1
|
Ouellet-Fagg CL, Easton AA, Parsons KJ, Danzmann RG, Ferguson MM. Complex and Dynamic Gene-by-Age and Gene-by-Environment Interactions Underlie Functional Morphological Variation in Adaptive Divergence in Arctic Charr (Salvelinus alpinus). Evol Dev 2025; 27:e70000. [PMID: 39723482 DOI: 10.1111/ede.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
The evolution of adaptive phenotypic divergence requires heritable genetic variation. However, it is underappreciated that trait heritability is molded by developmental processes interacting with the environment. We hypothesized that the genetic architecture of divergent functional traits was dependent on age and foraging environment. Thus, we induced plasticity in full-sib families of Arctic charr (Salvelinus alpinus) morphs from two Icelandic lakes by mimicking prey variation in the wild. We characterized variation in body shape and size at two ages and investigated their genetic architecture with quantitative trait locus (QTL) analysis. Age had a greater effect on body shape than diet in most families, suggesting that development strongly influences phenotypic variation available for selection. Consistent with our hypothesis, multiple QTL were detected for all traits and their location depended on age and diet. Many of the genome-wide QTL were located within a subset of duplicated chromosomal regions suggesting that ancestral whole genome duplication events have played a role in the genetic control of functional morphological variation in the species. Moreover, the detection of two body shape QTL after controlling for the effects of age provides additional evidence for genetic variation in the plastic response of morphological traits to environmental variation. Thus, functional morphological traits involved in phenotypic divergence are molded by complex genetic interactions with development and environment.
Collapse
Affiliation(s)
| | - Anne A Easton
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Ontario Aquaculture Research Centre, Office of Research, University of Guelph, Elora, Ontario, Canada
| | - Kevin J Parsons
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, Scotland
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Moira M Ferguson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Editorial Note: Design and characterization of an 87k SNP genotyping array for Arctic charr (Salvelinus alpinus). PLoS One 2024; 19:e0304369. [PMID: 38833497 PMCID: PMC11149859 DOI: 10.1371/journal.pone.0304369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
|
3
|
Judson BJ, Kristjánsson BK, Leblanc CA, Ferguson MM. The role of neutral and adaptive evolutionary processes on patterns of genetic diversity across small cave-dwelling populations of Icelandic Arctic charr ( Salvelinus alpinus). Ecol Evol 2024; 14:e11363. [PMID: 38770124 PMCID: PMC11103641 DOI: 10.1002/ece3.11363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Understanding the adaptability of small populations in the face of environmental change is a central problem in evolutionary biology. Solving this problem is challenging because neutral evolutionary processes that operate on historical and contemporary timescales can override the effects of selection in small populations. We assessed the effects of isolation by colonization (IBC), isolation by dispersal limitation (IBDL) as reflected by a pattern of isolation by distance (IBD), and isolation by adaptation (IBA) and the roles of genetic drift and gene flow on patterns of genetic differentiation among 19 cave-dwelling populations of Icelandic Arctic charr (Salvelinus alpinus). We detected evidence of IBC based on the genetic affinity of nearby cave populations and the genetic relationships between the cave populations and the presumed ancestral population in the lake. A pattern of IBD was evident regardless of whether high-level genetic structuring (IBC) was taken into account. Genetic signatures of bottlenecks and lower genetic diversity in smaller populations indicate the effect of drift. Estimates of gene flow and fish movement suggest that gene flow is limited to nearby populations. In contrast, we found little evidence of IBA as patterns of local ecological and phenotypic variation showed little association with genetic differentiation among populations. Thus, patterns of genetic variation in these small populations likely reflect localized gene flow and genetic drift superimposed onto a larger-scale structure that is largely a result of colonization history. Our simultaneous assessment of the effects of neutral and adaptive processes in a tractable and replicated system has yielded novel insights into the evolution of small populations on both historical and contemporary timescales and over a smaller spatial scale than is typically studied.
