnut are important for the development and breeding of local varieties. Greece holds an important number of genetically uncharacterized walnut landraces, especially within the area of Parnon, which is considered to play a significant role as an in situ gene bank, due to its unique location traits. However, the genetic characterization and further use of these resources has been insufficient, due to the absence of genetic studies. In this study, we implemented SSR molecular markers, both to genetically characterize the walnut tree genetic diversity of the Parnon area and to identify its unique genetic structure, which will form the starting material for subsequent breeding programs. Overall, high levels of genetic variation were found among the individual walnut accessions that were collected in the Parnon mountain region.
Collapse
Affiliation(s)
- Ioannis Manthos
- Department of Nut Trees, Institute of Plant Breeding & Genetic Resources, Hellenic Agricultural Organization (ELGO)-DIMITRA, Neo Krikello, 35100 Lamia, Greece;
| | - Thomas Sotiropoulos
- Department of Deciduous Fruit Trees, Institute of Plant Breeding & Genetic Resources, Hellenic Agricultural Organization (ELGO)-DIMITRA, 59200 Naousa, Greece;
| | - Lefkothea Karapetsi
- Laboratory of Molecular Biology of Plants, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece;
- Institute of Applied Biosciences, Centre for Research & Technology-Hellas, 57001 Thessaloniki, Greece;
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Dimitra, 57001 Thessaloniki, Greece; (I.G.); (E.M.)
| | - Emmanouil D. Pratsinakis
- Institute of Applied Biosciences, Centre for Research & Technology-Hellas, 57001 Thessaloniki, Greece;
| | - Eleni Maloupa
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Dimitra, 57001 Thessaloniki, Greece; (I.G.); (E.M.)
| | - Panagiotis Madesis
- Laboratory of Molecular Biology of Plants, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece;
- Institute of Applied Biosciences, Centre for Research & Technology-Hellas, 57001 Thessaloniki, Greece;
| |
Collapse
|
5
|
Khelghatibana F, Javan-Nikkhah M, Safaie N, Sobhani A, Shams S, Sari E. A reference transcriptome for walnut anthracnose pathogen, Ophiognomonia leptostyla, guides the discovery of candidate virulence genes. Fungal Genet Biol 2023; 169:103828. [PMID: 37657751 DOI: 10.1016/j.fgb.2023.103828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Despite the economic losses due to the walnut anthracnose, Ophiognomonia leptostyla is an orphan fungus with respect to genomic resources. In the present study, the transcriptome of O. leptostyla was assembled for the first time. RNA sequencing was conducted for the fungal mycelia grown in a liquid media, and the inoculated leaf samples of walnut with the fungal conidia sampled at 48, 96 and 144 h post inoculation (hpi). The completeness, correctness, and contiguity of the de novo transcriptome assemblies generated with Trinity, Oases, SOAPdenovo-Trans and Bridger were compared to identify a single superior reference assembly. In most of the assessment criteria including N50, Transrate score, number of ORFs with known description in gene bank, the percentage of reads mapped back to the transcript (RMBT), BUSCO score, Swiss-Prot coverage bin and RESM-EVAL score, the Bridger assembly was the superior and thus used as a reference for profiling the O. leptostyla transcriptome in liquid media vs. during walnut infection. The k-means clustering of transcripts resulted in four distinct transcription patterns across the three sampling time points. Most of the detected CAZy transcripts had elevated transcription at 96 hpi that is hypothetically concurrent with the start of intracellular growth. The in-silico analysis revealed 103 candidate effectors of which six were members of Necrosis and Ethylene Inducing Like Protein (NLP) gene family belonging to three distinct k-means clusters. This study provided a complex and temporal pattern of the CAZys and candidate effectors transcription during six days post O. leptostyla inoculation on walnut leaves, introducing a list of candidate virulence genes for validation in future studies.
Collapse
Affiliation(s)
- Fatemeh Khelghatibana
- Department of Plant Pathology, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Sobhani
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Somayeh Shams
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, University of Lorestan, Khorramabad, Iran
| | - Ehsan Sari
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
| |
Collapse
|
6
|
Plugatar YV, Suprun II, Khokhlov SY, Stepanov IV, Al-Nakib EA. Comprehensive agrobiological assessment and analysis of genetic relationships of promising walnut varieties of the Nikitsky Botanical Gardens. Vavilovskii Zhurnal Genet Selektsii 2023; 27:454-462. [PMID: 37867608 PMCID: PMC10587009 DOI: 10.18699/vjgb-23-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 10/24/2023] Open
Abstract
Walnut is an important horticultural crop, the production of which ranks second among all nut crops. Despite the significant demand in the domestic market in Russia, the industrial production of walnut fruits in Russia is currently underdeveloped. At the same time, there is a need to update the assortment with new highly productive varieties adapted to local agro-climatic conditions and having high quality nuts that are competitive at the world level. An important issue for the successful implementation of breeding programs is a comprehensive study of the gene pool. In this regard, within the framework of the study, the task was to evaluate promising varieties from the collection of the walnut gene pool of the Nikitsky Botanical Gardens and analyze genetic relationships based on microsatellite genotyping. On the basis of the performed phenotypic assessment, the study sample, which included 31 varieties, was divided into several groups according to the main phenotypic traits, such as frost and drought resistance, the start of the growing season, the ripening period, the weight and type of flowering, the weight of the fruit, and the thickness of the endocarp. Varieties with economically valuable traits that can be recommended as promising as initial parental forms in breeding work for resistance to abiotic stress factors have been identified, as well as varieties with increased productivity and large fruit sizes. Based on the analysis of eight SSR markers (WGA001, WGA376, WGA069, WGA276, WGA009, WGA202, WGA089 and WGA054), an analysis of the level of genetic diversity was performed and genetic relationships were established in the studied sample of varieties. Six (for WGA089) to eleven (for WGA276) alleles per locus have been identified. A total of 70 alleles were identified for the eight DNA markers used, with an average value of 8.75. Analysis of SSR genotyping data using Bayesian analysis established the presence of two main groups of genotypes. Taking into account the fact that all the studied varieties are selections from local seed populations in different regions of the Crimean Peninsula, the revealed level of polymorphism may indirectly reflect the level of genetic diversity of the local walnut populations. Furthermore, the presence of two genetically distant groups indicates the presence of two independently formed pools of the autochthonous gene pool of the species Juglans regia L. on the Crimean Peninsula.
