1
|
Wijaya GYA, Cuffaro D, Bertini S, Digiacomo M, Macchia M. 1-Acetoxypinoresinol, a Lignan from Olives: Insight into Its Characterization, Identification, and Nutraceutical Properties. Nutrients 2024; 16:1474. [PMID: 38794712 PMCID: PMC11123675 DOI: 10.3390/nu16101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Extra virgin olive oil (EVOO) is a symbol of the Mediterranean diet, constituting its primary source of fat. The beneficial effect of EVOO is strictly related to the presence of fatty acids and polyphenols, bioactive compounds endowed with nutraceutical properties. Among EVOO polyphenols, lignans possess a steroid-like chemical structure and are part of the phytoestrogen family, which is renowned for its health properties. The natural lignans (+)-pinoresinol and 1-acetoxypinoresinol (1-AP) are commonly present in olives and in EVOO. Although (+)-pinoresinol is found in different edible plants, such as flaxseed, beans, whole-grain cereals, sesame seeds, and certain vegetables and fruit, 1-AP was exclusively identified in olives in 2000. So far, the scientific literature has extensively covered different aspects of (+)-pinoresinol, including its isolation and nutraceutical properties. In contrast, less is known about the olive lignan 1-AP. Therefore, this review aimed to comprehensively evaluate the more important aspects of 1-AP, collecting all the literature from 2016 to the present, exploring its distribution in different cultivars, analytical isolation and purification, and nutraceutical properties.
Collapse
Affiliation(s)
- Ganesha Yanuar Arief Wijaya
- Doctoral School in Life Sciences, University of Siena, 53100 Siena, Italy;
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
2
|
Tsiafoulis CG, Liaggou C, Garoufis A, Magiatis P, Roussis IG. Nuclear magnetic resonance analysis of extra virgin olive oil: classification through secoiridoids. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1992-2005. [PMID: 38018400 DOI: 10.1002/jsfa.13139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/27/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Extra virgin olive oil (EVOO), a natural product with a multidisciplinary role, has been and is continuing to be studied from several points of view. Among them, its chemical analysis is of major importance and several methods have been used. Nuclear magnetic resonance (NMR) spectroscopy has inherent advantages, among them monitoring the chemical constituents without the need for a separation technique and without, for instance, possible carry-over effects. Additionally, several magnetic resonance spectroscopic techniques can provide a novel powered insight into the nature and properties of a sample under study. Moreover, -omics procedure can reveal new information and can lead to the classification of populations under study. The main objective of the present work was the possible classification of the EVOO samples based on their aldehyde content using a proposed unreferenced 1 H-NMR spectroscopic quantification method combined with a metabolomic approach. Moreover, the study of the impact of such elevated aldehyde content on several spectra regions of importance in the proton NMR spectra led to the proposal of a possible new isomer indicator. RESULTS Univariate analysis of 12 EVOO samples showed that oleacein, oleocanthal, elenolic acid, hydroxytyrosol/hydroxytyrosol derivatives and tyrosol/tyrosol derivatives strongly differentiated two classes of EVOO: OEH (for high aldehyde EVOO content) and OE (for non-high aldehyde content). Moreover, we pointed out the 'impact' of such elevated secoiridoid and derivatives content, through their moieties' units, on a range of several resonances of the 1 H-NMR spectrum. The metabolomic approach demonstrated the classification of EVOO samples based on their secoiridoid and derivatives content. Multivariate analysis showed a strong influence on the discrimination of the EVOO classes based on the protons resonating at the aldehyde region of the 1 H-NMR spectrum; the aldehyde protons corresponding to 5S,4R-ligstrodial and 5S,4R-oleuropeindial, oleacein, oleocanthal, elenolic acid, p-HPEA-EA, 3,4-DHPEA-EA, 5S,4R- and 5S,4S-ligstrodial and the proton corresponding to a new compound were reported for the first time. This isomer compound, reported for the first time, could serve as a possible indicator for EVOO classification. CONCLUSIONS An unreferenced quantification method was proposed and EVOO samples were classified into two classes: OEH and OE, according to their aldehyde content, gaining thus probably higher nutrient and possible pharmacological value. Moreover, we point out the 'impact' of such elevated aldehyde content on several spectral regions of the 1 H spectrum. Finally, a new compound was detected in the OEH samples and is reported for the first time. This compound could possibly be an indicator. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Constantinos G Tsiafoulis
- NMR Centre, Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
- School of Science & Technology, Hellenic Open University, Patras, Greece
| | - Christina Liaggou
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Achilleas Garoufis
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Prokopios Magiatis
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis G Roussis
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| |
Collapse
|
3
|
Karousi P, Kontos CK, Papakotsi P, Kostakis IK, Skaltsounis AL, Scorilas A. Next-generation sequencing reveals altered gene expression and enriched pathways in triple-negative breast cancer cells treated with oleuropein and oleocanthal. Funct Integr Genomics 2023; 23:299. [PMID: 37707691 PMCID: PMC10501944 DOI: 10.1007/s10142-023-01230-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer characterized by poor prognosis and limited treatment options. Oleuropein and oleocanthal are bioactive chemicals found in extra-virgin olive oil; they have been shown to have anti-cancer potential. In this study, we examined the inhibitory effects of these two natural compounds, on MDA-MB-231 and MDA-MB-468 TNBC cell lines. The human TNBC MDA-MB-231 and MDA-MB-468 cell lines were treated with oleuropein or oleocanthal at ranging concentrations for 48 h. After determining the optimum concentration to reach IC50, using the sulforhodamine B assay, total RNA was extracted after 12, 24, and 48 h from treated and untreated cells. Poly(A)-RNA selection was conducted, followed by library construction and RNA sequencing. Differential gene expression (DEG) analysis was performed to identify DEGs between treated and untreated cells. Pathway analysis was carried out using the KEGG and GO databases. Oleuropein and oleocanthal considerably reduced the proliferation of TNBC cells, with oleocanthal having a slightly stronger effect than oleuropein. Furthermore, multi-time series RNA sequencing showed that the expression profile of TNBC cells was significantly altered after treatment with these compounds, with temporal dynamics and groups of genes consistently affected at all time points. Pathway analysis revealed several significant pathways associated with TNBC, including cell death, apoptotic process, programmed cell death, response to stress, mitotic cell cycle process, cell division, and cancer progression. Our findings suggest that oleuropein and oleocanthal have potential therapeutic benefits for TNBC and can be further investigated as alternative treatment options.
Collapse
Affiliation(s)
- Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| | | | - Ioannis K Kostakis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Division of Pharmacognosy & Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
4
|
Yang E, Wang J, Woodie LN, Greene MW, Kaddoumi A. Oleocanthal Ameliorates Metabolic and Behavioral Phenotypes in a Mouse Model of Alzheimer's Disease. Molecules 2023; 28:5592. [PMID: 37513464 PMCID: PMC10385639 DOI: 10.3390/molecules28145592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Aging is a major risk factor for Alzheimer's disease (AD). AD mouse models are frequently used to assess pathology, behavior, and memory in AD research. While the pathological characteristics of AD are well established, our understanding of the changes in the metabolic phenotypes with age and pathology is limited. In this work, we used the Promethion cage systems® to monitor changes in physiological metabolic and behavioral parameters with age and pathology in wild-type and 5xFAD mouse models. Then, we assessed whether these parameters could be altered by treatment with oleocanthal, a phenolic compound with neuroprotective properties. Findings demonstrated metabolic parameters such as body weight, food and water intake, energy expenditure, dehydration, and respiratory exchange rate, and the behavioral parameters of sleep patterns and anxiety-like behavior are altered by age and pathology. However, the effect of pathology on these parameters was significantly greater than normal aging, which could be linked to amyloid-β deposition and blood-brain barrier (BBB) disruption. In addition, and for the first time, our findings suggest an inverse correlation between sleep hours and BBB breakdown. Treatment with oleocanthal improved the assessed parameters and reduced anxiety-like behavior symptoms and sleep disturbances. In conclusion, aging and AD are associated with metabolism and behavior changes, with the changes being greater with the latter, which were rectified by oleocanthal. In addition, our findings suggest that monitoring changes in metabolic and behavioral phenotypes could provide a valuable tool to assess disease severity and treatment efficacy in AD mouse models.