Collapse
Affiliation(s)
- Braden J. Judson
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| | | | | | - Moira M. Ferguson
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
4
|
Rather MA, Agarwal D, Bhat TA, Khan IA, Zafar I, Kumar S, Amin A, Sundaray JK, Qadri T. Bioinformatics approaches and big data analytics opportunities in improving fisheries and aquaculture. Int J Biol Macromol 2023; 233:123549. [PMID: 36740117 DOI: 10.1016/j.ijbiomac.2023.123549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Aquaculture has witnessed an excellent growth rate during the last two decades and offers huge potential to provide nutritional as well as livelihood security. Genomic research has contributed significantly toward the development of beneficial technologies for aquaculture. The existing high throughput technologies like next-generation technologies generate oceanic data which requires extensive analysis using appropriate tools. Bioinformatics is a rapidly evolving science that involves integrating gene based information and computational technology to produce new knowledge for the benefit of aquaculture. Bioinformatics provides new opportunities as well as challenges for information and data processing in new generation aquaculture. Rapid technical advancements have opened up a world of possibilities for using current genomics to improve aquaculture performance. Understanding the genes that govern economically relevant characteristics, necessitates a significant amount of additional research. The various dimensions of data sources includes next-generation DNA sequencing, protein sequencing, RNA sequencing gene expression profiles, metabolic pathways, molecular markers, and so on. Appropriate bioinformatics tools are developed to mine the biologically relevant and commercially useful results. The purpose of this scoping review is to present various arms of diverse bioinformatics tools with special emphasis on practical translation to the aquaculture industry.
Collapse
Affiliation(s)
- Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir, India.
| | - Deepak Agarwal
- Institute of Fisheries Post Graduation Studies OMR Campus, Vaniyanchavadi, Chennai, India
| | | | - Irfan Ahamd Khan
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir, India
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University Punjab, Pakistan
| | - Sujit Kumar
- Department of Bioinformatics and Computational Biology, Virtual University Punjab, Pakistan
| | - Adnan Amin
- Postgraduate Institute of Fisheries Education and Research Kamdhenu University, Gandhinagar-India University of Kurasthra, India; Department of Aquatic Environmental Management, Faculty of Fisheries Rangil- Ganderbel -SKUAST-K, India
| | - Jitendra Kumar Sundaray
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002, India
| | - Tahiya Qadri
- Division of Food Science and Technology, SKUAST-K, Shalimar, India
| |
Collapse
|
5
|
Pappas F, Kurta K, Vanhala T, Jeuthe H, Hagen Ø, Beirão J, Palaiokostas C. Whole-genome re-sequencing provides key genomic insights in farmed Arctic charr ( Salvelinus alpinus) populations of anadromous and landlocked origin from Scandinavia. Evol Appl 2023; 16:797-813. [PMID: 37124091 PMCID: PMC10130564 DOI: 10.1111/eva.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/05/2022] [Accepted: 02/12/2023] [Indexed: 03/03/2023] Open
Abstract
Arctic charr (Salvelinus alpinus) is a niche-market high-value species for Nordic aquaculture. Similar to other salmonids, both anadromous and landlocked populations are encountered. Whole-genome re-sequencing (22X coverage) was performed on two farmed populations of anadromous (Sigerfjord; n = 24) and landlocked (Arctic Superior; n = 24) origin from Norway and Sweden respectively. More than 5 million SNPs were used to study their genetic diversity and to scan for selection signatures. The two populations were clearly distinguished through principal component analysis, with the mean fixation index being ~0.12. Furthermore, the levels of genomic inbreeding estimated from runs of homozygosity were 6.23% and 8.66% for the Norwegian and the Swedish population respectively. Biological processes that could be linked to selection pressure associated primarily with the anadromous background and/or secondarily with domestication were suggested. Overall, our study provided insights regarding the genetic composition of two main strains of farmed Arctic charr from Scandinavia. At the same time, ample genomic resources were produced in the magnitude of millions of SNPs that could assist the transition of Nordic Arctic charr farming in the genomics era.