Collapse
Affiliation(s)
- Yu V Plugatar
- The Order of the Red Banner of Labour Nikitsky Botanical Gardens - National Scientific Center of the Russian Academy of Sciences, Yalta, Republic of Crimea, Russia
| | - I I Suprun
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making, the Functional Scientific Center of "Breeding and Nursery", Krasnodar, Russia
| | - S Yu Khokhlov
- The Order of the Red Banner of Labour Nikitsky Botanical Gardens - National Scientific Center of the Russian Academy of Sciences, Yalta, Republic of Crimea, Russia
| | - I V Stepanov
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making, the Functional Scientific Center of "Breeding and Nursery", Krasnodar, Russia
| | - E A Al-Nakib
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making, the Functional Scientific Center of "Breeding and Nursery", Krasnodar, Russia
| |
Collapse
|
7
|
Shahi Shavvon R, Qi HL, Mafakheri M, Fan PZ, Wu HY, Bazdid Vahdati F, Al-Shmgani HS, Wang YH, Liu J. Unravelling the genetic diversity and population structure of common walnut in the Iranian Plateau. BMC PLANT BIOLOGY 2023; 23:201. [PMID: 37072719 PMCID: PMC10111805 DOI: 10.1186/s12870-023-04190-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Common walnut (Juglans regia L.) has a long cultivation history, given its highly valuable wood and rich nutritious nuts. The Iranian Plateau has been considered as one of the last glaciation refugia and a centre of origin and domestication for the common walnut. However, a prerequisite to conserve or utilize the genetic resources of J. regia in the plateau is a comprehensive evaluation of the genetic diversity that is conspicuously lacking. In this regard, we used 31 polymorphic simple sequence repeat (SSR) markers to delineate the genetic variation and population structure of 508 J. regia individuals among 27 populations from the Iranian Plateau. RESULTS The SSR markers expressed a high level of genetic diversity (HO = 0.438, and HE = 0.437). Genetic differentiation among the populations was moderate (FST = 0.124), and genetic variation within the populations (79%) significantly surpassed among populations (21%). The gene flow (Nm = 1.840) may have remarkably influenced the population genetic structure of J. regia, which can be attributed to anthropological activities and wind dispersal of pollen. The STRUCTURE analysis divided the 27 populations into two main clusters. Comparing the neighbor-joining and principal coordinate analysis dendrograms and the Bayesian STRUCTURE analysis revealed the general agreement between the population subdivisions and the genetic relationships among the populations. However, a few geographically close populations dispersed into different clusters. Further, the low genetic diversity of the Sulaymaniyah (SMR) population of Iraq necessitates urgent conservation by propagation and seedling management or tissue culture methods; additionally, we recommend the indispensable preservation of the Gonabad (RGR) and Arak (AKR) populations in Iran. CONCLUSIONS These results reflected consistent high geographical affinity of the accession across the plateau. Our findings suggest that gene flow is a driving factor influencing the genetic structure of J. regia populations, whereas ecological and geological variables did not act as strong barriers. Moreover, the data reported herein provide new insights into the population structure of J. regia germplasm, which will help conserve genetic resources for the future, hence improving walnut breeding programs' efficiency.
Collapse
Affiliation(s)
| | - Hai-Ling Qi
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm of Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Mohammad Mafakheri
- Department of Plant Sciences, University of California - Davis, Davis, CA, 95616, USA
| | - Pen-Zheng Fan
- Germplasm of Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Yu Wu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Hanady S Al-Shmgani
- Department of Biology, College of Education for Pure Sciences (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq
| | - Yue-Hua Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Germplasm of Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
8
|
Ternjak T, Barreneche T, Šiško M, Ivančič A, Šušek A, Quero-García J. Genetic diversity and structure of Slovenian native germplasm of plum species ( P. domestica L., P. cerasifera Ehrh. and P. spinosa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1150459. [PMID: 37025128 PMCID: PMC10070851 DOI: 10.3389/fpls.2023.1150459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Slovenia has particular climatic, soil, geographic and historical conditions that lead to long tradition of plum cultivation and use. In this work, a set of 11 SSR and three universal cpDNA markers, as well as flow cytometry, were used to (1) evaluate the genetic diversity of 124 accessions of the three Prunus species (P. domestica L., P. cerasifera Ehrh., and P. spinosa L.), (2) investigate the possible involvement of P. cerasifera and P. spinosa species in P. domestica origin, (3) study the genetic relationships and variability among the most typical P. domestica accessions present in Slovenia. Ten haplotypes of cpDNA were identified and clustered into three groups according to the Neighbor-Joining analysis (NJ). All 11 SSR primer pairs were polymorphic, revealing 116 unique genotypes. A total of 328 alleles were detected with an average value of 29.82 alleles per locus, showing relatively high diversity. Bayesian analysis of genetic structure was used to identify two ancestral populations in the analyses of all three species as well as in a separate set consisting of P. domestica material only. Principal Coordinate Analysis (PCoA) showed that accessions clustered largely in agreement with Bayesian analysis. Neighbor-Joining analysis grouped 71 P. domestica accessions into three clusters with many subgroups that exhibited complex arrangement. Most accessions clustered in agreement with traditional pomological groups, such as common prunes, mirabelle plums and greengages. In this study, the analyses revealed within P. domestica pool valuable local landraces, such as traditional prunes or bluish plums, which seem to be highly interesting from a genetic point of view. Moreover, complementary approaches allowed us to distinguish between the three species and to gain insights into the origin of plum. The results will be instrumental in understanding the diversity of Slovenian plum germplasm, improving the conservation process, recovering local genotypes and enriching existing collections of plant genetic resources.
Collapse
Affiliation(s)
- T. Ternjak
- Faculty of Agriculture and Life Sciences, University of Maribor, Hoče, Slovenia
| | - T. Barreneche
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d’Ornon, France
| | - M. Šiško
- Faculty of Agriculture and Life Sciences, University of Maribor, Hoče, Slovenia
| | - A. Ivančič
- Faculty of Agriculture and Life Sciences, University of Maribor, Hoče, Slovenia
| | - A. Šušek
- Faculty of Agriculture and Life Sciences, University of Maribor, Hoče, Slovenia
| | | |
Collapse
|
9
|
Wambulwa MC, Fan PZ, Milne R, Wu ZY, Luo YH, Wang YH, Wang H, Gao LM, Xiahou ZY, Jin YC, Ye LJ, Xu ZC, Yang ZC, Li DZ, Liu J. Genetic analysis of walnut cultivars from southwest China: Implications for germplasm improvement. PLANT DIVERSITY 2022; 44:530-541. [PMID: 36540707 PMCID: PMC9751080 DOI: 10.1016/j.pld.2021.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 05/19/2023]
Abstract
Walnuts are highly valued for their rich nutritional profile and wide medicinal applications. This demand has led to the intensification of breeding activities in major walnut production areas such as southwest China, in order to develop more superior cultivars. With the increasing number of cultivars, accurate identification becomes fundamental to selecting the right cultivar for grafting, industrial processing or development of new cultivars. To ensure proper identification of cultivars and understand the genetic structure of wild and cultivated material, we genotyped 362 cultivated and wild individuals of walnut trees from southwest China (with two additional populations from Xinjiang, plus three cultivars from Canada, France and Belgium) using 36 polymorphic microsatellite loci. We found relatively low indices of genetic diversity (H O = 0.570, H E = 0.404, N A = 2.345) as well as a high level of clonality (>85% of cultivars), indicating reliance on genetically narrow sources of parental material for breeding. Our STRUCTURE and PCoA analyses generally delineated the two species, though considerable levels of introgression were also evident. More significantly, we detected a distinct genetic group of cultivated Juglans sigillata, which mainly comprised individuals of the popular 'Yangbidapao' landrace. Finally, a core set of 18 SSR loci was selected, which was capable of identifying 32 cultivars. In a nutshell, our results call for more utilization of genetically disparate material, including wild walnut trees, as parental sources to breed for more cultivars. The data reported herein will significantly contribute towards the genetic improvement and conservation of the walnut germplasm in southwest China.