Collapse
Affiliation(s)
- Euitaek Yang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Junwei Wang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Lauren N Woodie
- Department of Nutrition, College of Human Sciences, Auburn University, Auburn, AL 36849, USA
| | - Michael W Greene
- Department of Nutrition, College of Human Sciences, Auburn University, Auburn, AL 36849, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| |
Collapse
|
5
|
Rivero-Pino F. Oleocanthal - Characterization, production, safety, functionality and in vivo evidences. Food Chem 2023; 425:136504. [PMID: 37276673 DOI: 10.1016/j.foodchem.2023.136504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 05/10/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Oleocanthal, OC, 2-(4-Hydroxyphenyl)ethyl(3S,4E)-4-formyl-3-(2-oxoethyl)hex-4-enoate, is a natural organic compound exclusively found in Olea europaea L. (Oleoaceae), such as extra virgin olive oil (EVOO). Chemically, it is considered a monophenolic secoiridoid, taking part of the validated antioxidants naturally occurring in some plant-based foods. In this review, the aim is to summarize the identity and characteristics of this molecule, where it can be obtained (isolation from the natural source or chemical synthesis), as well as the use as food component. Then, the bioavailability, safety and studies aiming to demonstrate the potential health benefits, including in vitro and in vivo animal and human studies were also discussed.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
6
|
Qusa MH, Abdelwahed KS, Hill RA, El Sayed KA. S-(-)-Oleocanthal Ex Vivo Modulatory Effects on Gut Microbiota. Nutrients 2023; 15:618. [PMID: 36771326 PMCID: PMC9920009 DOI: 10.3390/nu15030618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Compelling evidence points to the critical role of bioactive extra-virgin olive oil (EVOO) phenolics and gut microbiota (GM) interplay, but reliable models for studying the consequences thereof remain to be developed. Herein, we report an optimized ex vivo fecal anaerobic fermentation model to study the modulation of GM by the most bioactive EVOO phenolic S-(-)-oleocanthal (OC), and impacts therefrom, focusing on OC biotransformation in the gut. This model will also be applicable for characterization of GM interactions with other EVOO phenolics, and moreover, for a broadly diverse range of bioactive natural products. The fecal fermentation media and time, and mouse type and gender, were the major factors varied and optimized to provide better understanding of GM-OC interplay. A novel resin entrapment technique (solid-phase extraction) served to selectively entrap OC metabolites, degradation products, and any remaining fraction of OC while excluding interfering complex fecal medium constituents. The effects of OC on GM compositions were investigated via shallow shotgun DNA sequencing. Robust metabolome analyses identified GM bacterial species selectively altered (population numbers/fraction) by OC. Finally, the topmost OC-affected gut bacterial species of the studied mice were compared with those known to be extant in humans and distributions of these bacteria at different human body sites. OC intake caused significant quantitative and qualitative changes to mice GM, which was also comparable with human GM. Results clearly highlight the potential positive health outcomes of OC as a prospective nutraceutical.
Collapse
Affiliation(s)
| | | | | | - Khalid A. El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| |
Collapse
|
7
|
Papakonstantinou A, Koumarianou P, Rigakou A, Diamantakos P, Frakolaki E, Vassilaki N, Chavdoula E, Melliou E, Magiatis P, Boleti H. New Affordable Methods for Large-Scale Isolation of Major Olive Secoiridoids and Systematic Comparative Study of Their Antiproliferative/Cytotoxic Effect on Multiple Cancer Cell Lines of Different Cancer Origins. Int J Mol Sci 2022; 24:ijms24010003. [PMID: 36613449 PMCID: PMC9820430 DOI: 10.3390/ijms24010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Olive oil phenols (OOPs) are associated with the prevention of many human cancers. Some of these have been shown to inhibit cell proliferation and induce apoptosis. However, no systematic comparative study exists for all the investigated compounds under the same conditions, due to difficulties in their isolation or synthesis. Herein are presented innovative methods for large-scale selective extraction of six major secoiridoids from olive oil or leaves enabling their detailed investigation. The cytotoxic/antiproliferative bioactivity of these six compounds was evaluated on sixteen human cancer cell lines originating from eight different tissues. Cell viability with half-maximal effective concentrations (EC50) was evaluated after 72 h treatments. Antiproliferative and pro-apoptotic effects were also assessed for the most bioactive compounds (EC50 ≤ 50 μM). Oleocanthal (1) showed the strongest antiproliferative/cytotoxic activity in most cancer cell lines (EC50: 9−20 μM). The relative effectiveness of the six OOPs was: oleocanthal (1) > oleuropein aglycone (3a,b) > ligstroside aglycone (4a,b) > oleacein (2) > oleomissional (6a,b,c) > oleocanthalic acid (7). This is the first detailed study comparing the bioactivity of six OOPs in such a wide array of cancer cell lines, providing a reference for their relative antiproliferative/cytotoxic effect in the investigated cancers.
Collapse
Affiliation(s)
- Aikaterini Papakonstantinou
- Intracellular Parasitism Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Petrina Koumarianou
- Intracellular Parasitism Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
- Light Microscopy Unit, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Aimilia Rigakou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Panagiotis Diamantakos
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Niki Vassilaki
- Molecular Virology Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Evangelia Chavdoula
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 45110 Ioannina, Greece
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- World Olive Center for Health, Imittou 76, 11634 Athens, Greece
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Correspondence: (P.M.); (H.B.); Tel.: +30-210-7274052 (P.M.); +30-210-6478879 (H.B.)
| | - Haralabia Boleti
- Intracellular Parasitism Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
- Light Microscopy Unit, Hellenic Pasteur Institute, 11521 Athens, Greece
- Correspondence: (P.M.); (H.B.); Tel.: +30-210-7274052 (P.M.); +30-210-6478879 (H.B.)
| |
Collapse
|
8
|
Karampetsou K, Koutsoni OS, Badounas F, Angelis A, Gogou G, Skaltsounis LA, Halabalaki M, Dotsika E. Exploring the Immunotherapeutic Potential of Oleocanthal against Murine Cutaneous Leishmaniasis. PLANTA MEDICA 2022; 88:783-793. [PMID: 35803258 PMCID: PMC9343937 DOI: 10.1055/a-1843-9788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Leishmaniasis is a major tropical disease with increasing global incidence. Due to limited therapeutic options with severe drawbacks, the discovery of alternative treatments based on natural bioactive compounds is important. In our previous studies we have pointed out the antileishmanial activities of olive tree-derived molecules. In this study, we aimed to investigate the in vitro and in vivo antileishmanial as well as the in vivo immunomodulatory effects of oleocanthal, a molecule that has recently gained increasing scientific attention. Pure oleocanthal was isolated from extra virgin olive oil through extraction and chromatography techniques. The in vitro antileishmanial effects of oleocanthal were examined with a resazurin-based assay, while its in vivo efficacy was evaluated in Leishmania major-infected BALB/c mice by determining footpad induration, parasite load in popliteal lymph nodes, histopathological outcome, antibody production, cytokine profile of stimulated splenocytes and immune gene expression, at three weeks after the termination of treatment. Oleocanthal demonstrated in vitro antileishmanial effect against both L. major promastigotes and intracellular amastigotes. This effect was further documented in vivo as demonstrated by the suppressed footpad thickness, the decreased parasite load and the inflammatory cell influx at the infection site. Oleocanthal treatment led to the dominance of a Th1-type immunity linked with resistance against the disease. This study establishes strong scientific evidence for olive tree-derived natural products as possible antileishmanial agents and provides an adding value to the scientific research of oleocanthal.