Collapse
Affiliation(s)
- Fotis Pappas
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Khrystyna Kurta
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Tytti Vanhala
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Henrik Jeuthe
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
- Aquaculture Center NorthKälarneSweden
| | - Ørjan Hagen
- Faculty of Bioscience and AquacultureNord UniversityBodøNorway
| | - José Beirão
- Faculty of Bioscience and AquacultureNord UniversityBodøNorway
| | - Christos Palaiokostas
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
6
|
Brachmann MK, Parsons K, Skúlason S, Gaggiotti O, Ferguson M. Variation in the genomic basis of parallel phenotypic and ecological divergence in benthic and pelagic morphs of Icelandic Arctic charr (Salvelinus alpinus). Mol Ecol 2022; 31:4688-4706. [PMID: 35861579 DOI: 10.1111/mec.16625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
Sympatric adaptive phenotypic divergence should be underlain by genomic differentiation between sub-populations. When divergence drives similar patterns of phenotypic and ecological variation within species we expect evolution to draw on common allelic variation. We investigated divergence histories and genomic signatures of adaptive divergence between benthic and pelagic morphs of Icelandic Arctic charr. Divergence histories for each of four populations were reconstructed using coalescent modelling and 14,187 single nucleotide polymorphisms. Sympatric divergence with continuous gene flow was supported in two populations while allopatric divergence with secondary contact was supported in one population; we could not differentiate between demographic models in the fourth population. We detected parallel patterns of phenotypic divergence along benthic-pelagic evolutionary trajectories among populations. Patterns of genomic differentiation between benthic and pelagic morphs were characterized by outlier loci in many narrow peaks of differentiation throughout the genome, which may reflect the eroding effects of gene flow on nearby neutral loci. We then used genome-wide association analyses to relate both phenotypic (body shape and size) and ecological (carbon and nitrogen stable isotopes) variation to patterns of genomic differentiation. Many peaks of genomic differentiation were associated with phenotypic and ecological variation in the three highly divergent populations, suggesting a genomic basis for adaptive divergence. We detected little evidence for a parallel genomic basis of differentiation as most regions and outlier loci were not shared among populations. Our results show that adaptive divergence can have varied genomic consequences in populations with relatively recent common origins, similar divergence histories, and parallel phenotypic divergence.
Collapse
Affiliation(s)
| | - Kevin Parsons
- Institute of Biodiversity, Animal Health and Comparative Medicine, School of Life Science, University of Glasgow, Glasgow, UK
| | - Skúli Skúlason
- Department of Aquaculture and Fish Biology, Hólar University, Saudárkrókur, Iceland.,Icelandic Museum of Natural History, Reykjavik, Iceland
| | - Oscar Gaggiotti
- School of biology, Scottish Oceans Institute, University of St. Andrews, St. Andrews, UK
| | - Moira Ferguson
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Salisbury S, McCracken GR, Perry R, Keefe D, Layton KKS, Kess T, Nugent CM, Leong JS, Bradbury IR, Koop BF, Ferguson MM, Ruzzante DE. The Genomic Consistency of the Loss of Anadromy in an Arctic Fish (Salvelinus alpinus). Am Nat 2022; 199:617-635. [DOI: 10.1086/719122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Development of a multi-species SNP array for serrasalmid fish Colossoma macropomum and Piaractus mesopotamicus. Sci Rep 2021; 11:19289. [PMID: 34588599 PMCID: PMC8481427 DOI: 10.1038/s41598-021-98885-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Scarce genomic resources have limited the development of breeding programs for serrasalmid fish Colossoma macropomum (tambaqui) and Piaractus mesopotamicus (pacu), the key native freshwater fish species produced in South America. The main objectives of this study were to design a dense SNP array for this fish group and to validate its performance on farmed populations from several locations in South America. Using multiple approaches based on different populations of tambaqui and pacu, a final list of 29,575 and 29,612 putative SNPs was selected, respectively, to print an Axiom AFFYMETRIX (THERMOFISHER) SerraSNP array. After validation, 74.17% (n = 21,963) and 71.25% (n = 21,072) of SNPs were classified as polymorphic variants in pacu and tambaqui, respectively. Most of the SNPs segregated within each population ranging from 14,199 to 19,856 in pacu; and from 15,075 to 20,380 in tambaqui. Our results indicate high levels of genetic diversity and clustered samples according to their hatchery origin. The developed SerraSNP array represents a valuable genomic tool approaching in-depth genetic studies for these species.
