1
|
Tzirkel-Hancock N, Raz C, Sharabi L, Argov-Argaman N. The Stressogenic Impact of Bacterial Secretomes Is Modulated by the Size of the Milk Fat Globule Used as a Substrate. Foods 2024; 13:2429. [PMID: 39123620 PMCID: PMC11312077 DOI: 10.3390/foods13152429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Milk fat globules (MFGs) are produced by mammary epithelial cells (MECs) and originate from intracellular lipid droplets with a wide size distribution. In the mammary gland and milk, bacteria can thrive on MFGs. Herein, we aimed to investigate whether the response of MECs to the bacterial secretome is dependent on the MFG size used as a substrate for the bacteria, and whether the response differs between pathogenic and commensal bacteria. We used secretomes from both Bacillus subtilis and E. coli. Proinflammatory gene expression in MECs was elevated by the bacteria secretomes from both bacteria sources, while higher expression was found in cells exposed to the secretome of bacteria grown on large MFGs. The secretome of B. subtilis reduced lipid droplet size in MECs. When the secretome originated from E. coli, lipid droplet size in MEC cytoplasm was elevated with a stronger response to the secretome from bacteria grown on large compared with small MFGs. These results indicate that MEC response to bacterial output is modulated by bacteria type and the size of MFGs used by the bacteria, which can modulate the stress response of the milk-producing cells, their lipid output, and consequently milk quality.
Collapse
Affiliation(s)
| | | | | | - Nurit Argov-Argaman
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (N.T.-H.)
| |
Collapse
|
2
|
Yazıcı D, Demir SÇ, Sezer H. Insulin Resistance, Obesity, and Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:391-430. [PMID: 39287860 DOI: 10.1007/978-3-031-63657-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lipotoxicity, originally used to describe the destructive effects of excess fat accumulation on glucose metabolism, causes functional impairments in several metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas, and muscle. Ectopic lipid accumulation in the kidneys, liver, and heart has important clinical counterparts like diabetic nephropathy in type 2 diabetes mellitus, obesity-related glomerulopathy, nonalcoholic fatty liver disease, and cardiomyopathy. Insulin resistance due to lipotoxicity indirectly lead to reproductive system disorders, like polycystic ovary syndrome. Lipotoxicity has roles in insulin resistance and pancreatic beta-cell dysfunction. Increased circulating levels of lipids and the metabolic alterations in fatty acid utilization and intracellular signaling have been related to insulin resistance in muscle and liver. Different pathways, like novel protein kinase c pathways and the JNK-1 pathway, are involved as the mechanisms of how lipotoxicity leads to insulin resistance in nonadipose tissue organs, such as liver and muscle. Mitochondrial dysfunction plays a role in the pathogenesis of insulin resistance. Endoplasmic reticulum stress, through mainly increased oxidative stress, also plays an important role in the etiology of insulin resistance, especially seen in non-alcoholic fatty liver disease. Visceral adiposity and insulin resistance both increase the cardiometabolic risk, and lipotoxicity seems to play a crucial role in the pathophysiology of these associations.
Collapse
Affiliation(s)
- Dilek Yazıcı
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey.
| | - Selin Çakmak Demir
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| | - Havva Sezer
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| |
Collapse
|
3
|
Tzirkel-Hancock N, Sharabi L, Argov-Argaman N. Milk fat globule size: Unraveling the intricate relationship between metabolism, homeostasis, and stress signaling. Biochimie 2023; 215:4-11. [PMID: 37802210 DOI: 10.1016/j.biochi.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Fat is an important component of milk which delivers energy, nutrients, and bioactive molecules from the lactating mother to the suckling neonate. Milk fat consists of a complex mixture of different types of lipids; hundreds of fatty acids, triglycerides, phospholipids, sphingolipids, cholesterol and cholesteryl ester, and glycoconjugates, secreted by the mammary gland epithelial cells (MEC) in the form of a lipid-protein assembly termed the milk fat globule (MFG). The mammary gland in general, and specifically that of modern dairy cows, faces metabolic stress once lactation commences, which changes the lipogenic capacity of MECs directly by reducing available energy and reducing factors required for both lipid synthesis and secretion or indirectly by activating a proinflammatory response. Both processes have the capacity to change the morphometric features (e.g., number and size) of the secreted MFG and its precursor-the intracellular lipid droplet (LD). The MFG size is tightly associated with its lipidome and proteome and also affects the bioavailability of milk fat and protein. Thus, MFG size has the potential to regulate the bioactivity of milk and dairy products. MFG size also plays a central role in the functional properties of milk and dairy products such as texture and stability. To understand how stress affects the structure-function of the MFG, we cover: (i) The mechanism of production and secretion of the MFG and the implications of MFG size, (ii) How the response mechanisms to stress can change the morphometric features of MFGs, and (iii) The possible consequences of such modifications.