Collapse
Affiliation(s)
- Kalliopi Karampetsou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Olga S. Koutsoni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Fotis Badounas
- Molecular Genetics Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Apostolis Angelis
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Gogou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Leandros-Alexios Skaltsounis
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- Associate Professor Maria Halabalaki Department of PharmacyDivision of Pharmacognosy and Natural Product
ChemistryNational and Kapodistrian University of Athens15771 Athens,
PanepistimiopolisGreece+ 30 21 07 27 47 81+ 30 21 07 27 45 94
| | - Eleni Dotsika
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Correspondence Dr. Eleni Dotsika Department of MicrobiologyLaboratory of Cellular ImmunologyHellenic
Pasteur Institute127 Vass. Sofias Av.11521
AthensGreece+ 30 21 06 47 88 28+ 30 21 06 47 88 28
| |
Collapse
|
9
|
Oleocanthal Attenuates Metastatic Castration-Resistant Prostate Cancer Progression and Recurrence by Targeting SMYD2. Cancers (Basel) 2022; 14:cancers14143542. [PMID: 35884603 PMCID: PMC9317016 DOI: 10.3390/cancers14143542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The Mediterranean, extra-virgin-olive-oil-rich diet ingredient S-(-)-oleocanthal (OC) has emerged as a potential inhibitor for the growth and relapse of the most aggressive prostate cancer type. This effect is mediated through suppression of important enzyme, SMYD2, that drives the activation of several downstream protein effectors. OC treatments reduced SMYD2 downstream substrates, which are critical for prostate cancer growth and relapse. OC is more advantageous than other reported SMYD2 inhibitors because it has shown potent anticancer activity in animal models. OC’s anti-prostate-cancer effect was prominent compared with some standard drugs currently used to control prostate cancer. OC is a potential, novel natural compound appropriate for immediate use by prostate cancer patients and survivors as a nutraceutical or dietary supplement product. Abstract Metastatic castration-resistant prostate cancer (mCRPC) is the most aggressive prostate cancer (PC) phenotype. Cellular lysine methylation is driven by protein lysine methyltransferases (PKMTs), such as those in the SET- and MYND-containing protein (SMYD) family, including SMYD2 methylate, and several histone and non-histone proteins. SMYD2 is dysregulated in metastatic PC patients with high Gleason score and shorter survival. The Mediterranean, extra-virgin-olive-oil-rich diet ingredient S-(-)-oleocanthal (OC) inhibited SMYD2 in biochemical assays and suppressed viability, migration, invasion, and colony formation of PC-3, CWR-R1ca, PC-3M, and DU-145 PC cell lines with IC50 range from high nM to low µM. OC’s in vitro antiproliferative effect was comparable to standard anti-PC chemotherapies or hormone therapies. A daily, oral 10 mg/kg dose of OC for 11 days effectively suppressed the progression of the mCRPC CWR-R1ca cells engrafted into male nude mice. Daily, oral OC treatment for 30 days suppressed tumor locoregional and distant recurrences after the primary tumors’ surgical excision. Collected OC-treated animal tumors showed marked SMYD2 reduction. OC-treated mice showed significant serum PSA reduction. For the first time, this study showed SMYD2 as novel molecular target in mCRPC, and OC emerged as a specific SMYD2 lead inhibitor. OC prevailed over previously reported SMYD2 inhibitors, with validated in vivo potency and high safety profile, and, therefore, is proposed as a novel nutraceutical for mCRPC progression and recurrence control.
Collapse
|
10
|
Extra Virgin Olive Oil Secoiridoids Modulate the Metabolic Activity of Dacarbazine Pre-Treated and Treatment-Naive Melanoma Cells. Molecules 2022; 27:molecules27103310. [PMID: 35630786 PMCID: PMC9146374 DOI: 10.3390/molecules27103310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023] Open
Abstract
Nowadays, many individuals, whether healthy or diagnosed with disease, tend to expose themselves to various easily accessible natural products in hopes of benefiting their health and well-being. Mediterranean populations have traditionally used olive oil not only in nutrition but also in cosmetics, including skincare. In this study, the phenolic profile—composed of twelve compounds altogether, including the secoiridoids oleocanthal (OCAL) and oleacein (OCEIN)—of extra virgin olive oil (EVOO) from autochthonous cultivars from Croatia was determined using 1H qNMR spectroscopy and HPLC-DAD analysis, and its biological activity was investigated in melanoma cell lines. The EVOO with the highest OCEIN content had the strongest anti-cancer activity in A375 melanoma cells and the least toxic effect on the non-cancerous keratocyte cell line (HaCaT). On the other hand, pure OCAL was shown to be more effective and safer than pure OCEIN. Post-treatment with any of the EVOO phenolic extracts (EVOO-PEs) enhanced the anti-cancer effect of the anti-cancerous drug dacarbazine (DTIC) applied in pre-treatment, while they did not compromise the viability of non-cancerous cells. The metastatic melanoma A375M cell line was almost unresponsive to the EVOO-PEs themselves, as well as to pure OCEIN and OCAL. Our results demonstrate that olive oils and/or their compounds may have a potentially beneficial effect on melanoma treatment. However, their usage can be detrimental or futile, especially in healthy cells, due to inadequately applied concentrations/combinations or the presence of resistant cells.
Collapse
|
11
|
Rodríguez-Juan E, Martínez Román F, Sánchez-García A, Fernández-Bolaños J, García-Borrego A. From Low-Quality Olive Oils to Valuable Bioactive Compounds: Obtaining Oleacein and Oleocanthal from Olive Oils Intended for Refining. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:333-342. [PMID: 34957829 DOI: 10.1021/acs.jafc.1c05814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim of this work was to recover phenolic compounds such as oleacein and oleocanthal from low commercial value olive oils destined for refining [lampante olive oil (LOO)]. For this, the ability of three extraction systems of phenols from oils was evaluated. A new quick and simple extraction method (NM) for obtaining phenols was developed, consisting of the acidified mixture MeOH/H2O (50:50) (v/v) 0.1% formic acid, and it was compared to a conventional method (CM) widely used for the analytical determination of phenolic compounds in olive oil using MeOH: H2O (80:20) (v/v). NM showed a higher yield for the extraction of oleacein with an increase of 14% compared to CM; no significant differences were observed in the extraction of oleocanthal between the two methods. The third method, using two formulations of deep eutectic solvents (DESs) based on ChCl, showed higher extractive efficiency for the two secoiridoids than CM and NM when DES consisted of ChCl and xylitol. On the other hand, the concentrations of oleacein and oleocanthal were determined in 14 samples of blended oils that were previously classified as extra virgin olive oil and LOO according to EU regulation. LOO contained amounts up to 109.89 and 140.16 mg/kg of oleacein and oleocanthal, respectively. Oleacein (>98%) and oleocanthal (>95%) were successfully recovered from phenolic extracts obtained from LOO oils through chromatographic separation and purification by semipreparative high-performance liquid chromatography. Therefore, these low-quality oils are an inexpensive source of bioactive substances.