Collapse
|
9
|
A major quantitative trait locus affecting resistance to Tilapia lake virus in farmed Nile tilapia (Oreochromis niloticus). Heredity (Edinb) 2021; 127:334-343. [PMID: 34262170 PMCID: PMC8405827 DOI: 10.1038/s41437-021-00447-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
Enhancing host resistance to infectious disease has received increasing attention in recent years as a major goal of farm animal breeding programs. Combining field data with genomic tools can provide opportunities to understand the genetic architecture of disease resistance, leading to new opportunities for disease control. In the current study, a genome-wide association study was performed to assess resistance to the Tilapia lake virus (TiLV), one of the biggest threats affecting Nile tilapia (Oreochromis niloticus); a key aquaculture species globally. A pond outbreak of TiLV in a pedigreed population of the GIFT strain was observed, with 950 fish classified as either survivor or mortality, and genotyped using a 65 K SNP array. A significant QTL of large effect was identified on chromosome Oni22. The average mortality rate of tilapia homozygous for the resistance allele at the most significant SNP (P value = 4.51E-10) was 11%, compared to 43% for tilapia homozygous for the susceptibility allele. Several candidate genes related to host response to viral infection were identified within this QTL, including lgals17, vps52, and trim29. These results provide a rare example of a major QTL affecting a trait of major importance to a farmed animal. Genetic markers from the QTL region have potential in marker-assisted selection to improve host resistance, providing a genetic solution to an infectious disease where few other control or mitigation options currently exist.
Collapse
|
10
|
Palaiokostas C, Anjum A, Jeuthe H, Kurta K, Lopes Pinto F, Koning DJ. A genomic‐based vision on the genetic diversity and key performance traits in selectively bred Arctic charr (
Salvelinus alpinus
). Evol Appl 2021; 15:565-577. [PMID: 35505879 PMCID: PMC9046918 DOI: 10.1111/eva.13261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/19/2021] [Accepted: 05/29/2021] [Indexed: 12/25/2022] Open
Abstract
Routine implementation of genomic information for guiding selection decisions is not yet common in the majority of aquaculture species. Reduced representation sequencing approaches offer a cost‐effective solution for obtaining genome‐wide information in species with a limited availability of genomic resources. In the current study, we implemented double‐digest restriction site‐associated DNA sequencing (ddRAD‐seq) on an Arctic charr strain with the longest known history of selection (approximately 40 years) aiming to improve selection decisions. In total, 1730 animals reared at four different farms in Sweden and spanning from year classes 2013–2017 were genotyped using ddRAD‐seq. Approximately 5000 single nucleotide polymorphisms (SNPs) were identified, genetic diversity‐related metrics were estimated, and genome‐wide association studies (GWAS) for body length at different time points and age of sexual maturation were conducted. Low genetic differentiation amongst animals from the different farms was observed based on both the results from pairwise Fst values and principal component analysis (PCA). The existence of associations was investigated between the mean genome‐wide heterozygosity of each full‐sib family (year class 2017) and the corresponding inbreeding coefficient or survival to the eyed stage. A moderate correlation (−0.33) was estimated between the mean observed heterozygosity of each full‐sib family and the corresponding inbreeding coefficient, while no linear association was obtained with the survival to the eyed stage. GWAS did not detect loci with major effect for any of the studied traits. However, genomic regions explaining more than 1% of the additive genetic variance for either studied traits were suggested across 14 different chromosomes. Overall, key insights valuable for future selection decisions of Arctic charr have been obtained, suggesting ddRAD as an attractive genotyping platform for obtaining genome‐wide information in a cost‐effective manner.
Collapse
Affiliation(s)
- Christos Palaiokostas
- Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Uppsala Sweden
| | - Anam Anjum
- Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Uppsala Sweden
| | - Henrik Jeuthe
- Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Uppsala Sweden
- Aquaculture Center North Kälarne Sweden
| | - Khrystyna Kurta
- Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Uppsala Sweden
| | - Fernando Lopes Pinto
- Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Uppsala Sweden
| | - Dirk Jan Koning
- Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
11
|
Kess T, Dempson JB, Lehnert SJ, Layton KKS, Einfeldt A, Bentzen P, Salisbury SJ, Messmer AM, Duffy S, Ruzzante DE, Nugent CM, Ferguson MM, Leong JS, Koop BF, O'Connell MF, Bradbury IR. Genomic basis of deep-water adaptation in Arctic Charr (Salvelinus alpinus) morphs. Mol Ecol 2021; 30:4415-4432. [PMID: 34152667 DOI: 10.1111/mec.16033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022]
Abstract
The post-glacial colonization of Gander Lake in Newfoundland, Canada, by Arctic Charr (Salvelinus alpinus) provides the opportunity to study the genomic basis of adaptation to extreme deep-water environments. Colonization of deep-water (>50 m) habitats often requires extensive adaptation to cope with novel environmental challenges from high hydrostatic pressure, low temperature, and low light, but the genomic mechanisms underlying evolution in these environments are rarely known. Here, we compare genomic divergence between a deep-water morph adapted to depths of up to 288 m and a larger, piscivorous pelagic morph occupying shallower depths. Using both a SNP array and resequencing of whole nuclear and mitochondrial genomes, we find clear genetic divergence (FST = 0.11-0.15) between deep and shallow water morphs, despite an absence of morph divergence across the mitochondrial genome. Outlier analyses identified many diverged genomic regions containing genes enriched for processes such as gene expression and DNA repair, cardiac function, and membrane transport. Detection of putative copy number variants (CNVs) uncovered 385 genes with CNVs distinct to piscivorous morphs, and 275 genes with CNVs distinct to deep-water morphs, enriched for processes associated with synapse assembly. Demographic analyses identified evidence for recent and local morph divergence, and ongoing reductions in diversity consistent with postglacial colonization. Together, these results show that Arctic Charr morph divergence has occurred through genome-wide differentiation and elevated divergence of genes underlying multiple cellular and physiological processes, providing insight into the genomic basis of adaptation in a deep-water habitat following postglacial recolonization.