Collapse
Affiliation(s)
- Noam Tzirkel-Hancock
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Lior Sharabi
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Nurit Argov-Argaman
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
4
|
Fan M, Choi YJ, Wedamulla NE, Tang Y, Han KI, Hwang JY, Kim EK. Heat-Killed Enterococcus faecalis EF-2001 Attenuate Lipid Accumulation in Diet-Induced Obese (DIO) Mice by Activating AMPK Signaling in Liver. Foods 2022; 11:575. [PMID: 35206052 PMCID: PMC8870772 DOI: 10.3390/foods11040575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
To explore the inhibitory mechanism of heat-killed Enterococcus faecalis, EF-2001 on hepatic lipid deposition, a diet-induced obese (DIO) animal model was established by high-fat diet (HFD). The DIO C57BL/6 mice were divided into four groups: the normal group without HFD (ND, n = 8), obesity group (HFD, n = 8), experimental group (HFD + EF-2001, 200 mg/kg, n = 8), and positive control group (HFD + Orlistat, 60 mg/kg, n = 8). After 4 weeks, liver and adipose tissue were fixed in 10% paraformaldehyde, followed by embedding in paraffin for tissue sectioning. The differences in body mass, body fat ratio, fatty cell area, and lipid profiling of the liver (TC, LDL, and HDL) were also determined. Moreover, Western blot was performed to analyze the expression of lipid accumulation-related proteins, including AMPK, PPARγ, SREBP-1, ACC, and FAS. Compared with the HFD group, the HFD + EF-2001 group exhibited decreased fat mass, liver index, adipocyte area, TC, and LDL, and an increased level of HDL. The results of liver hematoxylin and eosin (H&E), and oil red O staining showed that the mice in each intervention group were improved on hepatic lipid accumulation, and the mice in the HFD + EF-2001 group were the most similar to those in the normal group when compared with the HFD group. From the Western blot results, we proved that EF-2001 activated the AMPK signaling pathway. EF-2001 significantly upregulated the expressions of p-AMPK and p-ACC and downregulated PPARγ, SREBP-1, and FAS in murine liver. Taken together, these results suggest that EF-2001 decrease lipid accumulation in the DIO model mice through the AMPK pathway and ameliorate liver damage by HFD.
Collapse
Affiliation(s)
- Meiqi Fan
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea;
| | - Young-Jin Choi
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan 49315, Korea; (Y.-J.C.); (N.E.W.)
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
| | - Nishala Erandi Wedamulla
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan 49315, Korea; (Y.-J.C.); (N.E.W.)
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Yujiao Tang
- School of Bio-Science and Food Engineering, Changchun University of Science and Technology, Changchun 130600, China;
| | | | - Ji-Young Hwang
- Department of Food Science & Technology, Dong-Eui University, Busan 47340, Korea;
| | - Eun-Kyung Kim
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan 49315, Korea; (Y.-J.C.); (N.E.W.)