Collapse
Affiliation(s)
- Elisa Rodríguez-Juan
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Campus University Pablo de Olavide, Building 46, 41013 Seville, Spain
| | - Fernando Martínez Román
- Almazara Experimental, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Campus University Pablo de Olavide, Building 46, 41013 Seville, Spain
| | - Alicia Sánchez-García
- Laboratory of Mass Spectroscopy, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Campus University Pablo de Olavide, Building 46, 41013 Seville, Spain
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Campus University Pablo de Olavide, Building 46, 41013 Seville, Spain
| | - Aranzazu García-Borrego
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Campus University Pablo de Olavide, Building 46, 41013 Seville, Spain
| |
Collapse
|
12
|
Maiuolo J, Gliozzi M, Carresi C, Musolino V, Oppedisano F, Scarano F, Nucera S, Scicchitano M, Bosco F, Macri R, Ruga S, Cardamone A, Coppoletta A, Mollace A, Cognetti F, Mollace V. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021; 13:nu13113834. [PMID: 34836091 PMCID: PMC8619660 DOI: 10.3390/nu13113834] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death globally, associated with multifactorial pathophysiological components. In particular, genetic mutations, infection or inflammation, unhealthy eating habits, exposition to radiation, work stress, and/or intake of toxins have been found to contribute to the development and progression of cancer disease states. Early detection of cancer and proper treatment have been found to enhance the chances of survival and healing, but the side effects of anticancer drugs still produce detrimental responses that counteract the benefits of treatment in terms of hospitalization and survival. Recently, several natural bioactive compounds were found to possess anticancer properties, capable of killing transformed or cancerous cells without being toxic to their normal counterparts. This effect occurs when natural products are associated with conventional treatments, thereby suggesting that nutraceutical supplementation may contribute to successful anticancer therapy. This review aims to discuss the current literature on four natural bioactive extracts mostly characterized by a specific polyphenolic profile. In particular, several activities have been reported to contribute to nutraceutical support in anticancer treatment: (1) inhibition of cell proliferation, (2) antioxidant activity, and (3) anti-inflammatory activity. On the other hand, owing to their attenuation of the toxic effect of current anticancer therapies, natural antioxidants may contribute to improving the compliance of patients undergoing anticancer treatment. Thus, nutraceutical supplementation, along with current anticancer drug treatment, may be considered for better responses and compliance in patients with cancer. It should be noted, however, that when data from studies with bioactive plant preparations are discussed, it is appropriate to ensure that experiments have been conducted in accordance with accepted pharmacological research practices so as not to disclose information that is only partially correct.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annarita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annachiara Mollace
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
13
|
Comparative Gene Signature of (-)-Oleocanthal Formulation Treatments in Heterogeneous Triple Negative Breast Tumor Models: Oncological Therapeutic Target Insights. Nutrients 2021; 13:nu13051706. [PMID: 34069906 PMCID: PMC8157589 DOI: 10.3390/nu13051706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Triple negative breast cancer (TNBC) heterogeneity and limited therapeutic options confer its phenotypic aggressiveness. The discovery of anti-TNBC natural products with valid molecular target(s) and defined pharmacodynamic profile would facilitate their therapeutic nutraceutical use by TNBC patients. The extra-virgin olive oil (EVOO) is a key Mediterranean diet ingredient. S-(−)-Oleocanthal (OC) leads the bioactive anti-tumor EVOO phenolic ingredients. A previous study reported the solid dispersion formulated OC with (+)-xylitol (OC-X) suppressed the in vivo progression and recurrence of the TNBC MDA-MB-231 cells. This study investigates the ability of OC-X formulation to suppress the in vivo heterogeneous BC initiation and progression utilizing advanced preclinical transgenic MMTV-PyVT and TNBC PDX mouse models. Furthermore, the clustering of the gene expression profiles in MMTV-PyVT and PDX mouse tumors treated with OC-X acquired by a Clariom S microarray analysis identified the distinctly affected genes. Several affected novel signature genes identified in response to OC-X treatments and proved overlapped in both mouse and human tumor models, shedding some lights toward understanding the OC anticancer molecular mechanism and assisting in predicting prospective clinical outcomes. This study provides molecular and preclinical evidences of OC-X potential as a nutraceutical suppressing heterogeneous TNBC model and offers preliminary gene-level therapeutic mechanistic insights.
Collapse
|
14
|
Tajmim A, Cuevas-Ocampo AK, Siddique AB, Qusa MH, King JA, Abdelwahed KS, Sonju JJ, El Sayed KA. (-)-Oleocanthal Nutraceuticals for Alzheimer's Disease Amyloid Pathology: Novel Oral Formulations, Therapeutic, and Molecular Insights in 5xFAD Transgenic Mice Model. Nutrients 2021; 13:nu13051702. [PMID: 34069842 PMCID: PMC8157389 DOI: 10.3390/nu13051702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex progressive neurodegenerative disorder affecting humans mainly through the deposition of Aβ-amyloid (Aβ) fibrils and accumulation of neurofibrillary tangles in the brain. Currently available AD treatments only exhibit symptomatic relief but do not generally intervene with the amyloid and tau pathologies. The extra-virgin olive oil (EVOO) monophenolic secoiridoid S-(–)-oleocanthal (OC) showed anti-inflammatory activity through COX system inhibition with potency comparable to the standard non-steroidal anti-inflammatory drug (NSAID) like ibuprofen. OC also showed positive in vitro, in vivo, and clinical therapeutic effects against cardiovascular diseases, many malignancies, and AD. Due to its pungent, astringent, and irritant taste, OC should be formulated in acceptable dosage form before its oral use as a potential nutraceutical. The objective of this study is to develop new OC oral formulations, assess whether they maintained OC activity on the attenuation of β-amyloid pathology in a 5xFAD mouse model upon 4-month oral dosing use. Exploration of potential OC formulations underlying molecular mechanism is also within this study scope. OC powder formulation (OC-PF) and OC-solid dispersion formulation with erythritol (OC-SD) were prepared and characterized using FT-IR spectroscopy, powder X-ray diffraction, and scanning electron microscopy (ScEM) analyses. Both formulations showed an improved OC dissolution profile. OC-PF and OC-SD improved memory deficits of 5xFAD mice in behavioral studies. OC-PF and OC-SD exhibited significant attenuation of the accumulation of Aβ plaques and tau phosphorylation in the brain of 5xFAD female mice. Both formulations markedly suppressed C3AR1 (complement component 3a receptor 1) activity by targeting the downstream marker STAT3. Collectively, these results demonstrate the potential for the application of OC-PF as a prospective nutraceutical or dietary supplement to control the progression of amyloid pathogenesis associated with AD.
Collapse
Affiliation(s)
- Afsana Tajmim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Areli K. Cuevas-Ocampo
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; (A.K.C.-O.); (J.A.K.)
| | - Abu Bakar Siddique
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Mohammed H. Qusa
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Judy Ann King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; (A.K.C.-O.); (J.A.K.)
| | - Khaldoun S. Abdelwahed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
| | - Khalid A. El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (A.T.); (A.B.S.); (M.H.Q.); (K.S.A.); (J.J.S.)