Collapse
Affiliation(s)
- Tony Kess
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, Canada
| | - J Brian Dempson
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, Canada
| | - Sarah J Lehnert
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, Canada
| | - Kara K S Layton
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Anthony Einfeldt
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Paul Bentzen
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | | - Amber M Messmer
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, Canada
| | - Steven Duffy
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, Canada
| | | | - Cameron M Nugent
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Moira M Ferguson
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Jong S Leong
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Michael F O'Connell
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, Canada
| | - Ian R Bradbury
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, Canada
| |
Collapse
|
12
|
Brachmann MK, Parsons K, Skúlason S, Ferguson MM. The interaction of resource use and gene flow on the phenotypic divergence of benthic and pelagic morphs of Icelandic Arctic charr ( Salvelinus alpinus). Ecol Evol 2021; 11:7315-7334. [PMID: 34188815 PMCID: PMC8216915 DOI: 10.1002/ece3.7563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Conceptual models of adaptive divergence and ecological speciation in sympatry predict differential resource use, phenotype-environment correlations, and reduced gene flow among diverging phenotypes. While these predictions have been assessed in past studies, connections among them have rarely been assessed collectively. We examined relationships among phenotypic, ecological, and genetic variation in Arctic charr (Salvelinus alpinus) from six Icelandic localities that have undergone varying degrees of divergence into sympatric benthic and pelagic morphs. We characterized morphological variation with geometric morphometrics, tested for differential resource use between morphs using stable isotopes, and inferred the amount of gene flow from single nucleotide polymorphisms. Analysis of stable isotopic signatures indicated that sympatric morphs showed similar difference in resource use across populations, likely arising from the common utilization of niche space within each population. Carbon isotopic signature was also a significant predictor of individual variation in body shape and size, suggesting that variation in benthic and pelagic resource use is associated with phenotypic variation. The estimated percentage of hybrids between sympatric morphs varied across populations (from 0% to 15.6%) but the majority of fish had genotypes (ancestry coefficients) characteristic of pure morphs. Despite evidence of reduced gene flow between sympatric morphs, we did not detect the expected negative relationship between divergence in resource use and gene flow. Three lakes showed the expected pattern, but morphs in the fourth showed no detectable hybridization and had relatively low differences in resource use between them. This coupled with the finding that resource use and genetic differentiation had differential effects on body shape variation across populations suggests that reproductive isolation maintains phenotypic divergence between benthic and pelagic morphs when the effects of resource use are relatively low. Our ability to assess relationships between phenotype, ecology, and genetics deepens our understanding of the processes underlying adaptive divergence in sympatry.