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Korea
| |
Collapse
|
5
|
Thum C, Roy NC, Everett DW, McNabb WC. Variation in milk fat globule size and composition: A source of bioactives for human health. Crit Rev Food Sci Nutr 2021; 63:87-113. [PMID: 34190660 DOI: 10.1080/10408398.2021.1944049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Milk fat globules (MFGs) are secreted from the mammalian gland and are composed of a triacylglycerol core surrounded by a triple membrane structure, the milk fat globule membrane (MFGM). The MFGM contains complex lipids and proteins reported to have nutritional, immunological, neurological and digestive functions. Human and ruminant milk are shown to share a similar MFG structure but with different size, profile and abundance of protein and polar lipids. This review summarizes the reported data on human, bovine, caprine and ovine MFG composition and concentration of bioactive components in different MFG-size fractions. A comprehensive understanding of compositional variations between milk from different species and MFG size fractions may help promote various milk sources as targeted supplements to improve human development and health. MFG size and MFGM composition are species-specific and affected by lactation, diet and breed (or maternal origin). Purification and enrichment methods for some bioactive proteins and lipids present in the MFGM have yet to be established or are not scaled sufficiently to be used to supplement human diets. To overcome this problem, MFG size selection through fractionation or herd selection may provide a convenient way to pre-enrich the MFG fraction with specific protein and lipid components to fulfill human dietary and health requirements.
Collapse
Affiliation(s)
- Caroline Thum
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Nicole C Roy
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, The University of Auckland, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - David W Everett
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Warren C McNabb
- Riddet Institute, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Pistacia lentiscus extract enhances mammary epithelial cells' productivity by modulating their oxidative status. Sci Rep 2020; 10:20985. [PMID: 33268807 PMCID: PMC7710751 DOI: 10.1038/s41598-020-78065-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/19/2020] [Indexed: 11/08/2022] Open
Abstract
We assessed the potential of phenolic compounds from Pistacia lentiscus (lentisk) to enhance production of milk constituents in bovine mammary epithelial cells (MEC). MEC were exposed to 0 (control), 1 or 10 ppm of polyphenols from lentisk ethanolic extract (PLEE) for 24 h. PLEE were absorbed by the MEC plasma membrane, but also penetrated the cell to accumulate in and around the nucleus. PLEE increased triglyceride content in the cell and its secretion to the medium, and significantly increased intracellular lipid droplet diameter. Compared to control, PLEE increased dose-dependently the lactose synthesis, secretion of whey proteins, and contents of casein. To evaluate mitochondrial activity under pro-oxidant load, MEC were preincubated with PLEE and exposed for 2 h to H2O2. Exposure to H2O2 increased the proportion of cells with impaired mitochondrial membrane potential twofold in controls, but not in PLEE-pre-treated cells. Accordingly, proton leakage was markedly decreased by PLEE, and coupling efficiency between the respiratory chain and ATP production was significantly enhanced. Thus, lentisk polyphenols divert energy to production of milk fat, protein and lactose, with less energy directed to cellular damage control; alternatively, PLEE enables MEC to maintain energy and oxidative status under extreme metabolic rate required for milk production and secretion, and reduces the limitation on energy required to support production.
Collapse
|
7
|
Friend or Foe: Lipid Droplets as Organelles for Protein and Lipid Storage in Cellular Stress Response, Aging and Disease. Molecules 2020; 25:molecules25215053. [PMID: 33143278 PMCID: PMC7663626 DOI: 10.3390/molecules25215053] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Lipid droplets (LDs) were considered as a mere lipid storage organelle for a long time. Recent evidence suggests that LDs are in fact distinct and dynamic organelles with a specialized proteome and functions in many cellular roles. As such, LDs contribute to cellular signaling, protein and lipid homeostasis, metabolic diseases and inflammation. In line with the multitude of functions, LDs interact with many cellular organelles including mitochondria, peroxisomes, lysosomes, the endoplasmic reticulum and the nucleus. LDs are highly mobile and dynamic organelles and impaired motility disrupts the interaction with other organelles. The reduction of interorganelle contacts results in a multitude of pathophysiologies and frequently in neurodegenerative diseases. Contacts not only supply lipids for β-oxidation in mitochondria and peroxisomes, but also may include the transfer of toxic lipids as well as misfolded and harmful proteins to LDs. Furthermore, LDs assist in the removal of protein aggregates when severe proteotoxic stress overwhelms the proteasomal system. During imbalance of cellular lipid homeostasis, LDs also support cellular detoxification. Fine-tuning of LD function is of crucial importance and many diseases are associated with dysfunctional LDs. We summarize the current understanding of LDs and their interactions with organelles, providing a storage site for harmful proteins and lipids during cellular stress, aging inflammation and various disease states.
