1
|
Younossi ZM, Kremer AE, Swain MG, Jones D, Bowlus C, Trauner M, Henry L, Gerber L. Assessment of fatigue and its impact in chronic liver disease. J Hepatol 2024; 81:726-742. [PMID: 38670320 DOI: 10.1016/j.jhep.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Patient-reported outcomes (PROs), such as health-related quality of life (HRQL), are important outcome measures for patients with chronic liver diseases (CLDs). Presence of cirrhosis and advanced liver disease have been associated with worsened HRQL and fatigue. On the other hand, some patients with earlier stages of CLD also experience fatigue, causing PRO impairment. Treatment for some CLDs may improve HRQL and, sometimes, levels of fatigue. We aimed to provide an in-depth expert review of concepts related to fatigue and HRQL in patients with primary biliary cholangitis, hepatitis C virus and MASLD (metabolic dysfunction-associated steatotic liver disease). A panel of experts in fatigue and CLD reviewed and discussed the literature and collaborated to provide this expert review of fatigue in CLD. Herein, we review and report on the complexity of fatigue, highlighting that it is comprised of peripheral (neuromuscular failure, often in conjunction with submaximal cardiorespiratory function) and central (central nervous system dysfunction) causes. Fatigue and HRQL are measured using validated self-report instruments. Additionally, fatigue can be measured through objective tests (e.g. grip strength). Fatigue has deleterious effects on HRQL and one's ability to be physically active and socially engaged but does not always correlate with CLD severity. Treatments for hepatitis C virus and MASLD can improve levels of fatigue and HRQL, but current treatments for primary biliary cholangitis do not seem to affect levels of fatigue. We conclude that obtaining PRO data, including on HRQL and fatigue, is essential for determining the comprehensive burden of CLD and its potential treatments.
Collapse
Affiliation(s)
- Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, USA; The Global Liver Council, Washington DC, USA.
| | - Andreas E Kremer
- Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Mark G Swain
- Professor of Medicine, Cal Wenzel Family Foundation Chair in Hepatology, University of Calgary Liver Unit, Calgary, Canada
| | - David Jones
- Professor of Liver Immunology, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher Bowlus
- Lena Valente Professor and Chief, Division of Gastroenterology and Hepatology, University of California Davis, United States
| | - Michael Trauner
- Div. of Gastroenterology & Hepatology, Dept. of Internal Medicine III, MedUni Wien, Medical University of Vienna, Austria
| | - Linda Henry
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, USA; The Global Liver Council, Washington DC, USA; Center for Outcomes Research in Liver Diseases, Washington DC, USA
| | - Lynn Gerber
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, USA; The Global Liver Council, Washington DC, USA
| |
Collapse
|
2
|
Berthoud HR, Münzberg H, Morrison CD, Neuhuber WL. Hepatic interoception in health and disease. Auton Neurosci 2024; 253:103174. [PMID: 38579493 PMCID: PMC11129274 DOI: 10.1016/j.autneu.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
The liver is a large organ with crucial functions in metabolism and immune defense, as well as blood homeostasis and detoxification, and it is clearly in bidirectional communication with the brain and rest of the body via both neural and humoral pathways. A host of neural sensory mechanisms have been proposed, but in contrast to the gut-brain axis, details for both the exact site and molecular signaling steps of their peripheral transduction mechanisms are generally lacking. Similarly, knowledge about function-specific sensory and motor components of both vagal and spinal access pathways to the hepatic parenchyma is missing. Lack of progress largely owes to controversies regarding selectivity of vagal access pathways and extent of hepatocyte innervation. In contrast, there is considerable evidence for glucose sensors in the wall of the hepatic portal vein and their importance for glucose handling by the liver and the brain and the systemic response to hypoglycemia. As liver diseases are on the rise globally, and there are intriguing associations between liver diseases and mental illnesses, it will be important to further dissect and identify both neural and humoral pathways that mediate hepatocyte-specific signals to relevant brain areas. The question of whether and how sensations from the liver contribute to interoceptive self-awareness has not yet been explored.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Winfried L Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich-Alexander University, Erlangen, Germany.
| |
Collapse
|
3
|
Nguyen HH, Swain MG. Avenues within the gut-liver-brain axis linking chronic liver disease and symptoms. Front Neurosci 2023; 17:1171253. [PMID: 37521690 PMCID: PMC10372440 DOI: 10.3389/fnins.2023.1171253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/09/2023] [Indexed: 08/01/2023] Open
Abstract
Symptoms of fatigue, social withdrawal and mood disturbances are commonly encountered in patients with chronic liver disease and have a detrimental effect on patient quality of life. Treatment options for these symptoms are limited and a current area of unmet medical need. In this review, we will evaluate the potential mechanistic avenues within the gut-liver-brain axis that may be altered in the setting of chronic liver disease that drive the development of these symptoms. Both clinical and pre-clinical studies will be highlighted as we discuss how perturbations in host immune response, microbiome, neural responses, and metabolites composition can affect the central nervous system.