Collapse
Affiliation(s)
| | - Kevin Parsons
- Institute of Biodiversity, Animal Health and Comparative MedicineSchool of Life ScienceUniversity of GlasgowGlasgowUK
| | - Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySaudárkrókurIceland
- Icelandic Museum of Natural HistoryReykjavíkIceland
| | | |
Collapse
|
13
|
Peñaloza C, Manousaki T, Franch R, Tsakogiannis A, Sonesson AK, Aslam ML, Allal F, Bargelloni L, Houston RD, Tsigenopoulos CS. Development and testing of a combined species SNP array for the European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata). Genomics 2021; 113:2096-2107. [PMID: 33933591 PMCID: PMC8276775 DOI: 10.1016/j.ygeno.2021.04.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022]
Abstract
SNP arrays are powerful tools for high-resolution studies of the genetic basis of complex traits, facilitating both selective breeding and population genomic research. The European seabass (Dicentrarchus labrax) and the gilthead seabream (Sparus aurata) are the two most important fish species for Mediterranean aquaculture. While selective breeding programmes increasingly underpin stock supply for this industry, genomic selection is not yet widespread. Genomic selection has major potential to expedite genetic gain, particularly for traits practically impossible to measure on selection candidates, such as disease resistance and fillet characteristics. The aim of our study was to design a combined-species 60 K SNP array for European seabass and gilthead seabream, and to test its performance on farmed and wild populations from numerous locations throughout the species range. To achieve this, high coverage Illumina whole-genome sequencing of pooled samples was performed for 24 populations of European seabass and 27 populations of gilthead seabream. This resulted in a database of ~20 million SNPs per species, which were then filtered to identify high-quality variants and create the final set for the development of the ‘MedFish’ SNP array. The array was then tested by genotyping a subset of the discovery populations, highlighting a high conversion rate to functioning polymorphic assays on the array (92% in seabass; 89% in seabream) and repeatability (99.4–99.7%). The platform interrogates ~30 K markers in each species, includes features such as SNPs previously shown to be associated with performance traits, and is enriched for SNPs predicted to have high functional effects on proteins. The array was demonstrated to be effective at detecting population structure across a wide range of fish populations from diverse geographical origins, and to examine the extent of haplotype sharing among Mediterranean farmed fish populations. In conclusion, the new MedFish array enables efficient and accurate high-throughput genotyping for genome-wide distributed SNPs for each fish species, and will facilitate stock management, population genomics approaches, and acceleration of selective breeding through genomic selection. Α 60 K SNP array (MedFish) was designed for European seabass and gilthead seabream from wild and domesticated populations. The array exhibited a high conversion rate (92% in seabass; 89% in seabream) and repeatability (99.4 and 99.7%). The MedFish array is expected to facilitate stock management and acceleration of selective breeding via genomic selection.
Collapse
Affiliation(s)
- C Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - T Manousaki
- Hellenic Centre for Marine Research, Thalassocosmos Gournes Pediados, 71500 Irakleio, Crete, Greece
| | - R Franch
- Padova University, Via Ugo Bassi, 58yB, I-35131 Padova, Italy
| | - A Tsakogiannis
- Hellenic Centre for Marine Research, Thalassocosmos Gournes Pediados, 71500 Irakleio, Crete, Greece
| | - A K Sonesson
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, PO Box 210, N-1432 Ås, Norway
| | - M L Aslam
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, PO Box 210, N-1432 Ås, Norway
| | - F Allal
- MARBEC, University of Montpellier, Ifremer, CNRS, IRD, 34250 Palavas-les-Flots, France
| | - L Bargelloni
- Padova University, Via Ugo Bassi, 58yB, I-35131 Padova, Italy
| | - R D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK.
| | - C S Tsigenopoulos
- Hellenic Centre for Marine Research, Thalassocosmos Gournes Pediados, 71500 Irakleio, Crete, Greece.
| |
Collapse
|
14
|
Salisbury SJ, McCracken GR, Perry R, Keefe D, Layton KK, Kess T, Nugent CM, Leong JS, Bradbury IR, Koop BF, Ferguson MM, Ruzzante DE. Limited genetic parallelism underlies recent, repeated incipient speciation in geographically proximate populations of an Arctic fish (
Salvelinus alpinus
). Mol Ecol 2020; 29:4280-4294. [DOI: 10.1111/mec.15634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Robert Perry
- Department of Environment Fish and Wildlife Division Government of Yukon Whitehorse YT Canada
| | - Donald Keefe
- Department of Environment and Conservation Wildlife Division Government of Newfoundland and Labrador Corner Brook NL Canada
| | - Kara K.S. Layton
- Department of Fisheries and Oceans Northwest Atlantic Fisheries Centre St. John's NL Canada