Collapse
Affiliation(s)
- Moses C. Wambulwa
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Department of Life Sciences, South Eastern Kenya University, 170-90200, Kitui, Kenya
| | - Peng-Zhen Fan
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Richard Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Zeng-Yuan Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yue-Hua Wang
- School of School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, Yunnan, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Zuo-Ying Xiahou
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ye-Chuan Jin
- School of School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, Yunnan, China
| | - Lin-Jiang Ye
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Zu-Chang Xu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Zhi-Chun Yang
- Yangbi Forestry and Grassland Administration, Dali, 672500, Yunnan, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Corresponding author. Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Corresponding author. CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
10
|
Valorization of Traditional Italian Walnut (Juglans regia L.) Production: Genetic, Nutritional and Sensory Characterization of Locally Grown Varieties in the Trentino Region. PLANTS 2022; 11:plants11151986. [PMID: 35956464 PMCID: PMC9370163 DOI: 10.3390/plants11151986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/12/2022]
Abstract
Juglans regia (L.) is cultivated worldwide for its nutrient-rich nuts. In Italy, despite the growing demand, walnut cultivation has gone through a strong decline in recent decades, which led to Italy being among the top five net importing countries. To promote the development of local high-quality Italian walnut production, we devised a multidisciplinary project to highlight the distinctive traits of three varieties grown in the mountainous region Trentino (northeast of Italy): the heirloom ‘Bleggiana’, a second local accession called local Franquette and the French cultivar ‘Lara’, recently introduced in the local production to increase yield. The genetic characterization confirmed the uniqueness of ‘Bleggiana’ and revealed local Franquette as a newly described autochthonous variety, thus named ‘Blegette’. The metabolic profiles highlighted a valuable nutritional composition of the local varieties, richer in polyphenols and with a lower ω-6/ω-3 ratio than the commercial ‘Lara’. ‘Blegette’ obtained the highest preference scores from consumers for both the visual aspect and tasting; however, the volatile organic compound profiles did not discriminate among the characterized cultivars. The described local varieties represent an interesting reservoir of walnut genetic diversity and quality properties, which deserve future investigation on agronomically useful traits (e.g., local adaptation and water usage) for a high-quality and sustainable production.
Collapse
|
11
|
Ding YM, Cao Y, Zhang WP, Chen J, Liu J, Li P, Renner SS, Zhang DY, Bai WN. Population-genomic analyses reveal bottlenecks and asymmetric introgression from Persian into iron walnut during domestication. Genome Biol 2022; 23:145. [PMID: 35787713 PMCID: PMC9254524 DOI: 10.1186/s13059-022-02720-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/25/2022] [Indexed: 12/05/2022] Open
Abstract
Background Persian walnut, Juglans regia, occurs naturally from Greece to western China, while its closest relative, the iron walnut, Juglans sigillata, is endemic in southwest China; both species are cultivated for their nuts and wood. Here, we infer their demographic histories and the time and direction of possible hybridization and introgression between them. Results We use whole-genome resequencing data, different population-genetic approaches (PSMC and GONE), and isolation-with-migration models (IMa3) on individuals from Europe, Iran, Kazakhstan, Pakistan, and China. IMa3 analyses indicate that the two species diverged from each other by 0.85 million years ago, with unidirectional gene flow from eastern J. regia and its ancestor into J. sigillata, including the shell-thickness gene. Within J. regia, a western group, located from Europe to Iran, and an eastern group with individuals from northern China, experienced dramatically declining population sizes about 80 generations ago (roughly 2400 to 4000 years), followed by an expansion at about 40 generations, while J. sigillata had a constant population size from about 100 to 20 generations ago, followed by a rapid decline. Conclusions Both J. regia and J. sigillata appear to have suffered sudden population declines during their domestication, suggesting that the bottleneck scenario of plant domestication may well apply in at least some perennial crop species. Introgression from introduced J. regia appears to have played a role in the domestication of J. sigillata. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02720-z.
Collapse
Affiliation(s)
- Ya-Mei Ding
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yu Cao
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Wei-Ping Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jun Chen
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.,China National Botanical Garden, Beijing, 100093, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Pan Li
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO, 63130, USA.
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Wei-Ning Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
12
|
Walnut (Juglans regia L.) oil chemical composition depending on variety, locality, extraction process and storage conditions: A comprehensive review. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
del Barrio RA, Orioli GA, Brendel AS, Lindström LI, Pellegrini CN, Campoy JA. Persian Walnut ( Juglans regia L.) Bud Dormancy Dynamics in Northern Patagonia, Argentina. FRONTIERS IN PLANT SCIENCE 2022; 12:803878. [PMID: 35185955 PMCID: PMC8850472 DOI: 10.3389/fpls.2021.803878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Temperate deciduous fruit trees survive winter temperatures by entering a dormant phase in their aerial meristematic organs. Release from bud dormancy occurs after chill requirements (CR) have been satisfied, whereas bud burst/flowering follows heat requirement (HR) fulfillment. The physiological basis behind these metrics remains elusive. In this study, we are presenting the first multidisciplinary dormancy progression analysis in northern Patagonia, linking (1) forcing/field phenology, (2) bud anatomical development, and (3) soluble sugar (sucrose, glucose, and fructose) dynamics in Juglans regia L. CR and HR were determined for 'Chandler' and 'Franquette,' two walnut cultivars with markedly different CR, in artificial chill/forced heat trials (three seasons) and in-field chill/forced heat tests (five seasons) using excised twigs either with or without apical buds (non-decapitated and decapitated). The soluble sugar dynamics of 'Chandler' (high-performance liquid chromatography) and the anatomical changes of the buds (light microscopy) of the two cultivars were analyzed during endo-ecodormancy progression in one and two seasons, respectively. The CR defined by artificial chill tests proved to be an overestimation compared to the field determinations. Moreover, HR was the main driver in the phenology dynamics, as expected for a high-chill region. 'Chandler' showed an average of 10.3 field chill portions (CP) and 2,163 Growing Degree Hours (GDH°C) less than 'Franquette' for dormancy release and bud burst, respectively. These results were consistent with the transition of the shoot apex from the vegetative to the reproductive phase and the soluble sugar profile. The decrease in sucrose between 15 and 30 days after CR fulfillment could be a reliable biological marker for endodormancy release in walnut, while the increase in fructose and glucose is likely an osmolyte and cellulosic carbon source in pre-sprouting. In addition, we discuss the effect of paradormancy thanks to our apical bud experiment (with or without). Our results improve the current understanding of endo-ecodormancy progression in walnut and provide insightful results for walnut production (i.e., cultivation practices such as pruning) as well as for further application in dormancy modeling, to infer the ideotypes that should be bred for future climate conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - José Antonio Campoy
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave-d’Ornon, France
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
14
|
Pavese V, Moglia A, Corredoira E, Martínez MT, Torello Marinoni D, Botta R. First Report of CRISPR/Cas9 Gene Editing in Castanea sativa Mill. FRONTIERS IN PLANT SCIENCE 2021; 12:728516. [PMID: 34512704 PMCID: PMC8424114 DOI: 10.3389/fpls.2021.728516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
CRISPR/Cas9 has emerged as the most important tool for genome engineering due to its simplicity, design flexibility, and high efficiency. This technology makes it possible to induce point mutations in one or some target sequences simultaneously, as well as to introduce new genetic variants by homology-directed recombination. However, this approach remains largely unexplored in forest species. In this study, we reported the first example of CRISPR/Cas9-mediated gene editing in Castanea genus. As a proof of concept, we targeted the gene encoding phytoene desaturase (pds), whose mutation disrupts chlorophyll biosynthesis allowing for the visual assessment of knockout efficiency. Globular and early torpedo-stage somatic embryos of Castanea sativa (European chestnut) were cocultured for 5 days with a CRISPR/Cas9 construct targeting two conserved gene regions of pds and subsequently cultured on a selection medium with kanamycin. After 8 weeks of subculture on selection medium, four kanamycin-resistant embryogenetic lines were isolated. Genotyping of these lines through target Sanger sequencing of amplicons revealed successful gene editing. Cotyledonary somatic embryos were maturated on maltose 3% and cold-stored at 4°C for 2 months. Subsequently, embryos were subjected to the germination process to produce albino plants. This study opens the way to the use of the CRISPR/Cas9 system in European chestnut for biotechnological applications.