- Correspondence: ; Tel.: +1-318-342-1725
| |
Collapse
|
15
|
HPTLC-Based Chemical Profiling: An Approach to Monitor Plant Metabolic Expansion Caused by Fungal Endophytes. Metabolites 2021; 11:metabo11030174. [PMID: 33802951 PMCID: PMC8002819 DOI: 10.3390/metabo11030174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022] Open
Abstract
Fungal endophytes isolated from two latex bearing species were chosen as models to show their potential to expand their host plant chemical diversity. Thirty-three strains were isolated from Alstonia scholaris (Apocynaceae) and Euphorbia myrsinites (Euphorbiaceae). High performance thin layer chromatography (HPTLC) was used to metabolically profile samples. The selected strains were well clustered in three major groups by hierarchical clustering analysis (HCA) of the HPTLC data, and the chemical profiles were strongly correlated with the strains' colony size. This correlation was confirmed by orthogonal partial least squares (OPLS) modeling using colony size as "Y" variable. Based on the multivariate data analysis of the HPTLC data, the fastest growing strains of each cluster were selected and used for subsequent experiments: co-culturing to investigate interactions between endophytes-phytopathogens, and biotransformation of plant metabolites by endophytes. The strains exhibited a high capacity to fight against fungal pathogens. Moreover, there was an increase in the antifungal activity after being fed with host-plant metabolites. These results suggest that endophytes play a role in plant defense mechanisms either directly or by biotransformation/induction of metabolites. Regarding HPTLC-based metabolomics, it has proved to be a robust approach to monitor the interactions among fungal endophytes, the host plant and potential phytopathogens.
Collapse
|
16
|
Darakjian LI, Rigakou A, Brannen A, Qusa MH, Tasiakou N, Diamantakos P, Reed MN, Panizzi P, Boersma MD, Melliou E, El Sayed KA, Magiatis P, Kaddoumi A. Spontaneous In Vitro and In Vivo Interaction of (-)-Oleocanthal with Glycine in Biological Fluids: Novel Pharmacokinetic Markers. ACS Pharmacol Transl Sci 2021; 4:179-192. [PMID: 33615171 PMCID: PMC7887843 DOI: 10.1021/acsptsci.0c00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Indexed: 12/22/2022]
Abstract
Since the first discovery of its ibuprofen-like anti-inflammatory activity in 2005, the olive phenolic (-)-oleocanthal gained great scientific interest and popularity due to its reported health benefits. (-)-Oleocanthal is a monophenolic secoiridoid exclusively occurring in extra-virgin olive oil (EVOO). While several groups have investigated oleocanthal pharmacokinetics (PK) and disposition, none was able to detect oleocanthal in biological fluids or identify its PK profile that is essential for translational research studies. Besides, oleocanthal could not be detected following its addition to any fluid containing amino acids or proteins such as plasma or culture media, which could be attributed to its unique structure with two highly reactive aldehyde groups. Here, we demonstrate that oleocanthal spontaneously reacts with amino acids, with high preferential reactivity to glycine compared to other amino acids or proteins, affording two products: an unusual glycine derivative with a tetrahydropyridinium skeleton that is named oleoglycine, and our collective data supported the plausible formation of tyrosol acetate as the second product. Extensive studies were performed to validate and confirm oleocanthal reactivity, which were followed by PK disposition studies in mice, as well as cell culture transport studies to determine the ability of the formed derivatives to cross physiological barriers such as the blood-brain barrier. To the best of our knowledge, we are showing for the first time that (-)-oleocanthal is biochemically transformed to novel products in amino acids/glycine-containing fluids, which were successfully monitored in vitro and in vivo, creating a completely new perspective to understand the well-documented bioactivities of oleocanthal in humans.
Collapse
Affiliation(s)
- Lucy I. Darakjian
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University. Auburn, Alabama 36849, United States
| | - Aimilia Rigakou
- Department
of Pharmacy, Laboratory of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Andrew Brannen
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University. Auburn, Alabama 36849, United States
| | - Mohammed H. Qusa
- School
of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Niki Tasiakou
- Department
of Pharmacy, Laboratory of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Panagiotis Diamantakos
- Department
of Pharmacy, Laboratory of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Miranda N. Reed
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University. Auburn, Alabama 36849, United States
- Center
for Neuroscience Initiative, Auburn University, Auburn, Alabama 36849, United States
| | - Peter Panizzi
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University. Auburn, Alabama 36849, United States
| | - Melissa D. Boersma
- Department
of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Eleni Melliou
- Department
of Pharmacy, Laboratory of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Khalid A. El Sayed
- School
of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Prokopios Magiatis
- Department
of Pharmacy, Laboratory of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Amal Kaddoumi
- Department
of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University. Auburn, Alabama 36849, United States
- Center
for Neuroscience Initiative, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
17
|
López-Yerena A, Vallverdú-Queralt A, Mols R, Augustijns P, Lamuela-Raventós RM, Escribano-Ferrer E. Reply to "Comment on López-Yerena et al. 'Absorption and Intestinal Metabolic Profile of Oleocanthal in Rats' Pharmaceutics 2020, 12, 134". Pharmaceutics 2020; 12:E1221. [PMID: 33348608 PMCID: PMC7765908 DOI: 10.3390/pharmaceutics12121221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 01/28/2023] Open
Abstract
Recently, in February 2020, we published a study exploring the intestinal absorption and metabolism of oleocanthal (OLC) in rats. A single-pass intestinal perfusion technique (SPIP) was used, involving simultaneous sampling from the luminal perfusate and mesenteric blood. Later, comments on our published paper were released, requesting clarification of specific data. In this detailed reply, we hope to have addressed and clarified all the concerns of A. Kaddoumi and K. El Sayed and that the scientific community will benefit from both the study and the comments it has generated.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Raf Mols
- Drug Delivery and Disposition, KU Leuven, 3000 Leuven, Belgium; (R.M.); (P.A.)
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, 3000 Leuven, Belgium; (R.M.); (P.A.)
| | - Rosa M. Lamuela-Raventós
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB), Pharmacy and Food Sciences School, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Oliverio M, Nardi M, Di Gioia ML, Costanzo P, Bonacci S, Mancuso S, Procopio A. Semi-synthesis as a tool for broadening the health applications of bioactive olive secoiridoids: a critical review. Nat Prod Rep 2020; 38:444-469. [PMID: 33300916 DOI: 10.1039/d0np00084a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: 2005 up to 2020Olive bioactive secoiridoids are recognized as natural antioxidants with multiple beneficial effects on human health. Nevertheless, the study of their biological activity has also disclosed some critical aspects associated with their application. Firstly, only a few of them can be extracted in large amounts from their natural matrix, namely olive leaves, drupes, oil and olive mill wastewater. Secondly, their application as preventive agents and drugs is limited by their low membrane permeability. Thirdly, the study of their biological fate after administration is complicated by the absence of pure analytical standards. Accordingly, efficient synthetic methods to obtain natural and non-natural bioactive phenol derivatives have been developed. Among them, semi-synthetic protocols represent efficient and economical alternatives to total synthesis, combining efficient extraction protocols with efficient catalytic conversions to achieve reasonable amounts of active molecules. The aim of this review is to summarize the semi-synthetic protocols published in the last fifteen years, covering 2005 up to 2020, which can produce natural olive bioactive phenols scarcely available by extractive procedures, and new biophenol derivatives with enhanced biological activity. Moreover, the semi-synthetic protocols to produce olive bioactive phenol derivatives as analytical standards are also discussed. A critical analysis of the advantages offered by semi-synthesis compared to classical extraction methods or total synthesis protocols is also performed.