- Department of Ocean Sciences Memorial University of Newfoundland St. John's NL Canada
| | - Tony Kess
- Department of Fisheries and Oceans Northwest Atlantic Fisheries Centre St. John's NL Canada
| | - Cameron M. Nugent
- Department of Integrative Biology University of Guelph Guelph ON Canada
| | - Jong S. Leong
- Department of Biology University of Victoria Victoria BC Canada
| | - Ian R. Bradbury
- Department of Biology Dalhousie University Halifax NS Canada
- Department of Fisheries and Oceans Northwest Atlantic Fisheries Centre St. John's NL Canada
- Department of Ocean Sciences Memorial University of Newfoundland St. John's NL Canada
| | - Ben F. Koop
- Department of Biology University of Victoria Victoria BC Canada
- Centre for Biomedical Research University of Victoria Victoria BC Canada
| | - Moira M. Ferguson
- Department of Integrative Biology University of Guelph Guelph ON Canada
| | | |
Collapse
|
15
|
Development and Validation of an Open Access SNP Array for Nile Tilapia ( Oreochromis niloticus). G3-GENES GENOMES GENETICS 2020; 10:2777-2785. [PMID: 32532799 PMCID: PMC7407453 DOI: 10.1534/g3.120.401343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tilapia are among the most important farmed fish species worldwide, and are fundamental for the food security of many developing countries. Several genetically improved Nile tilapia (Oreochromis niloticus) strains exist, such as the iconic Genetically Improved Farmed Tilapia (GIFT), and breeding programs typically follow classical pedigree-based selection. The use of genome-wide single-nucleotide polymorphism (SNP) data can enable an understanding of the genetic architecture of economically important traits and the acceleration of genetic gain via genomic selection. Due to the global importance and diversity of Nile tilapia, an open access SNP array would be beneficial for aquaculture research and production. In the current study, a ∼65K SNP array was designed based on SNPs discovered from whole-genome sequence data from a GIFT breeding nucleus population and the overlap with SNP datasets from wild fish populations and several other farmed Nile tilapia strains. The SNP array was applied to clearly distinguish between different tilapia populations across Asia and Africa, with at least ∼30,000 SNPs segregating in each of the diverse population samples tested. It is anticipated that this SNP array will be an enabling tool for population genetics and tilapia breeding research, facilitating consistency and comparison of results across studies.
Collapse
|
16
|
Palaiokostas C, Clarke SM, Jeuthe H, Brauning R, Bilton TP, Dodds KG, McEwan JC, De Koning DJ. Application of Low Coverage Genotyping by Sequencing in Selectively Bred Arctic Charr ( Salvelinus alpinus). G3 (BETHESDA, MD.) 2020; 10:2069-2078. [PMID: 32312839 PMCID: PMC7263669 DOI: 10.1534/g3.120.401295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Arctic charr (Salvelinus alpinus) is a species of high economic value for the aquaculture industry, and of high ecological value due to its Holarctic distribution in both marine and freshwater environments. Novel genome sequencing approaches enable the study of population and quantitative genetic parameters even on species with limited or no prior genomic resources. Low coverage genotyping by sequencing (GBS) was applied in a selected strain of Arctic charr in Sweden originating from a landlocked freshwater population. For the needs of the current study, animals from year classes 2013 (171 animals, parental population) and 2017 (759 animals; 13 full sib families) were used as a template for identifying genome wide single nucleotide polymorphisms (SNPs). GBS libraries were constructed using the PstI and MspI restriction enzymes. Approximately 14.5K SNPs passed quality control and were used for estimating a genomic relationship matrix. Thereafter a wide range of analyses were conducted in order to gain insights regarding genetic diversity and investigate the efficiency of the genomic information for parentage assignment and breeding value estimation. Heterozygosity estimates for both year classes suggested a slight excess of heterozygotes. Furthermore, FST estimates among the families of year class 2017 ranged between 0.009 - 0.066. Principal components analysis (PCA) and discriminant analysis of principal components (DAPC) were applied aiming to identify the existence of genetic clusters among the studied population. Results obtained were in accordance with pedigree records allowing the identification of individual families. Additionally, DNA parentage verification was performed, with results in accordance with the pedigree records with the exception of a putative dam where full sib genotypes suggested a potential recording error. Breeding value estimation for juvenile growth through the usage of the estimated genomic relationship matrix clearly outperformed the pedigree equivalent in terms of prediction accuracy (0.51 opposed to 0.31). Overall, low coverage GBS has proven to be a cost-effective genotyping platform that is expected to boost the selection efficiency of the Arctic charr breeding program.