Collapse
Affiliation(s)
- Vera Pavese
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Andrea Moglia
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Elena Corredoira
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG)-Consejo Superior de Investigaciones Científicas, Santiago de Compostela, Spain
| | - Mª Teresa Martínez
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG)-Consejo Superior de Investigaciones Científicas, Santiago de Compostela, Spain
| | - Daniela Torello Marinoni
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Roberto Botta
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| |
Collapse
|
15
|
Genetic Diversity among Some Walnut (Juglans regia L.) Genotypes by SSR Markers. SUSTAINABILITY 2021. [DOI: 10.3390/su13126830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The food needs for increasing population, climatic changes, urbanization and industrialization, along with the destruction of forests, are the main challenges of modern life. Therefore, it is very important to evaluate plant genetic resources in order to cope with these problems. Therefore, in this study, a set of ninety-one walnut (Juglans regia L.) accessions from Central Anatolia region, composed of seventy-four accessions and eight commercial cultivars from Turkey, and nine international reference cultivars, was analyzed using 45 SSR (Simple Sequence Repeats) markers to reveal the genetic diversity. SSR analysis identified 390 alleles for 91 accessions. The number of alleles per locus ranged from 3 to 19 alleles with a mean value of 9 alleles per locus. Genetic dissimilarity coefficients ranged from 0.03 to 0.68. The highest number of alleles was obtained from CUJRA212 locus (Na = 19). The values of polymorphism information content (PIC) ranged from 0.42 (JRHR222528) to 0.86 (CUJRA212) with a mean PIC value of 0.68. Genetic distances were estimated according to the UPGMA (Unweighted Pair Group Method with Arithmetic Average), Principal Coordinates (PCoA), and the Structure-based clustering. The UPGMA and Structure clustering of the accessions depicted five major clusters supporting the PCoA results. The dendrogram revealed the similarities and dissimilarities among the accessions by identifying five major clusters. Based on this study, SSR analyses indicate that Yozgat province has an important genetic diversity pool and rich genetic variance of walnuts.
Collapse
|
16
|
Teske D, Peters A, Möllers A, Fischer M. Genomic Profiling: The Strengths and Limitations of Chloroplast Genome-Based Plant Variety Authentication. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14323-14333. [PMID: 32917087 DOI: 10.1021/acs.jafc.0c03001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Genomic profiling is a suitable tool for variety authentication and has applications in both operational quality and regulatory raw material control. It can be used to differentiate species or varieties and to identify admixtures as well as field contaminants. To establish a molecular profile, reliable and very accurate sequence data are required. As a result of the influence of the pollinator plant, nuclear genome-based authentication is in most cases not suitable for a direct application on the fruit. Sequences must be used that come exclusively from the localized mother plant. Parts of the fruit of maternal origin, e.g., components derived from the blossom, are suitable as a basis for this. Alternatively, DNA from cell organelles that are maternally inherited, such as mitochondria or chloroplasts, can be used. The latter will be discussed in this review in closer detail. Although individual gene segments on the chloroplast genome are already used for species differentiation in barcoding studies on plants, little is known about the usefulness of the entire chloroplast genome for intraspecies differentiation in general and for differentiation between modern varieties in particular. Results from the literature as well as from our own work suggest that chloroplast genome sequences are indeed very well-suited for the differentiation of old varieties. On the other hand, they are less or not suitable for the genetic differentiation of modern cultivars, because they are often too closely related.
Collapse
Affiliation(s)
- Doreen Teske
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Alina Peters
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Alexander Möllers
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
17
|
H. D. Sagawa C, de A. B. Assis R, Zaini PA, Wilmarth PA, Phinney BS, Moreira LM, Dandekar AM. Proteome Analysis of Walnut Bacterial Blight Disease. Int J Mol Sci 2020; 21:E7453. [PMID: 33050347 PMCID: PMC7593943 DOI: 10.3390/ijms21207453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022] Open
Abstract
The interaction between the plant host, walnut (Juglans regia; Jr), and a deadly pathogen (Xanthomonas arboricola pv. juglandis 417; Xaj) can lead to walnut bacterial blight (WB), which depletes walnut productivity by degrading the nut quality. Here, we dissect this pathosystem using tandem mass tag quantitative proteomics. Walnut hull tissues inoculated with Xaj were compared to mock-inoculated tissues, and 3972 proteins were identified, of which 3296 are from Jr and 676 from Xaj. Proteins with differential abundance include oxidoreductases, proteases, and enzymes involved in energy metabolism and amino acid interconversion pathways. Defense responses and plant hormone biosynthesis were also increased. Xaj proteins detected in infected tissues demonstrate its ability to adapt to the host microenvironment, limiting iron availability, coping with copper toxicity, and maintaining energy and intermediary metabolism. Secreted proteases and extracellular secretion apparatus such as type IV pilus for twitching motility and type III secretion effectors indicate putative factors recognized by the host. Taken together, these results suggest intense degradation processes, oxidative stress, and general arrest of the biosynthetic metabolism in infected nuts. Our results provide insights into molecular mechanisms and highlight potential molecular tools for early detection and disease control strategies.
Collapse
Affiliation(s)
- Cíntia H. D. Sagawa
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (C.H.D.S.); (R.d.A.B.A.); (P.A.Z.)
| | - Renata de A. B. Assis
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (C.H.D.S.); (R.d.A.B.A.); (P.A.Z.)
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil;
| | - Paulo A. Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (C.H.D.S.); (R.d.A.B.A.); (P.A.Z.)
| | - Phillip A. Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, CA 95616, USA;
| | - Leandro M. Moreira
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil;
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (C.H.D.S.); (R.d.A.B.A.); (P.A.Z.)
| |
Collapse
|
18
|
Bükücü ŞB, Sütyemez M, Kefayati S, Paizila A, Jighly A, Kafkas S. Major QTL with pleiotropic effects controlling time of leaf budburst and flowering-related traits in walnut (Juglans regia L.). Sci Rep 2020; 10:15207. [PMID: 32938965 PMCID: PMC7495441 DOI: 10.1038/s41598-020-71809-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022] Open
Abstract
Breeding studies in walnut (Juglans regia L.) are usually time consuming due to the long juvenile period and therefore, this study aimed to determine markers associated with time of leaf budburst and flowering-related traits by performing a genome-wide association study (GWAS). We investigated genotypic variation and its association with time of leaf budburst and flowering-related traits in 188 walnut accessions. Phenotypic data was obtained from 13 different traits during 3 consecutive years. We used DArT-seq for genotyping with a total of 33,519 (14,761 SNP and 18,758 DArT) markers for genome-wide associations to identify marker underlying these traits. Significant correlations were determined among the 13 different traits. Linkage disequilibrium decayed very quickly in walnut in comparison with other plants. Sixteen quantitative trait loci (QTL) with major effects (R2 between 0.08 and 0.23) were found to be associated with a minimum of two phenotypic traits each. Of these QTL, QTL05 had the maximum number of associated traits (seven). Our study is GWAS for time of leaf budburst and flowering-related traits in Juglans regia L. and has a strong potential to efficiently implement the identified QTL in walnut breeding programs.