Collapse
Affiliation(s)
- Manuela Oliverio
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Gene Expression Alterations Associated with Oleuropein-Induced Antiproliferative Effects and S-Phase Cell Cycle Arrest in Triple-Negative Breast Cancer Cells. Nutrients 2020; 12:nu12123755. [PMID: 33297339 PMCID: PMC7762327 DOI: 10.3390/nu12123755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
It is known that the Mediterranean diet is effective in reducing the risk of several chronic diseases, including cancer. A critical component of the Mediterranean diet is olive oil, and the relationship between olive oil consumption and the reduced risk of cancer has been established. Oleuropein (OL) is the most prominent polyphenol component of olive fruits and leaves. This compound has been shown to have potent properties in various types of cancers, including breast cancer. In the present study, the molecular mechanism of OL was examined in two racially different triple-negative breast cancer (TNBC) cell lines-African American (AA, MDA-MB-468) and Caucasian American (CA, MDA-MB-231). The data obtained showed that OL effectively inhibits cell growth in both cell lines, concomitant with S-phase cell cycle arrest-mediated apoptosis. The results also showed that OL-treated MDA-MB-468 cells were two-fold more sensitive to OL antiproliferative effect than MDA-MB-231 cells were. At lower concentrations, OL modified the expression of many apoptosis-involved genes. OL was more effective in MDA-MB-468, compared to MDA-MB-231 cells, in terms of the number and the fold-change of the altered genes. In MDA-MB-468 cells, OL induced a noticeable transcription activation in fourteen genes, including two members of the caspase family: caspase 1 (CASP1) and caspase 14 (CASP14); two members of the TNF receptor superfamily: Fas-associated via death domain (FADD) and TNF receptor superfamily 21 (TNFRSF21); six other proapoptotic genes: growth arrest and DNA damage-inducible 45 alpha (GADD45A), cytochrome c somatic (CYCS), BCL-2 interacting protein 2 (BNIP2), BCL-2 interacting protein 3 (BNIP3), BH3 interacting domain death agonist (BID), and B-cell lymphoma/leukemia 10 (BCL10); and the CASP8 and FADD-like apoptosis regulator (CFLAR) gene. Moreover, in MDA-MB-468 cells, OL induced a significant upregulation in two antiapoptotic genes: bifunctional apoptosis regulator (BFAR) and B-Raf proto-oncogene (BRAF) and a baculoviral inhibitor of apoptosis (IAP) repeat-containing 3 (BIRC3). On the contrary, in MDA-MB-231 cells, OL showed mixed impacts on gene expression. OL significantly upregulated the mRNA expression of four genes: BIRC3, receptor-interacting serine/threonine kinase 2 (RIPK2), TNF receptor superfamily 10A (TNFRSF10A), and caspase 4 (CASP4). Additionally, another four genes were repressed, including caspase 6 (CASP6), pyrin domain (PYD), and caspase recruitment domain (CARD)-containing (PAYCARD), baculoviral IAP repeat-containing 5 (BIRC5), and the most downregulated TNF receptor superfamily member 11B (TNFRSF11B, 16.34-fold). In conclusion, the data obtained indicate that the two cell lines were markedly different in the anticancer effect and mechanisms of oleuropein's ability to alter apoptosis-related gene expressions. The results obtained from this study should also guide the potential utilization of oleuropein as an adjunct therapy for TNBC to increase chemotherapy effectiveness and prevent cancer progression.
Collapse
|
20
|
Qusa MH, Abdelwahed KS, Meyer SA, El Sayed KA. Olive Oil Lignan (+)-Acetoxypinoresinol Peripheral Motor and Neuronal Protection against the Tremorgenic Mycotoxin Penitrem A Toxicity via STAT1 Pathway. ACS Chem Neurosci 2020; 11:3575-3589. [PMID: 32991800 DOI: 10.1021/acschemneuro.0c00458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Penitrem A, PA, is an indole diterpene alkaloid produced by several fungal species. PA acts as a selective Ca2+-dependent K-channels (Maxi-K, BK) antagonist in brain, causing motor system dysfunctions including tremors and seizures. However, its molecular mechanism at the peripheral nervous system (PNS) is still ambiguous. The Mediterranean diet key ingredient extra-virgin olive oil (EVOO) provides a variety of minor bioactive phenolics. (+)-Pinoresinol (PN) and (+)-1-acetoxypinoresinol (AC) are naturally occurring lignans in EVOO with diverse biological activities. AC exclusively occurs in EVOO, unlike PN, which occurs in several plants. Results suggest that PA neurotoxicity molecular mechanism is mediated, in part, through distortion of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. PA selectively activated the STAT1 pathway, independently of the interferon-γ (IFN-γ) pathway, in vitro in Schwann cells and in vivo in Swiss albino mice sciatic nerves. Preliminary in vitro screening of an EVOO phenolic compounds library for the ability to reverse PA toxicity on Schwann cells revealed PN and AC as potential hits. In a Swiss albino mouse model, AC significantly minimized the fatality after intraperitoneal administration of PA fatal doses and normalized most biochemical factors by modulating the STAT1 expression. The olive lignan AC is a novel lead that can prevent the neurotoxicity of food-contaminating tremorgenic indole alkaloid mycotoxins.
Collapse
Affiliation(s)
- Mohammed H. Qusa
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Khaldoun S. Abdelwahed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Sharon A. Meyer
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| | - Khalid A. El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, Louisiana 71201, United States
| |
Collapse
|
21
|
Francioso A, Federico R, Maggiore A, Fontana M, Boffi A, D’Erme M, Mosca L. Green Route for the Isolation and Purification of Hyrdoxytyrosol, Tyrosol, Oleacein and Oleocanthal from Extra Virgin Olive Oil. Molecules 2020; 25:molecules25163654. [PMID: 32796621 PMCID: PMC7464626 DOI: 10.3390/molecules25163654] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 11/16/2022] Open
Abstract
Extra virgin olive oil (EVOO) phenols represent a significant part of the intake of antioxidants and bioactive compounds in the Mediterranean diet. In particular, hydroxytyrosol (HTyr), tyrosol (Tyr), and the secoiridoids oleacein and oleocanthal play central roles as anti-inflammatory, neuro-protective and anti-cancer agents. These compounds cannot be easily obtained via chemical synthesis, and their isolation and purification from EVOO is cumbersome. Indeed, both processes involve the use of large volumes of organic solvents, hazardous reagents and several chromatographic steps. In this work we propose a novel optimized procedure for the green extraction, isolation and purification of HTyr, Tyr, oleacein and oleocanthal directly from EVOO, by using a Natural Deep Eutectic Solvent (NaDES) as an extracting phase, coupled with preparative high-performance liquid chromatography. This purification method allows the total recovery of the four components as single pure compounds directly from EVOO, in a rapid, economic and ecologically sustainable way, which utilizes biocompatible reagents and strongly limits the use or generation of hazardous substances.
Collapse
Affiliation(s)
- Antonio Francioso
- Department of Biochemical Sciences, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (M.F.); (A.B.); (M.D.); (L.M.)
- Correspondence: ; Tel.: +39-06-4991-0987
| | - Rodolfo Federico
- MOLIROM s.r.l, via Carlo Bartolomeo Piazza 8, 00161 Rome, Italy;
| | - Anna Maggiore
- Department of Biochemical Sciences, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (M.F.); (A.B.); (M.D.); (L.M.)
| | - Mario Fontana
- Department of Biochemical Sciences, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (M.F.); (A.B.); (M.D.); (L.M.)
| | - Alberto Boffi
- Department of Biochemical Sciences, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (M.F.); (A.B.); (M.D.); (L.M.)