Collapse
Affiliation(s)
- Christos Palaiokostas
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7090, 750 07 Uppsala, Sweden,
| | - Shannon M Clarke
- Invermay Agricultural Centre, AgResearch, Private Bag 50034, Mosgiel 9053, New Zealand
| | - Henrik Jeuthe
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7090, 750 07 Uppsala, Sweden
- Aquaculture Center North, Åvägen 17, 844 61 Kälarne, Sweden, and
| | - Rudiger Brauning
- Invermay Agricultural Centre, AgResearch, Private Bag 50034, Mosgiel 9053, New Zealand
| | - Timothy P Bilton
- Invermay Agricultural Centre, AgResearch, Private Bag 50034, Mosgiel 9053, New Zealand
- Department of Mathematics and Statistics, University of Otago, Dunedin 9054, New Zealand
| | - Ken G Dodds
- Invermay Agricultural Centre, AgResearch, Private Bag 50034, Mosgiel 9053, New Zealand
| | - John C McEwan
- Invermay Agricultural Centre, AgResearch, Private Bag 50034, Mosgiel 9053, New Zealand
| | - Dirk-Jan De Koning
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7090, 750 07 Uppsala, Sweden
| |
Collapse
|
17
|
Layton KKS, Dempson B, Snelgrove PVR, Duffy SJ, Messmer AM, Paterson IG, Jeffery NW, Kess T, Horne JB, Salisbury SJ, Ruzzante DE, Bentzen P, Côté D, Nugent CM, Ferguson MM, Leong JS, Koop BF, Bradbury IR. Resolving fine-scale population structure and fishery exploitation using sequenced microsatellites in a northern fish. Evol Appl 2020; 13:1055-1068. [PMID: 32431752 PMCID: PMC7232759 DOI: 10.1111/eva.12922] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
The resiliency of populations and species to environmental change is dependent on the maintenance of genetic diversity, and as such, quantifying diversity is central to combating ongoing widespread reductions in biodiversity. With the advent of next-generation sequencing, several methods now exist for resolving fine-scale population structure, but the comparative performance of these methods for genetic assignment has rarely been tested. Here, we evaluate the performance of sequenced microsatellites and a single nucleotide polymorphism (SNP) array to resolve fine-scale population structure in a critically important salmonid in north eastern Canada, Arctic Charr (Salvelinus alpinus). We also assess the utility of sequenced microsatellites for fisheries applications by quantifying the spatial scales of movement and exploitation through genetic assignment of fishery samples to rivers of origin and comparing these results with a 29-year tagging dataset. Self-assignment and simulation-based analyses of 111 genome-wide microsatellite loci and 500 informative SNPs from 28 populations of Arctic Charr in north-eastern Canada identified largely river-specific genetic structure. Despite large differences (~4X) in the number of loci surveyed between panels, mean self-assignment accuracy was similar with the microsatellite loci and the SNP panel (>90%). Subsequent analysis of 996 fishery-collected samples using the microsatellite panel revealed that larger rivers contribute greater numbers of individuals to the fishery and that coastal fisheries largely exploit individuals originating from nearby rivers, corroborating results from traditional tagging experiments. Our results demonstrate the efficacy of sequence-based microsatellite genotyping to advance understanding of fine-scale population structure and harvest composition in northern and understudied species.
Collapse
Affiliation(s)
- Kara K. S. Layton
- Department of Ocean SciencesMemorial University of NewfoundlandSt. John'sNLCanada
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | - Brian Dempson
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | - Paul V. R. Snelgrove
- Department of Ocean SciencesMemorial University of NewfoundlandSt. John'sNLCanada
| | - Steven J. Duffy
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | - Amber M. Messmer
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | | | - Nicholas W. Jeffery
- Fisheries and Oceans CanadaBedford Institute of OceanographyDartmouthNSCanada
| | - Tony Kess
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | - John B. Horne
- National Oceanic and Atmospheric AdministrationSouthwest Fisheries Science CenterLa JollaCAUSA
| | | | | | - Paul Bentzen
- Department of BiologyDalhousie UniversityHalifaxNSCanada
| | - David Côté
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | | | | | - Jong S. Leong
- Department of BiologyUniversity of VictoriaVictoriaBCCanada
| | - Ben F. Koop
- Department of BiologyUniversity of VictoriaVictoriaBCCanada
- Centre for Biomedical ResearchUniversity of VictoriaVictoriaBCCanada
| | - Ian R. Bradbury
- Department of Ocean SciencesMemorial University of NewfoundlandSt. John'sNLCanada
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
- Department of BiologyDalhousie UniversityHalifaxNSCanada
| |
Collapse
|