Collapse
Affiliation(s)
- Şakir Burak Bükücü
- Department of Horticulture, Faculty of Agriculture, University of Sütçü İmam, Kahramanmaraş, Turkey
| | - Mehmet Sütyemez
- Department of Horticulture, Faculty of Agriculture, University of Sütçü İmam, Kahramanmaraş, Turkey
| | - Sina Kefayati
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Sariçam, Adana, Turkey
| | - Aibibula Paizila
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Sariçam, Adana, Turkey
| | - Abdulqader Jighly
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Salih Kafkas
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Sariçam, Adana, Turkey.
| |
Collapse
|
19
|
Genetic Structure of Wild Germplasm of Macadamia: Species Assignment, Diversity and Phylogeographic Relationships. PLANTS 2020; 9:plants9060714. [PMID: 32503327 PMCID: PMC7355489 DOI: 10.3390/plants9060714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 11/25/2022]
Abstract
Macadamia is an Australian native rainforest tree that has been domesticated and traded internationally for its premium nuts. Common cultivars rely upon a limited gene pool that has exploited only two of the four species. Introducing a more diverse germplasm will broaden the genetic base for future crop improvement and better adaptation for changing environments. This study investigated the genetic structure of 302 accessions of wild germplasm using 2872 SNP and 8415 silicoDArT markers. Structure analysis and principal coordinate analysis (PCoA) assigned the 302 accessions into four distinct groups: (i) Macadamia integrifolia, (ii) M. tetraphylla, and (iii) M. jansenii and M. ternifolia, and (iv) admixtures or hybrids. Assignment of the four species matched well with previous characterisations, except for one M. integrifolia and four M. tetraphylla accessions. Using SNP markers, 94 previously unidentified accessions were assigned into the four distinct groups. Finally, 287 accessions were identified as pure examples of one of the four species and 15 as hybrids of M. integrifolia and M. tetraphylla. The admixed accessions showed the highest genetic diversity followed by M. integrifolia, while M. ternifolia and M. jansenii accessions were the least diverse. Mantel test analysis showed a significant correlation between genetic and geographic distance for M. integrifolia (r = 0.51, p = 0.05) and a positive but not significant correlation for M. tetraphylla (r = 0.45, p = 0.06). This study provides a population genetics overview of macadamia germplasm as a background for a conservation strategy and provides directions for future macadamia breeding.
Collapse
|
20
|
Li B, Lin F, Huang P, Guo W, Zheng Y. Development of nuclear SSR and chloroplast genome markers in diverse Liriodendron chinense germplasm based on low-coverage whole genome sequencing. Biol Res 2020; 53:21. [PMID: 32410692 PMCID: PMC7227249 DOI: 10.1186/s40659-020-00289-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/29/2020] [Indexed: 01/25/2023] Open
Abstract
Background Liriodendron chinense ranges widely in subtropical China and northern Vietnam; however, it inhabits several small, isolated populations and is now an endangered species due to its limited seed production. The objective of this study was to develop a set of nuclear SSR (simple sequence repeats) and multiple chloroplast genome markers for genetic studies in L. chinense and their characterization in diverse germplasm. Results We performed low-coverage whole genome sequencing of the L. chinense from four genotypes, assembled the chloroplast genome and identified nuclear SSR loci by searching in contigs for SSR motifs. Comparative analysis of the four chloroplast genomes of L. chinense revealed 45 SNPs, 17 indels, 49 polymorphic SSR loci, and five small inversions. Most chloroplast intraspecific polymorphisms were located in the interspaces of single-copy regions. In total, 6147 SSR markers were isolated from low-coverage whole genome sequences. The most common SSR motifs were dinucleotide (70.09%), followed by trinucleotide motifs (23.10%). The motif AG/TC (33.51%) was the most abundant, followed by TC/AG (25.53%). A set of 13 SSR primer combinations were tested for amplification and their ability to detect polymorphisms in a set of 109 L. chinense individuals, representing distinct varieties or germplasm. The number of alleles per locus ranged from 8 to 28 with an average of 21 alleles. The expected heterozygosity (He) varied from 0.19 to 0.93 and the observed heterozygosity (Ho) ranged from 0.11 to 0.79. Conclusions The genetic resources characterized and tested in this study provide a valuable tool to detect polymorphisms in L. chinense for future genetic studies and breeding programs.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China
| | - Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China
| | - Wenying Guo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China. .,Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China. .,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
21
|
Marrano A, Britton M, Zaini PA, Zimin AV, Workman RE, Puiu D, Bianco L, Pierro EAD, Allen BJ, Chakraborty S, Troggio M, Leslie CA, Timp W, Dandekar A, Salzberg SL, Neale DB. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. Gigascience 2020; 9:giaa050. [PMID: 32432329 PMCID: PMC7238675 DOI: 10.1093/gigascience/giaa050] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/13/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The release of the first reference genome of walnut (Juglans regia L.) enabled many achievements in the characterization of walnut genetic and functional variation. However, it is highly fragmented, preventing the integration of genetic, transcriptomic, and proteomic information to fully elucidate walnut biological processes. FINDINGS Here, we report the new chromosome-scale assembly of the walnut reference genome (Chandler v2.0) obtained by combining Oxford Nanopore long-read sequencing with chromosome conformation capture (Hi-C) technology. Relative to the previous reference genome, the new assembly features an 84.4-fold increase in N50 size, with the 16 chromosomal pseudomolecules assembled and representing 95% of its total length. Using full-length transcripts from single-molecule real-time sequencing, we predicted 37,554 gene models, with a mean gene length higher than the previous gene annotations. Most of the new protein-coding genes (90%) present both start and stop codons, which represents a significant improvement compared with Chandler v1.0 (only 48%). We then tested the potential impact of the new chromosome-level genome on different areas of walnut research. By studying the proteome changes occurring during male flower development, we observed that the virtual proteome obtained from Chandler v2.0 presents fewer artifacts than the previous reference genome, enabling the identification of a new potential pollen allergen in walnut. Also, the new chromosome-scale genome facilitates in-depth studies of intraspecies genetic diversity by revealing previously undetected autozygous regions in Chandler, likely resulting from inbreeding, and 195 genomic regions highly differentiated between Western and Eastern walnut cultivars. CONCLUSION Overall, Chandler v2.0 will serve as a valuable resource to better understand and explore walnut biology.