Collapse
Affiliation(s)
- Henry H. Nguyen
- University of Calgary Liver Unit, Departments of Medicine and Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark G. Swain
- University of Calgary Liver Unit, Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Goodyear BG, Heidari F, Ingram RJM, Cortese F, Sharifi N, Kaplan GG, Ma C, Panaccione R, Sharkey KA, Swain MG. Multimodal Brain MRI of Deep Gray Matter Changes Associated With Inflammatory Bowel Disease. Inflamm Bowel Dis 2023; 29:405-416. [PMID: 35590449 PMCID: PMC9977255 DOI: 10.1093/ibd/izac089] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Behavioral symptoms, including mood disorders, substantially impact the quality of life of patients with inflammatory bowel disease (IBD), even when clinical remission is achieved. Here, we used multimodal magnetic resonance imaging (MRI) to determine if IBD is associated with changes in the structure and function of deep gray matter brain regions that regulate and integrate emotional, cognitive, and stress responses. METHODS Thirty-five patients with ulcerative colitis (UC) or Crohn's disease (CD) and 32 healthy controls underwent 3 Tesla MRIs to assess volume, neural activity, functional connection strength (connectivity), inflammation, and neurodegeneration of key deep gray matter brain regions (thalamus, caudate, pallidum, putamen, amygdala, hippocampus, and hypothalamus) involved in emotional, cognitive and stress processing. Associations with sex, presence of pain, disease activity, and C-reactive protein (CRP) concentration were examined. RESULTS Significantly increased activity and functional connectivity were observed in cognitive and emotional processing brain regions, including parts of the limbic system, basal ganglia, and hypothalamus of IBD patients compared with healthy controls. Inflammatory bowel disease patients exhibited significantly increased volumes of the amygdala and hypothalamus, as well as evidence of neurodegeneration in the putamen and pallidum. Hippocampal neural activity was increased in IBD patients with active disease. The volume of the thalamus was positively correlated with CRP concentration and was increased in females experiencing pain. CONCLUSIONS Patients with IBD exhibit functional and structural changes in the limbic and striatal systems. These changes may be targets for assessing or predicting the response to therapeutic interventions aimed at improving comorbid emotional and cognitive symptoms.
Collapse
Affiliation(s)
- Bradley G Goodyear
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,The Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada.,The Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Faranak Heidari
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,The Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Richard J M Ingram
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Filomeno Cortese
- The Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Nastaran Sharifi
- The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Gilaad G Kaplan
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Christopher Ma
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Remo Panaccione
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,The Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,The Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mark G Swain
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,The Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Brain microstructural abnormalities in patients with Wilson’s disease: A systematic review of diffusion tenor imaging studies. Brain Imaging Behav 2022; 16:2809-2840. [DOI: 10.1007/s11682-022-00733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
6
|
Phaw NA, Leighton J, Dyson JK, Jones DE. Managing cognitive symptoms and fatigue in cholestatic liver disease. Expert Rev Gastroenterol Hepatol 2021; 15:235-241. [PMID: 33131347 DOI: 10.1080/17474124.2021.1844565] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Patients with cholestatic diseases may develop fatigue and cognitive symptoms. The impact of symptom burden may be significant in some patients. To date, there are no effective pharmacological therapies to improve cognitive symptoms or fatigue in cholestasis and we are wholly reliant on supportive approaches. Area covered: This review provides an overview of cognitive symptoms and fatigue in the cholestatic liver disease primary biliary cholangitis (PBC), including pathophysiology and our approach to the management of these symptoms. Expert opinion: The impact of fatigue and cognitive symptoms on the perceived quality of life can be profound for patients with PBC. The pathophysiology of these symptoms is complex and poorly understood, making the development of therapeutic trials of symptom-directed therapies challenging. The current recommended management for fatigue and cognitive symptoms is mainly supportive.