- MOLIROM s.r.l, via Carlo Bartolomeo Piazza 8, 00161 Rome, Italy;
| | - Maria D’Erme
- Department of Biochemical Sciences, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (M.F.); (A.B.); (M.D.); (L.M.)
| | - Luciana Mosca
- Department of Biochemical Sciences, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (M.F.); (A.B.); (M.D.); (L.M.)
| |
Collapse
|
22
|
Kaddoumi A, Sayed KE. Comment on López-Yerena et al. "Absorption and Intestinal Metabolic Profile of Oleocanthal in Rats" Pharmaceutics 2020, 12, 134. Pharmaceutics 2020; 12:pharmaceutics12080720. [PMID: 32751928 PMCID: PMC7463905 DOI: 10.3390/pharmaceutics12080720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/07/2020] [Accepted: 07/07/2020] [Indexed: 01/07/2023] Open
Abstract
This comment is intended to discuss errors observed in the title paper, doi:10.3390/pharmaceutics12020134. When this paper was published, the authors of this commentary were excited to read it. However, the more we read, the more pitfalls were observed, which necessitated a response to revise the many errors and misleading information included in this publication.
Collapse
Affiliation(s)
- Amal Kaddoumi
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, 720 S. Donahue Drive, Auburn, AL 36849, USA
- Correspondence: or (A.K.); (K.E.S.)
| | - Khalid El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
- Correspondence: or (A.K.); (K.E.S.)
| |
Collapse
|
23
|
(-)-Oleocanthal as a Dual c-MET-COX2 Inhibitor for the Control of Lung Cancer. Nutrients 2020; 12:nu12061749. [PMID: 32545325 PMCID: PMC7353354 DOI: 10.3390/nu12061749] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Lung cancer (LC) represents the topmost mortality-causing cancer in the U.S. LC patients have overall poor survival rate with limited available treatment options. Dysregulation of the mesenchymal epithelial transition factor (c-MET) and cyclooxygenase 2 (COX2) initiates aggressive LC profile in a subset of patients. The Mediterranean extra-virgin olive oil (EVOO)-rich diet already documented to reduce multiple malignancies incidence. (-)-Oleocanthal (OC) is a naturally occurring phenolic secoiridoid exclusively occurring in EVOO and showed documented anti-breast and other cancer activities via targeting c-MET. This study shows the novel ability of OC to suppress LC progression and metastasis through dual targeting of c-MET and COX-2. Western blot analysis and COX enzymatic assay showed significant reduction in the total and activated c-MET levels and inhibition of COX1/2 activity in the lung adenocarcinoma cells A549 and NCI-H322M, in vitro. In addition, OC treatment caused a dose-dependent inhibition of the HGF-induced LC cells migration. Daily oral treatment with 10 mg/kg OC for 8 weeks significantly suppressed the LC A549-Luc progression and prevented metastasis to brain and other organs in a nude mouse tail vein injection model. Further, microarray data of OC-treated lung tumors showed a distinct gene signature that confirmed the dual targeting of c-MET and COX2. Thus, the EVOO-based OC is an effective lead with translational potential for use as a prospective nutraceutical to control LC progression and metastasis.
Collapse
|
24
|
Potential Protective Role Exerted by Secoiridoids from Olea europaea L. in Cancer, Cardiovascular, Neurodegenerative, Aging-Related, and Immunoinflammatory Diseases. Antioxidants (Basel) 2020; 9:antiox9020149. [PMID: 32050687 PMCID: PMC7070598 DOI: 10.3390/antiox9020149] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Iridoids, which have beneficial health properties, include a wide group of cyclopentane [c] pyran monoterpenoids present in plants and insects. The cleavage of the cyclopentane ring leads to secoiridoids. Mainly, secoiridoids have shown a variety of pharmacological effects including anti-diabetic, antioxidant, anti-inflammatory, immunosuppressive, neuroprotective, anti-cancer, and anti-obesity, which increase the interest of studying these types of bioactive compounds in depth. Secoiridoids are thoroughly distributed in several families of plants such as Oleaceae, Valerianaceae, Gentianaceae and Pedialaceae, among others. Specifically, Olea europaea L. (Oleaceae) is rich in oleuropein (OL), dimethyl-OL, and ligstroside secoiridoids, and their hydrolysis derivatives are mostly OL-aglycone, oleocanthal (OLE), oleacein (OLA), elenolate, oleoside-11-methyl ester, elenoic acid, hydroxytyrosol (HTy), and tyrosol (Ty). These compounds have proved their efficacy in the management of diabetes, cardiovascular and neurodegenerative disorders, cancer, and viral and microbial infections. Particularly, the antioxidant, anti-inflammatory, and immunomodulatory properties of secoiridoids from the olive tree (Olea europaea L. (Oleaceae)) have been suggested as a potential application in a large number of inflammatory and reactive oxygen species (ROS)-mediated diseases. Thus, the purpose of this review is to summarize recent advances in the protective role of secoiridoids derived from the olive tree (preclinical studies and clinical trials) in diseases with an important pathogenic contribution of oxidative and peroxidative stress and damage, focusing on their plausible mechanisms of the action involved.
Collapse
|
25
|
Safety Evaluations of Single Dose of the Olive Secoiridoid S-(-)-Oleocanthal in Swiss Albino Mice. Nutrients 2020; 12:nu12020314. [PMID: 31991771 PMCID: PMC7071127 DOI: 10.3390/nu12020314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Epidemiological and clinical studies compellingly showed the ability of Mediterranean diet rich in extra-virgin olive oil (EVOO) to reduce multiple diseases such as cancer, cardiovascular diseases, and aging cognitive functions decline. The S-(-)-Oleocanthal (OC) is a minor phenolic secoiridoid exclusively found in extra-virgin olive oil (EVOO). OC recently gained notable research attention due to its excellent in vitro and in vivo biological effects against multiple cancers, inflammations, and Alzheimer's disease. However, OC safety has not been comprehensively studied yet. This study reports for the first time the detailed safety of oral single OC dose in Swiss albino mice, applying the OECD 420 procedure. Male and female Swiss albino mice (n = 10) were orally treated with a single OC dose of either 10, 250, or 500 mg/kg bodyweight or equivalent volumes of distilled water. Mice fed a regular diet, and carefully observed for 14 days. Further, mice were then sacrificed, blood samples, and organs were collected and subjected to hematological, biochemical, and histological examinations. OC 10 mg/kg oral dose appears to be without adverse effects. Further, 250 mg/kg OC, p.o., is suggested as a possible upper dose for preclinical studies in the future.