Collapse
Affiliation(s)
- Annarita Marrano
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Monica Britton
- Bioinformatics Core Facility, Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Rachael E Workman
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Luca Bianco
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Erica Adele Di Pierro
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Brian J Allen
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Sandeep Chakraborty
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michela Troggio
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Charles A Leslie
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Abhaya Dandekar
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
- Departments of Computer Science and Biostatistics, Johns Hopkins University, 3400 North Charles Street Baltimore, MD 21218, USA
| | - David B Neale
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
22
|
Marrano A, Britton M, Zaini PA, Zimin AV, Workman RE, Puiu D, Bianco L, Pierro EAD, Allen BJ, Chakraborty S, Troggio M, Leslie CA, Timp W, Dandekar A, Salzberg SL, Neale DB. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. Gigascience 2020. [PMID: 32432329 DOI: 10.1101/80979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The release of the first reference genome of walnut (Juglans regia L.) enabled many achievements in the characterization of walnut genetic and functional variation. However, it is highly fragmented, preventing the integration of genetic, transcriptomic, and proteomic information to fully elucidate walnut biological processes. FINDINGS Here, we report the new chromosome-scale assembly of the walnut reference genome (Chandler v2.0) obtained by combining Oxford Nanopore long-read sequencing with chromosome conformation capture (Hi-C) technology. Relative to the previous reference genome, the new assembly features an 84.4-fold increase in N50 size, with the 16 chromosomal pseudomolecules assembled and representing 95% of its total length. Using full-length transcripts from single-molecule real-time sequencing, we predicted 37,554 gene models, with a mean gene length higher than the previous gene annotations. Most of the new protein-coding genes (90%) present both start and stop codons, which represents a significant improvement compared with Chandler v1.0 (only 48%). We then tested the potential impact of the new chromosome-level genome on different areas of walnut research. By studying the proteome changes occurring during male flower development, we observed that the virtual proteome obtained from Chandler v2.0 presents fewer artifacts than the previous reference genome, enabling the identification of a new potential pollen allergen in walnut. Also, the new chromosome-scale genome facilitates in-depth studies of intraspecies genetic diversity by revealing previously undetected autozygous regions in Chandler, likely resulting from inbreeding, and 195 genomic regions highly differentiated between Western and Eastern walnut cultivars. CONCLUSION Overall, Chandler v2.0 will serve as a valuable resource to better understand and explore walnut biology.
Collapse
Affiliation(s)
- Annarita Marrano
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Monica Britton
- Bioinformatics Core Facility, Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Rachael E Workman
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Luca Bianco
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Erica Adele Di Pierro
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Brian J Allen
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Sandeep Chakraborty
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michela Troggio
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Charles A Leslie
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Abhaya Dandekar
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
- Departments of Computer Science and Biostatistics, Johns Hopkins University, 3400 North Charles Street Baltimore, MD 21218, USA
| | - David B Neale
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
23
|
Xiao N, Bock P, Antreich SJ, Staedler YM, Schönenberger J, Gierlinger N. From the Soft to the Hard: Changes in Microchemistry During Cell Wall Maturation of Walnut Shells. FRONTIERS IN PLANT SCIENCE 2020; 11:466. [PMID: 32431720 PMCID: PMC7216782 DOI: 10.3389/fpls.2020.00466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/30/2020] [Indexed: 05/20/2023]
Abstract
The walnut shell is a hard and protective layer that provides an essential barrier between the seed and its environment. The shell is based on only one unit cell type: the polylobate sclerenchyma cell. For a better understanding of the interlocked walnut shell tissue, we investigate the structural and compositional changes during the development of the shell from the soft to the hard state. Structural changes at the macro level are explored by X-ray tomography and on the cell and cell wall level various microscopic techniques are applied. Walnut shell development takes place beneath the outer green husk, which protects and delivers components during the development of the walnut. The cells toward this outer green husk have the thickest and most lignified cell walls. With maturation secondary cell wall thickening takes place and the amount of all cell wall components (cellulose, hemicelluloses and especially lignin) is increased as revealed by FTIR microscopy. Focusing on the cell wall level, Raman imaging showed that lignin is deposited first into the pectin network between the cells and cell corners, at the very beginning of secondary cell wall formation. Furthermore, Raman imaging of fluorescence visualized numerous pits as a network of channels, connecting all the interlocked polylobate walnut shells. In the final mature stage, fluorescence increased throughout the cell wall and a fluorescent layer was detected toward the lumen in the inner part. This accumulation of aromatic components is reminiscent of heartwood formation of trees and is suggested to improve protection properties of the mature walnut shell. Understanding the walnut shell and its development will inspire biomimetic material design and packaging concepts, but is also important for waste valorization, considering that walnuts are the most widespread tree nuts in the world.
Collapse
Affiliation(s)
- Nannan Xiao
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Bock
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Sebastian J. Antreich
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Yannick Marc Staedler
- Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Jürg Schönenberger
- Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Notburga Gierlinger
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
24
|
Bernard A, Marrano A, Donkpegan A, Brown PJ, Leslie CA, Neale DB, Lheureux F, Dirlewanger E. Association and linkage mapping to unravel genetic architecture of phenological traits and lateral bearing in Persian walnut (Juglans regia L.). BMC Genomics 2020; 21:203. [PMID: 32131731 PMCID: PMC7057608 DOI: 10.1186/s12864-020-6616-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Unravelling the genetic architecture of agronomic traits in walnut such as budbreak date and bearing habit, is crucial for climate change adaptation and yield improvement. A Genome-Wide Association Study (GWAS) using multi-locus models was conducted in a panel of 170 walnut accessions genotyped using the Axiom™ J. regia 700 K SNP array, with phenological data from 2018, 2019 and legacy data. These accessions come from the INRAE walnut germplasm collection which is the result of important prospecting work performed in many countries around the world. In parallel, an F1 progeny of 78 individuals segregating for phenology-related traits, was genotyped with the same array and phenotyped for the same traits, to construct linkage maps and perform Quantitative Trait Loci (QTLs) detection. RESULTS Using GWAS, we found strong associations of SNPs located at the beginning of chromosome 1 with both budbreak and female flowering dates. These findings were supported by QTLs detected in the same genomic region. Highly significant associated SNPs were also detected using GWAS for heterodichogamy and lateral bearing habit, both on chromosome 11. We developed a Kompetitive Allele Specific PCR (KASP) marker for budbreak date in walnut, and validated it using plant material from the Walnut Improvement Program of the University of California, Davis, demonstrating its effectiveness for marker-assisted selection in Persian walnut. We found several candidate genes involved in flowering events in walnut, including a gene related to heterodichogamy encoding a sugar catabolism enzyme and a cell division related gene linked to female flowering date. CONCLUSIONS This study enhances knowledge of the genetic architecture of important agronomic traits related to male and female flowering processes and lateral bearing in walnut. The new marker available for budbreak date, one of the most important traits for good fruiting, will facilitate the selection and development of new walnut cultivars suitable for specific climates.