Collapse
Affiliation(s)
- Naw April Phaw
- Faculty of Medical Sciences, Institute of Translational and Clinical Research, Newcastle University , UK.,Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Trust , Newcastle upon Tyne, England
| | - Jessica Leighton
- Faculty of Medical Sciences, Institute of Translational and Clinical Research, Newcastle University , UK
| | - Jessica Katharine Dyson
- Faculty of Medical Sciences, Institute of Translational and Clinical Research, Newcastle University , UK.,Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Trust , Newcastle upon Tyne, England
| | - David Ej Jones
- Faculty of Medical Sciences, Institute of Translational and Clinical Research, Newcastle University , UK.,Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Trust , Newcastle upon Tyne, England.,National Institute of Health Research Newcastle Biochemical Research Centre, Newcastle University School of Clinical Medical Sciences , Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Tinaz S, Arora J, Nalamada K, Vives-Rodriguez A, Sezgin M, Robakis D, Patel A, Constable RT, Schilsky ML. Structural and functional brain changes in hepatic and neurological Wilson disease. Brain Imaging Behav 2020; 15:2269-2282. [PMID: 33244627 DOI: 10.1007/s11682-020-00420-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Wilson disease (WD) can manifest with hepatic or neuropsychiatric symptoms. Our understanding of the in vivo brain changes in WD, particularly in the hepatic phenotype, is limited. Thirty subjects with WD and 30 age- and gender-matched controls participated. WD group underwent neuropsychiatric assessment. Unified WD Rating Scale neurological exam scores were used to determine neurological (WDN, score > 0) and hepatic-only (WDH, score 0) subgroups. All subjects underwent 3 Tesla anatomical and resting-state functional MRI. Diffusion tensor imaging (DTI) and susceptibility-weighted imaging (SWI) were performed only in the WD group. Volumetric, DTI, and functional connectivity analyses were performed to determine between-group differences. WDN and WDH groups were matched in demographic and psychiatric profiles. The entire WD group compared to controls showed significant thinning in the bilateral superior frontal cortex. The WDN group compared to control and WDH groups showed prominent structural brain changes including significant striatal and thalamic atrophy, more subcortical hypointense lesions on SWI, and diminished white matter integrity in the bilateral anterior corona radiata and corpus callosum. However, the WDH group also showed significant white matter volume loss compared to controls. The functional connectivity between the frontostriatal nodes was significantly reduced in the WDN group, whereas that of the hippocampus was significantly increased in the WDH group compared to controls. In summary, structural and functional brain changes were present even in neurologically non-manifesting WD patients in this cross-sectional study. Longitudinal brain MRI scans may be useful as biomarkers for prognostication and optimization of treatment strategies in WD.
Collapse
Affiliation(s)
- Sule Tinaz
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA. .,Clinical Neurosciences Imaging Center, Yale University School of Medicine, New Haven, CT, USA.
| | - Jagriti Arora
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Keerthana Nalamada
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA
| | - Ana Vives-Rodriguez
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA
| | - Mine Sezgin
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA.,Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| | - Daphne Robakis
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA.,Department of Neurology, State University of New York Downstate College of Medicine, Brooklyn, NY, USA
| | - Amar Patel
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Michael L Schilsky
- Departments of Medicine and Surgery, Sections of Digestive Diseases and Transplant and Immunology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D, Vierling JM, Adams D, Alpini G, Banales JM, Beuers U, Björnsson E, Bowlus C, Carbone M, Chazouillères O, Dalekos G, De Gottardi A, Harada K, Hirschfield G, Invernizzi P, Jones D, Krawitt E, Lanzavecchia A, Lian ZX, Ma X, Manns M, Mavilio D, Quigley EM, Sallusto F, Shimoda S, Strazzabosco M, Swain M, Tanaka A, Trauner M, Tsuneyama K, Zigmond E, Gershwin ME. The challenges of primary biliary cholangitis: What is new and what needs to be done. J Autoimmun 2019; 105:102328. [PMID: 31548157 DOI: 10.1016/j.jaut.2019.102328] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