Collapse
|
8
|
Yi R, Tan F, Zhou X, Mu J, Li L, Du X, Yang Z, Zhao X. Effects of Lactobacillus fermentum CQPC04 on Lipid Reduction in C57BL/6J Mice. Front Microbiol 2020; 11:573586. [PMID: 33013810 PMCID: PMC7494803 DOI: 10.3389/fmicb.2020.573586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Probiotics are functional foods that can effectively regulate lipid reduction and maintain body health. In this study, a strain of Lactobacillus fermentum CQPC04 (LF-CQPC04) isolated from traditional naturally fermented vegetables (Sichuan pickles) was studied, and its effects on lipid reduction in mice, as well as its mechanism of action, were observed. The results of this experiment show that LF-CQPC04 can reduce the abnormal weight gain and abnormal visceral index of mice caused by a high-fat diet. LF-CQPC04 can decrease TG (triglycerides), TC (total cholesterol), LDL-c (low-density lipoprotein cholesterol), AST (aspartate transaminase), ALT (alanine aminotransferase), and AKP (alkaline phosphatase) levels and increase HDL-c (high-density lipoprotein cholesterol) levels in the serum of high-fat mice. LF-CQPC04 can also decrease the levels of inflammatory cytokines, such as IL-6 (interleukin-6), IL-1β (interleukin-1 beta), TNF-α (tumor necrosis factor alpha), and IFN-γ (interferon gamma), and increase IL-4 and IL-10 levels in the serum of high-fat mice. The results of RT-qPCR (real-time quantitative polymerase chain reaction) and western blot experiments show that LF-CQPC04 can also down-regulate the expression of PPAR-γ (peroxisome proliferator-activated receptor gamma), C/EBP-α (CCAAT/enhances binding protein alpha) mRNA, and protein in the liver tissue of high-fat mice, while up-regulating the expression of Cu/Zn-SOD (copper/zinc superoxide dismutase), Mn-SOD (manganese superoxide dismutase), CAT (catalase), CYP7A1 (cholesterol 7 alpha hydroxylase), PPAR-α (peroxisome proliferator-activated receptor alpha), CPT1 (carnitine palmitoyl transferase 1), LPL (lipoprotein lipase), and ABCA1 (ATP-binding cassette transporter A1). Moreover, LF-CQPC04 shows stronger effects in regulating lipid reduction in mice than L-carnitine and commercial LB (Lactobacillus delbrueckii subsp. Bulgaricus) bacteria. LF-CQPC04 is beneficial for lipid reduction in animals and has good probiotic potential.
Collapse
Affiliation(s)
- Ruokun Yi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela, Philippines
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Lin Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xiping Du
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
9
|
Opazo-Ríos L, Mas S, Marín-Royo G, Mezzano S, Gómez-Guerrero C, Moreno JA, Egido J. Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities. Int J Mol Sci 2020; 21:E2632. [PMID: 32290082 PMCID: PMC7177360 DOI: 10.3390/ijms21072632] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Lipotoxicity is characterized by the ectopic accumulation of lipids in organs different from adipose tissue. Lipotoxicity is mainly associated with dysfunctional signaling and insulin resistance response in non-adipose tissue such as myocardium, pancreas, skeletal muscle, liver, and kidney. Serum lipid abnormalities and renal ectopic lipid accumulation have been associated with the development of kidney diseases, in particular diabetic nephropathy. Chronic hyperinsulinemia, often seen in type 2 diabetes, plays a crucial role in blood and liver lipid metabolism abnormalities, thus resulting in increased non-esterified fatty acids (NEFA). Excessive lipid accumulation alters cellular homeostasis and activates lipogenic and glycogenic cell-signaling pathways. Recent evidences indicate that both quantity and quality of lipids are involved in renal damage associated to lipotoxicity by activating inflammation, oxidative stress, mitochondrial dysfunction, and cell-death. The pathological effects of lipotoxicity have been observed in renal cells, thus promoting podocyte injury, tubular damage, mesangial proliferation, endothelial activation, and formation of macrophage-derived foam cells. Therefore, this review examines the recent preclinical and clinical research about the potentially harmful effects of lipids in the kidney, metabolic markers associated with these mechanisms, major signaling pathways affected, the causes of excessive lipid accumulation, and the types of lipids involved, as well as offers a comprehensive update of therapeutic strategies targeting lipotoxicity.