Collapse
Affiliation(s)
- Anthony Bernard
- INRAE, Univ. Bordeaux, UMR BFP, F-33882, Villenave d'Ornon, France
- CTIFL, centre opérationnel de Lanxade, 24130, Prigonrieux, France
| | - Annarita Marrano
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Armel Donkpegan
- INRAE, Univ. Bordeaux, UMR BFP, F-33882, Villenave d'Ornon, France
| | - Patrick J Brown
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Charles A Leslie
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - David B Neale
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Fabrice Lheureux
- CTIFL, centre opérationnel de Lanxade, 24130, Prigonrieux, France
| | | |
Collapse
|
25
|
Luo X, Chen J. Distinguishing Sichuan Walnut Cultivars and Examining Their Relationships with Juglans regia and J. sigillata by FISH, Early-Fruiting Gene Analysis, and SSR Analysis. FRONTIERS IN PLANT SCIENCE 2020; 11:27. [PMID: 32161605 PMCID: PMC7052499 DOI: 10.3389/fpls.2020.00027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 06/02/2023]
Abstract
Walnuts are economically important tree species in Sichuan Province (China) that provide heathy nuts. Fluorescence in situ hybridization (FISH) and analyses of an early-fruiting gene fragment and simple sequence repeats (SSRs) were used to distinguish Sichuan walnut cultivars and examine their relationships with Juglans regia L. and Juglans sigillata Dode. Thirty-four small chromosomes were counted in four Sichuan walnut cultivars. In the four cultivars, 5S rDNA was located in the proximal regions of two chromosomes (5 and 6), while (AG3T3)3 was located at both ends of each chromosome. The existence of the signal at both chromosome ends ensured accurate chromosome counts. 5S rDNA and (AG3T3)3 were not effective in identifying Sichuan walnut cultivars. Evolutionary analysis involving 32 early-fruiting nucleotide sequences from Sichuan walnut materials were performed with the maximum likelihood method. There were a total of 602 positions. All positions with gaps and missing data were eliminated, resulting in a final dataset of 562 positions. The ML tree with the highest log likelihood (-1607.82) revealed two obvious groups: one including materials of J. regia, which fruits 1 year after grafting, and another including materials of J. sigillata, which fruits >3 years after grafting. The early-fruiting gene fragment divided 22 walnut materials (10 walnut cultivars and 12 walnut accessions) into two groups, indicating that it was somewhat effective for distinguishing Sichuan walnut cultivars. Furthermore, 22 SSR loci were revealed to identify nine walnut cultivars. Eight cultivars were exclusively discerned by one SSR locus each: Chuanzao 1 [CUJRB307 (116) or CUJRA206a (182)], Chuanzao 2 [JSI-73 (154)], Shuangzao [CUJRB103a (123), CUJRB218 (144), JSI-71 (146), or CUJRA206a (176)], Shimianju [ZMZ11 (138)], Meigupao [CUJRB218 (149), CUJRB103a (151), or CUJRA206a (190)], Muzhilinhe [CUJRB220 (136), ZMZ11 (147), CUJRC310 (156), or JSI-73 (166)], Maerkang [CUJRA124 (154), CUJRB218 (159), or CUJRA123 (182)], Yanyuanzao [CUJRA124 (150) or CUJRA206a (192)]. The Shuling cultivar was identified by the combination of ZMZ11 (148) and other SSR loci, which distinguished and excluded the Chuanzao 1 and Yanyuanzao cultivars. Our results will guide the identification and breeding of Sichuan walnut cultivars.
Collapse
|
26
|
Bernard A, Hamdy S, Le Corre L, Dirlewanger E, Lheureux F. 3D characterization of walnut morphological traits using X-ray computed tomography. PLANT METHODS 2020; 16:115. [PMID: 32863852 PMCID: PMC7449096 DOI: 10.1186/s13007-020-00657-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/17/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Walnuts are grown worldwide in temperate areas and producers are facing an increasing demand. In a climate change context, the industry also needs cultivars that provide fruits of quality. This quality includes satisfactory filling ratio, thicker shell, ease of cracking, smooth shell and round-shaped walnut, and larger nut size. These desirable traits have been analysed so far using calipers or micrometers, but it takes a lot of time and requires the destruction of the sample. A challenge to take up is to develop an accurate, fast and non-destructive method for quality-related and morphometric trait measurements of walnuts, that are used to characterize new cultivars or collections in any germplasm management process. RESULTS In this study, we develop a method to measure different morphological traits on several walnuts simultaneously such as morphometric traits (nut length, nut face and profile diameters), traits that previously required opening the nut (shell thickness, kernel volume and filling kernel/nut ratio) and traits that previously were difficult to quantify (shell rugosity, nut sphericity, nut surface area and nut shape). These measurements were obtained from reconstructed 3D images acquired by X-ray computed tomography (CT). A workflow was created including several steps: noise elimination, walnut individualization, properties extraction and quantification of the different parts of the fruit. This method was applied to characterize 50 walnuts of a part of the INRAE walnut germplasm collection made of 161 unique accessions, obtained from the 2018 harvest. Our results indicate that 50 walnuts are sufficient to phenotype the fruit quality of one accession using X-ray CT and to find correlations between the morphometric traits. Our imaging workflow is suitable for any walnut size or shape and provides new and more accurate measurements. CONCLUSIONS The fast and accurate measurement of quantitative traits is of utmost importance to conduct quantitative genetic analyses or cultivar characterization. Our imaging workflow is well adapted for accurate phenotypic characterization of a various range of traits and could be easily applied to other important nut crops.
Collapse
Affiliation(s)
- Anthony Bernard
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140 Villenave d'Ornon, France
- CTIFL, centre opérationnel de Lanxade, 24130 Prigonrieux, France
| | | | | | - Elisabeth Dirlewanger
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140 Villenave d'Ornon, France
| | - Fabrice Lheureux
- CTIFL, centre opérationnel de Lanxade, 24130 Prigonrieux, France
| |
Collapse
|
27
|
Bernard A, Crabier J, Donkpegan ASL, Marrano A, Lheureux F, Dirlewanger E. Genome-Wide Association Study Reveals Candidate Genes Involved in Fruit Trait Variation in Persian Walnut ( Juglans regia L.). FRONTIERS IN PLANT SCIENCE 2020; 11:607213. [PMID: 33584750 PMCID: PMC7873874 DOI: 10.3389/fpls.2020.607213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/10/2020] [Indexed: 05/08/2023]
Abstract
Elucidating the genetic determinants of fruit quality traits in walnut is essential to breed new cultivars meeting the producers and consumers' needs. We conducted a genome-wide association study (GWAS) using multi-locus models in a panel of 170 accessions of Juglans regia from the INRAE walnut germplasm collection, previously genotyped using the AxiomTM J. regia 700K SNP array. We phenotyped the panel for 25 fruit traits related to morphometrics, shape, volume, weight, ease of cracking, and nutritional composition. We found more than 60 marker-trait associations (MTAs), including a highly significant SNP associated with nut face diameter, nut volume and kernel volume on chromosome 14, and 5 additional associations were detected for walnut weight. We proposed several candidate genes involved in nut characteristics, such as a gene coding for a beta-galactosidase linked to several size-related traits and known to be involved in fruit development in other species. We also confirmed associations on chromosomes 5 and 11 with nut suture strength, recently reported by the University of California, Davis. Our results enhance knowledge of the genetic control of important agronomic traits related to fruit quality in walnut, and pave the way for the development of molecular markers for future assisted selection.
Collapse
Affiliation(s)
- Anthony Bernard
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d’Ornon, France
- CTIFL, Centre Opérationnel de Lanxade, Prigonrieux, France
| | - Julie Crabier
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d’Ornon, France
| | - Armel S. L. Donkpegan
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d’Ornon, France
| | - Annarita Marrano
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | | | - Elisabeth Dirlewanger
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d’Ornon, France
- *Correspondence: Elisabeth Dirlewanger,
| |
Collapse
|
28
|
Bernard A, Barreneche T, Delmas M, Durand S, Pommier C, Lheureux F, Tranchand E, Naudin M, Dirlewanger E. The walnut genetic resources of INRA: chronological phenotypic data and ontology. BMC Res Notes 2019; 12:662. [PMID: 31623654 PMCID: PMC6798330 DOI: 10.1186/s13104-019-4678-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 09/28/2019] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Persian walnut (Juglans regia L.), the walnut species cultivated for nut production, is grown worldwide in temperate areas. In this work, chronological phenotypic data have been collected regarding a part of the walnut genetic resources of the French National Institute for Agricultural Research (INRA) of Bordeaux. Using a well described ontology, these data have been collected in order to assess the phenotypic variations among the accessions, and to better manage the germplasm collection. These data can also be helpful for any breeding program as they provide a clear phenotypic characterization of the main cultivars. DATA DESCRIPTION This paper introduces a dataset collected for 150 J. regia accessions for a period from 1965 to 2016, and for 3 observation sites, released as comma separated value spreadsheet. It includes observations about phenological traits (e.g. flowering dates), traits related to in-shell walnut (e.g. weight and size), and traits related to kernel (e.g. color). It can be used by other researchers particularly for multi-site phenological studies in the context of climate change since climate data files are also available. In addition, a complete walnut ontology was deposited in this repository and can assist to standardize the management of any walnut germplasm collection.