Primary Biliary Cholangitis (PBC) is an uncommon, chronic, cholangiopathy of autoimmune origin and unknown etiology characterized by positive anti-mitochondrial autoantibodies (AMA), female preponderance and progression to cirrhosis if left untreated. The diagnosis is based on AMA- or PBC-specific anti-nuclear antibody (ANA)-positivity in the presence of a cholestatic biochemical profile, histologic confirmation being mandatory only in seronegative cases. First-line treatment is ursodeoxycholic acid (UDCA), which is effective in preventing disease progression in about two thirds of the patients. The only approved second-line treatment is obeticholic acid. This article summarizes the most relevant conclusions of a meeting held in Lugano, Switzerland, from September 23rd-25th 2018, gathering basic and clinical scientists with various background from around the world to discuss the latest advances in PBC research. The meeting was dedicated to Ian Mackay, pioneer in the field of autoimmune liver diseases. The role of liver histology needs to be reconsidered: liver pathology consistent with PBC in AMA-positive individuals without biochemical cholestasis is increasingly reported, raising the question as to whether biochemical cholestasis is a reliable disease marker for both clinical practice and trials. The urgent need for new biomarkers, including more accurate markers of cholestasis, was also widely discussed during the meeting. Moreover, new insights in interactions of bile acids with biliary epithelia in PBC provide solid evidence of a role for impaired epithelial protection against potentially toxic hydrophobic bile acids, raising the fundamental question as to whether this bile acid-induced epithelial damage is the cause or the consequence of the autoimmune attack to the biliary epithelium. Strategies are needed to identify difficult-to-treat patients at an early disease stage, when new therapeutic approaches targeting immunologic pathways, in addition to bile acid-based therapies, may be effective. In conclusion, using interdisciplinary approaches, groundbreaking advances can be expected before long in respect to our understanding of the etiopathogenesis of PBC, with the ultimate aim of improving its treatment.
Collapse
Affiliation(s)
- Benedetta Terziroli Beretta-Piccoli
- Epatocentro Ticino, Lugano, Switzerland; Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK; European Reference Network ERN RARE-LIVER.
| | - Giorgina Mieli-Vergani
- Paediatric Liver, GI and Nutrition Centre, MowatLabs, King's College Hospital, London, UK
| | - Diego Vergani
- Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK
| | - John M Vierling
- Division of Abdominal Transplantation and Section of Gastroenterology and Hepatology, Departments of Medicine and Surgery, Baylor College of Medicine, Houston, TX, USA
| | - David Adams
- Birmingham NIHR Biomedical Research Centre, Institute of Immunology and Immunotherapy, College of Medical and Dental SciencesMedical School, University of Birmingham, Birmingham, UK
| | - Gianfranco Alpini
- Indiana Center for Liver Research, Richard L. Roudebush VA Medical Center and Indiana University, Indianapolis, IN, USA
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastián, Spain
| | - Ulrich Beuers
- European Reference Network ERN RARE-LIVER; Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Einar Björnsson
- Division of Gastroenterology and Hepatology, Landspitali the National University Hospital of Iceland, Reykjavík, Iceland
| | - Christopher Bowlus
- Division of Gastroenterology and Hepatology, University of California at Davis School of Medicine, Davis, CA, USA
| | - Marco Carbone
- Division Gastroenterology and Center for Autoimmune Liver Diseases, University of Milan-Bicocca School of Medicine, Monza, Italy
| | - Olivier Chazouillères
- European Reference Network ERN RARE-LIVER; Service d'Hépatologie, Hôpital Saint-Antoine, Paris, France
| | - George Dalekos
- Institute of Internal Medicine and Hepatology, Department of Medicine and Research, Laboratory of Internal Medicine, School of Medicine, University of Thessaly, Larissa, Greece
| | - Andrea De Gottardi
- European Reference Network ERN RARE-LIVER; Epatocentro Ticino & Division of Gastroenterology and Hepatology Ente Ospedaliero Cantonale and Università della Svizzera Italiana, Lugano, Switzerland
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Gideon Hirschfield
- Toronto Centre for Liver Disease, University Health Network and University of Toronto, Toronto, Canada
| | - Pietro Invernizzi
- European Reference Network ERN RARE-LIVER; Division Gastroenterology and Center for Autoimmune Liver Diseases, University of Milan-Bicocca School of Medicine, Monza, Italy
| | - David Jones
- Institute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Edward Krawitt
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Zhe-Xiong Lian
- Institutes for Life Sciences, South China University of Technology, Higher Education Mega Center, Guangzhou, China
| | - Xiong Ma
- Shanghai Institute of Digestive Disease, Renji Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Michael Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Italy
| | - Eamon Mm Quigley
- Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA
| | - Federica Sallusto
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Shinji Shimoda
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
| | - Mark Swain
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ehud Zigmond
- Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California, USA.
| |
Collapse
|