Collapse
Affiliation(s)
- Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Sebastián Mas
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Gema Marín-Royo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Sergio Mezzano
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, 5090000 Valdivia, Chile;
| | - Carmen Gómez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| | - Juan Antonio Moreno
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain
- Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (L.O.-R.); (G.M.-R.); (C.G.-G.); (J.E.)
| |
Collapse
|
10
|
Baimishev M, Eremin S, Plemyashov K, Baimishev H, Konopeltsev I, Yesengaliev K. The effect of metabolism on the course of labor and the postpartum period in highly productive cows. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20201700256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The purpose of the research is to determine the etiopathogenesis of reproductive dysfunction in highly productive cows. For this, one group of cows was formed on the principle of paranalogs in the amount of 37 animals inseminated in the first sexual hunt after calving, followed by taking blood samples from them using the Monovet system, considering the duration of pregnancy. During the start-up period, blood was taken 1–4 days before calving and on the first day after calving. A total of 253 blood samples were examined. Subsequently, depending on the effectiveness of insemination, animals were divided into two groups. The first group included inseminated cows after the first insemination (20 animals), the second group included 17 unfertilized cows after the first insemination. Subsequently, blood was taken from animals considering the course of childbirth and the postpartum period. Blood counts were studied according to generally accepted methods using certified equipment. The study found that at an early stage of pregnancy, cows have a significant difference in lipid metabolism and in their peroxidation, in the state of antioxidant systems compared to unstable animals. In the process of pregnancy development in cows, there is a decrease in the level of total lipids and their class, and the accumulation of products of transoxidation of lipids is reduced. In animals with retention of the placenta, a low lipid metabolism and a higher level of peroxidation were established already in the dry period. After calving, this difference increases. The obtained data can be used to develop an algorithm for the prevention of postpartum complications in cows by using substances with antioxidant properties.
Collapse
|
11
|
Zhang X, Wu Y, Ye H, Feng C, Han D, Tao S, Pi Y, Zhao J, Chen L, Wang J. Dietary milk fat globule membrane supplementation during late gestation increased the growth of neonatal piglets by improving their plasma parameters, intestinal barriers, and fecal microbiota. RSC Adv 2020; 10:16987-16998. [PMID: 35521473 PMCID: PMC9053443 DOI: 10.1039/d0ra02618b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Maternal supplementation of MFGM transgenerationally improves the intestinal microecology and growth performance of their neonatal piglets.
Collapse
|
12
|
Argov-Argaman N, Raz C, Roth Z. Progesterone Regulation of Milk Fat Globule Size Is VLDL Dependent. Front Endocrinol (Lausanne) 2020; 11:596. [PMID: 33013694 PMCID: PMC7509472 DOI: 10.3389/fendo.2020.00596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
Progesterone plays a pivotal role during mammogenesis and serves as an inhibitor of the secretory activation of mammary cells in the last days of gestation. However, its role during lactogenesis, in particular its involvement in lipid metabolism, and milk fat content and composition, is unknown. Here, we provide new evidence of progesterone's involvement in the regulation of milk fat globule (MFG) synthesis and secretion. Findings from both in vivo and in vitro studies indicated that the concentration and the direction (increase vs. decrease) of progesterone concentration to which the mammary epithelial cells (MECs) are exposed affect MFG size. This was found to be very-low-density lipoprotein (VLDL) dependent: in the presence of VLDL, the proportion of MEC with small lipid droplets (<1 μm) increased 2.4-fold, and the proportion of large lipid droplets (>1 μm) increased 4-fold; in the absence of VLDL, no differences were found. The findings add to our understanding of the mechanism underlying the regulation of MFG size and provide new evidence for progesterone's role in lipid metabolism in the mammary gland during lactogenesis. The fact that the size, synthesis, and composition of MFG are affected by the cyclic pattern of progesterone concentration in the circulation might have physiologically relevant consequences, in particular on milk as a nutritional source.