Collapse
Affiliation(s)
- Anthony Bernard
- UMR 1332 BFP, INRA, Université de Bordeaux, 33140 Villenave d’Ornon, France
- Ctifl, centre opérationnel de Lanxade, 24130 Prigonrieux, France
| | - Teresa Barreneche
- UMR 1332 BFP, INRA, Université de Bordeaux, 33140 Villenave d’Ornon, France
| | | | - Sophie Durand
- URGI, INRA, Université Paris-Saclay, 78026 Versailles, France
| | - Cyril Pommier
- URGI, INRA, Université Paris-Saclay, 78026 Versailles, France
| | - Fabrice Lheureux
- Ctifl, centre opérationnel de Lanxade, 24130 Prigonrieux, France
| | - Eloïse Tranchand
- Station expérimentale de la noix de Creysse, 46600 Creysse, France
| | - Marianne Naudin
- Station d’expérimentation nucicole en Rhône-Alpes, 38160 Chatte, France
| | | |
Collapse
|
29
|
Fatima T, Srivastava A, Somashekar PV, Hanur VS, Rao MS, Bisht SS. Assessment of morphological and genetic variability through genic microsatellite markers for essential oil in Sandalwood ( Santalum album L.). 3 Biotech 2019; 9:252. [PMID: 31192077 PMCID: PMC6555841 DOI: 10.1007/s13205-019-1758-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/11/2019] [Indexed: 11/28/2022] Open
Abstract
Sandalwood (Santalum album L; family Santalaceae) is a highly significant aromatic oil yielding tree. It is valued for two important traits, heartwood and essential oil obtained from the heartwood. This study was proposed to assess the morphological and genetic variability of sandalwood accessions. For this, genotypes were randomly selected (n = 177) from the 14 populations from three states in southern India. The total heartwood oil content and quality was estimated by UV method and GC-MS. Total 14 oil-specific genic SSR markers were procured to evaluate the genetic diversity among the sandalwood accessions. Total core size, heartwood content, and oil of S. album ranged from 4.4 to 19.1 cm; 0.0 to 17.3 cm; and 0.0 to 5.96% with covariance 27.61, 85.25, and 73.12% followed by mean 9.74, 3.77, and 2.71, respectively. Genetic diversity estimates were highly polymorphic in terms of Na 7.28, Ne 5.89, He 8.0 PIC 0.891, with little Ho, and F-0.922. AMOVA revealed that minimal genetic variation among populations and highest variation was found among individuals with Nm (58.4). The UPGMA reveals the cluster favored the grouping pattern by the PCA analysis. Structure and PCA analysis clustered the entire populations into two major groups with F ST 0.046 in which population of Kerala and Karnataka were pure and Telangana accessions were found admixtures. No significant correlation (r 2 = 0.23, P = 0.00) was observed between heartwood oil and genetic structures. A high degree of transferability of genic markers would facilitate the assessment of novel genotypes for future tree improvement and conservation of Sandalwood populations.
Collapse
Affiliation(s)
- Tanzeem Fatima
- Genetics and Tree Improvement Division Institute of Wood Science and Technology, Bangalore, 03 India
| | - Ashutosh Srivastava
- Genetics and Tree Improvement Division Institute of Wood Science and Technology, Bangalore, 03 India
| | - P. V. Somashekar
- Genetics and Tree Improvement Division Institute of Wood Science and Technology, Bangalore, 03 India
| | - Vageeshbabu S. Hanur
- Division of Biotechnology, Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bangalore, 89 India
| | - M. Srinivasa Rao
- Woodworking Division, Institute of Wood Science and Technology, Bangalore, 03 India
| | - Surendra Singh Bisht
- Chemistry and Bio Prospecting Division, Institute of Wood Science and Technology, Bangalore, 03 India
| |
Collapse
|
30
|
Rocca GD, Danti R, Williams N, Eyre C, Garbelotto M. Molecular analyses indicate that both native and exotic pathogen populations serve as sources of novel outbreaks of Cypress Canker Disease. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02022-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Marrano A, Sideli GM, Leslie CA, Cheng H, Neale DB. Deciphering of the Genetic Control of Phenology, Yield, and Pellicle Color in Persian Walnut ( Juglans regia L.). FRONTIERS IN PLANT SCIENCE 2019; 10:1140. [PMID: 31616449 PMCID: PMC6764078 DOI: 10.3389/fpls.2019.01140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/21/2019] [Indexed: 05/02/2023]
Abstract
Yield, nut quality, and ability to adapt to specific climate conditions, are all important factors to consider in the development and selection of new Persian walnut (Juglans regia L.) varieties. The genetic control of these traits is still unknown in walnut, limiting the accuracy and rapidity of releasing new cultivars for commercial use. We studied the genetic architecture of five traits crucial for either marketing (i.e., yield, lateral fruit-bearing, and pellicle color) or selection of individuals with specific phenology (i.e., leafing and harvest date). By combining over 30 years of phenotypic data with genetic profiles generated using the latest Axiom™ J. regia 700K SNP array, we were able to identify and confirm major loci for all these traits. In particular, we revealed that a genomic region at the beginning of Chr1 controls both leafing and harvest date in walnut, consistent with the observed strong phenotypical correlation between these traits, and including candidate genes involved in plant development, leaf formation, and cell division. In addition, a large genomic region on Chr11 that includes genes with a central role in flowering control and shoot meristem growth underlies both lateral fruit-bearing and yield in walnut. We observed a more complex genetic architecture for pellicle color, strongly influenced by the environment (h 2 = 0.43). We identified two marker-trait associations on Chr6 and 7 for pellicle color, where genes encoding a UDP-glycosyltransferase or involved in the response to oxidation were found. In conclusion, by combining classical quantitative trait loci (QTL) mapping and genome-wide association mapping, we deciphered, for the first time, the molecular pathways controlling walnut phenology, yield, lateral fruitfulness, and pellicle color. Our findings represent a further milestone in the transition from conventional to genome-assisted breeding in Persian walnut.
Collapse
Affiliation(s)
- Annarita Marrano
- Department of Plant Sciences, University of California, Davis, CA, United States
- *Correspondence: Annarita Marrano,
| | - Gina M. Sideli
- Department of Plant Sciences, University of California, Davis, CA, United States
| | - Charles A. Leslie
- Department of Plant Sciences, University of California, Davis, CA, United States
| | - Hao Cheng
- Department of Animal Science, University of California, Davis, CA, United States
| | - David B. Neale
- Department of Plant Sciences, University of California, Davis, CA, United States
| |
Collapse
|