Collapse
|
26
|
Optimization of Taste-Masked (-)-Oleocanthal Effervescent Formulation with Potent Breast Cancer Progression and Recurrence Suppressive Activities. Pharmaceutics 2019; 11:pharmaceutics11100515. [PMID: 31590382 PMCID: PMC6835910 DOI: 10.3390/pharmaceutics11100515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
S-(–)-Oleocanthal (OC), a naturally occurring phenolic secoiridoid exclusively found in extra-virgin olive oil (EVOO), is a potential nutraceutical therapeutic for inflammation, neurodegenerative diseases, and many malignancies, especially breast cancer (BC). The oral delivery of OC is challenging because of its irritative, bitter, and pungent taste and exceptional chemistry, including two reactive aldehydes, phenolic, and ester groups. OC irritation did not correlate with CO2-induced irritation, and hence, OC was not exerting generalized acid-sensing irritation. The objective of this study was to develop an effervescent formulation of OC with an effective CO2-induced masked taste maintaining the efficacy against the estrogen receptor (ER) and HER2 positive BC. Several ratios of acid and carbonate sources were screened, and five effervescent formulations EF1-EF5 were selected and prepared based on their pH and effervescence time. OC formulations were characterized using differential scanning calorimetry, FT-IR spectroscopy, and scanning electron microscopy analyses. OC formulations exhibited acceptable flowability and effervescence time. Based on physical characteristics and improved OC release, formulation EF-2 was selected for subsequent studies. EF-2 showed effective OC taste masking, as suggested by electronic artificial tongue and mouse preference tests. EF-2 suppressed more than 70% of the hormone and HER2-positive BT-474 BC cell growth in a nude mouse xenograft model. Furthermore, EF-2 demonstrated significant inhibition of BT-474 tumor cell locoregional recurrence after primary tumor surgical excision. EF-2-treated mouse sera had significantly reduced CA 15-3 levels, the human BC recurrence marker, compared to the placebo control group at the end of the study. These results highlight the potential of the OC formulation EF-2 as a prospective nutraceutical for the control and prevention of ER+/HER+ BC progression and locoregional recurrence.
Collapse
|
27
|
Qusa MH, Siddique AB, Nazzal S, El Sayed KA. Novel olive oil phenolic (-)-oleocanthal (+)-xylitol-based solid dispersion formulations with potent oral anti-breast cancer activities. Int J Pharm 2019; 569:118596. [PMID: 31394181 PMCID: PMC6765396 DOI: 10.1016/j.ijpharm.2019.118596] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/26/2019] [Accepted: 08/03/2019] [Indexed: 12/15/2022]
Abstract
Epidemiological studies have compellingly documented the ability of the Mediterranean diet rich in extra-virgin olive oil to reduce the incidence of certain malignancies, and cardiovascular diseases, and slow the Alzheimer's disease progression. S-(-)-Oleocanthal (OC) was identified as the most bioactive olive oil phenolic with documented anti-inflammatory, anticancer, and anti-Alzheimer's activities. OC consumption causes irritating sensation at the oropharynx via activation of TRPA1. Accordingly, a taste-masked formulation of OC is needed for its future use as a nutraceutical while maintaining its bioactivity and unique chemistry. Therefore, the goal of this study was to prepare a taste-masked OC solid formulation with improved dissolution and pharmacodynamic profiles, by using (+)-xylitol as an inert carrier. Xylitol was hypothesized to serve as an ideal vehicle for the preparation of OC solid dispersions due to its low melting point and sweetness. The optimized OC-(+)-xylitol solid dispersion was physically and chemically characterized and showed effective taste masking and enhanced dissolution properties. Furthermore, OC-(+)-xylitol solid dispersion maintained potent in vivo anti-breast cancer activity. It effectively suppressed the human triple negative breast cancer development, growth, and recurrence after primary tumor surgical excision in nude mice orthotopic xenograft models. Collectively, these results suggest the OC-(+)-xylitol solid dispersion formulation as a potential nutraceutical for effective control and prevention of human triple negative breast cancer.
Collapse
Affiliation(s)
- Mohammed H Qusa
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, United States
| | - Abu Bakar Siddique
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, United States
| | - Sami Nazzal
- Department of Pharmaceutical Sciences, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 5920 Forest Park Road, Dallas, TX 75235, United States
| | - Khalid A El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, United States.
| |
Collapse
|
28
|
Siddique AB, Ayoub NM, Tajmim A, Meyer SA, Hill RA, El Sayed KA. (-)-Oleocanthal Prevents Breast Cancer Locoregional Recurrence After Primary Tumor Surgical Excision and Neoadjuvant Targeted Therapy in Orthotopic Nude Mouse Models. Cancers (Basel) 2019; 11:cancers11050637. [PMID: 31072015 PMCID: PMC6562541 DOI: 10.3390/cancers11050637] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022] Open
Abstract
Breast cancer (BC) recurrence represents a challenge for survivors who have had their primary tumors surgically excised, and/or have completed radiation, neoadjuvant, or adjuvant therapeutic regimens. Current BC treatments mostly lack the ability to reduce the risk of disease recurrence. About 70% of BC patients will subsequently suffer disease relapse, manifesting as local, regional, or distant tumor recurrence, which clearly underscores the urgent need to discover novel recurrence inhibitors. (−)-Oleocanthal (OC) is a natural phenolic, found so far exclusively in extra-virgin olive oil (EVOO). OC exerts documented bioactivities against diverse cancer types, inflammation, and neurodegenerative diseases. Herein we report the novel activity of daily oral treatment with OC (10 mg/kg) in preventing BC locoregional recurrence in a nude mouse xenograft model generated by orthotopic inoculation with BT-474 cells as a luminal type B model. We further report inhibition of tumor recurrence by OC after completion of a lapatinib neoadjuvant regimen. However, in a recurrence model of triple-negative breast cancer (TNBC), OC treatment (10 mg/kg) did not effectively prevent tumor recurrence, but rather, was seen to significantly reduce the growth of recurrent tumors as compared to vehicle control-treated animals. Inhibition of tumor recurrence was associated with significant serum level reductions of the human BC recurrence marker CA 15-3 at the study end in animals treated with OC. OC treatment upregulated the expression of the epithelial marker E-cadherin and downregulated the levels of the mesenchymal marker vimentin in recurrent tumors vs. untreated control animals. OC treatment also reduced the activation of MET and HER2 receptors, as indicated by reduced phosphorylation levels of these proteins in recurrent tumors vs. controls. Collectively, the results of our studies provide the first evidence for suppression of BC tumor recurrence by oral OC treatment in an animal model for such recurrence, and furthermore, highlight favorable prospects for this natural product to emerge as a first-in-class BC recurrence inhibitor.
Collapse
Affiliation(s)
- Abu Bakar Siddique
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Afsana Tajmim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Sharon A Meyer
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Ronald A Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Khalid A El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| |
Collapse
|
29
|
Hwang D, Kim M, Park H, Jeong MI, Jung W, Kim B. Natural Products and Acute Myeloid Leukemia: A Review Highlighting Mechanisms of Action. Nutrients 2019; 11:nu11051010. [PMID: 31058874 PMCID: PMC6567155 DOI: 10.3390/nu11051010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Recent findings have shown great potential of alternative interventions such as immunotherapy and natural products for acute myeloid leukemia (AML). This study aims to review the anti-AML effect of various natural compounds. Natural compounds were classified into five groups: alkaloids, carotenoids, nitrogen-containing compounds, organosulfur compounds or phenolics based on each compound’s chemical properties. Fifty-eight studies were collected and reviewed in this article. Phenolics are the most abundant group to have an apoptotic effect over AML cells, while other groups have also shown significant apoptotic effects. Some compounds induced apoptosis by regulating unique mechanism like human telomerase reverse transcriptase (hTERT) or laminin receptor (67LR), while others modified caspases, poly (adp-ribose) polymerase (PARP) and p53. Further study is required to identify side-effects of potent compounds and the synergistic effects of combination of two or more natural compounds or existing conventional anti-AML drugs to treat this dreadful disease.
Collapse
Affiliation(s)
- Dongwon Hwang
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Minsun Kim
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Hyejin Park
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Myung In Jeong
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Woojin Jung
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|