Collapse
|
13
|
Walter L, Shrestha P, Fry R, Leury BJ, Logan A. Lipid metabolic differences in cows producing small or large milk fat globules: Fatty acid origin and degree of saturation. J Dairy Sci 2019; 103:1920-1930. [PMID: 31759596 DOI: 10.3168/jds.2019-16775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/10/2019] [Indexed: 11/19/2022]
Abstract
This study compared cows that consistently produce milk with small (volume-weighted mean diameter of 2.92-3.83 µm, with an average diameter of 3.29 µm) or large (volume-weighted mean diameter of 4.58-5.67 µm, with an average diameter of 4.92 µm) milk fat globule (MFG) size distributions in terms of the fatty acid (FA) composition of the MFG core. Selected cows fell into the respective size group over at least 3 independent measurements, including an observation period before the experiment. Further selection criteria were similar milk production traits between cows (milk yield, fat yield, fat/protein ratio) and established lactation (>50 d in milk). However, the selected groups differed in parity (parity 1-3 and 3-5 in the small and large MFG groups, respectively), and the small MFG group was an average of 25 d in milk later in their lactation period. All cows were under the same nutritional management and environmental conditions. Here, we show that cows with the small or large MFG phenotype differed in their lipid metabolism in terms of the FA composition of the MFG core. Our results indicate that cows with the small MFG phenotype produced milk with higher concentrations of unsaturated FA despite being fed the same diet. We suggest that this characteristic of the small MFG phenotype is the result of increased uptake of long-chain FA from the blood circulation. A relationship between the degree of unsaturation and MFG size was also identified in preliminary studies across other species-namely, camels, sheep, and goats. These findings show the potential for on-farm selection of cows (and potentially other dairy species) based on MFG size to produce milk with improved nutrient composition. This could lead to purpose-specific separation of milk based on MFG size and FA profile, both known to alter the technological properties of milk.
Collapse
Affiliation(s)
- L Walter
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia 3010; CSIRO Agriculture and Food, Werribee, Victoria, Australia 3030
| | - P Shrestha
- CSIRO Agriculture and Food, Black Mountain, Canberra, Australia 2601
| | - R Fry
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia 3010
| | - B J Leury
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia 3010
| | - A Logan
- CSIRO Agriculture and Food, Werribee, Victoria, Australia 3030.
| |
Collapse
|
14
|
Argov-Argaman N. Symposium review: Milk fat globule size: Practical implications and metabolic regulation. J Dairy Sci 2019; 102:2783-2795. [PMID: 30639008 DOI: 10.3168/jds.2018-15240] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
Milk fat globule (MFG) size ranges over 3 orders of magnitude, from less than 200 nm to over 15 µm. The significance of MFG size derives from its tight association with its lipidome and proteome. More specifically, small MFG have relatively higher content of membrane compared with large globules, and this membrane exerts diverse positive health effects, as reported in human and animal studies. In addition, MFG size has industrial significance, as it affects the physicochemical and sensory characteristics of dairy products. Studies on the size regulation of MFG are scarce, mainly because various confounders indirectly affect MFG size. Because MFG size is determined before and during its secretion from mammary epithelial cells, studies on the size regulation of its precursors, the intracellular lipid droplets (LD), have been used as a proxy for understanding the mechanisms controlling MFG size. In this review, we provide evidence for 2 distinct mechanisms regulating LD size in mammary epithelial cells: co-regulation of fat content and triglyceride-synthesis capacity of the cells, and fusion between LD. The latter is controlled by the membrane's polar lipid composition and involves mitochondrial enzymes. Accordingly, this review also discusses MFG size regulation in the in vivo metabolic context, as MFG morphometric features are often modulated under conditions that involve animals' altered energy status.
Collapse
Affiliation(s)
- Nurit Argov-Argaman
- Department of Animal Science, the Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Israel, POB 76100.
| |
Collapse
|