1
|
Arora S, Myat Oo A, Shaik Ismail B, Poon WB, Lai D, Ko KKK, Wong HM, Tan KY, Aung MK, Conceicao E, Yang Y, Chan DYW, Sim JXY, Venkatachalam I, Lee LC, Ling ML. Rapid management of Serratia marcescens outbreak in neonatology unit in Singapore: Risk factors and infection control measures. Am J Infect Control 2024; 52:1084-1090. [PMID: 38761850 DOI: 10.1016/j.ajic.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND We describe the investigations for control of two consecutive Serratia marcescens outbreaks in neonatology unit of Singapore General Hospital. METHODS Epidemiological investigations, environmental sampling and risk-factors analysis were performed to guide infection control measures. Active surveillance sampling of nasopharyngeal aspirate and/or stool from neonates was conducted during both outbreaks. Whole-genome-sequencing was done to determine clonal links. Retrospective case-control study was conducted for second outbreak to identify risk factors for S marcescens acquisition. RESULTS In 2022, two genetically unrelated S marcescens outbreaks were managed involving five neonates in March 2022 (outbreak 1) and eight neonates in November 2022 (outbreak 2). A link to positive isolates from sinks in intensive care units and milk preparation room was identified during outbreak 1. Neonatal jaundice (aOR, 16.46; p-value= 0.023) and non-formula milk feeding (aOR, 13.88; p-value= 0.02) were identified as risk factors during second outbreak. Multiple interventions adopted were cohorting of positive cases, carriage-screening, enhanced environmental cleaning, and emphasis on alcohol-based handrubs for hand-hygiene. CONCLUSION The two outbreaks were likely due to infection prevention practices lapses and favourable environmental conditions. Nosocomial S marcescens outbreaks in neonatology units are difficult to control and require multidisciplinary approach with strict infection prevention measures to mitigate risk factors.
Collapse
Affiliation(s)
- Shalvi Arora
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore, Singapore.
| | - Aung Myat Oo
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore, Singapore
| | - Bushra Shaik Ismail
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore, Singapore
| | - Woei Bing Poon
- Department of Neonatal and Developmental Medicine, Singapore General Hospital, Singapore, Singapore
| | - Deborah Lai
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore, Singapore; Department of Molecular Pathology, Singapore General Hospital, Singapore, Singapore
| | - Karrie Kwan Ki Ko
- Department of Microbiology, Singapore General Hospital, Singapore, Singapore
| | - Hei Man Wong
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Kwee Yuen Tan
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore, Singapore
| | - May Kyawt Aung
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore, Singapore
| | - Edwin Conceicao
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore, Singapore
| | - Yong Yang
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore, Singapore
| | - Darius Yak Weng Chan
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore, Singapore
| | - Jean Xiang Ying Sim
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Indumathi Venkatachalam
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Lai Chee Lee
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore, Singapore
| | - Moi Lin Ling
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
2
|
Jara J, Alba C, Del Campo R, Fernández L, Sáenz de Pipaón M, Rodríguez JM, Orgaz B. Linking preterm infant gut microbiota to nasograstric enteral feeding tubes: exploring potential interactions and microbial strain transmission. Front Pediatr 2024; 12:1397398. [PMID: 38952433 PMCID: PMC11215057 DOI: 10.3389/fped.2024.1397398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Preterm birth is a growing problem worldwide. Staying at a neonatal intensive care unit (NICU) after birth is critical for the survival of preterm infants whose feeding often requires the use of nasogastric enteral feeding tubes (NEFT). These can be colonized by hospital-associated pathobionts that can access the gut of the preterm infants through this route. Since the gut microbiota is the most impactful factor on maturation of the immune system, any disturbance in this may condition their health. Therefore, the aim of this study is to assess the impact of NEFT-associated microbial communities on the establishment of the gut microbiota in preterm infants. Material and methods A metataxonomic analysis of fecal and NEFT-related samples obtained during the first 2 weeks of life of preterm infants was performed. The potential sharing of strains isolated from the same set of samples of bacterial species involved in NICU's outbreaks, was assessed by Random Amplification of Polymorphic DNA (RAPD) genotyping. Results In the samples taken 48 h after birth (NEFT-1 and Me/F1), Staphylococcus spp. was the most abundant genera (62% and 14%, respectively) and it was latter displaced to 5.5% and 0.45%, respectively by Enterobacteriaceae. Significant differences in beta diversity were detected in NEFT and fecal samples taken at day 17 after birth (NEFT-3 and F3) (p = 0.003 and p = 0.024, respectively). Significant positive correlations were found between the most relevant genera detected in NEFT-3 and F3. 28% of the patients shared at least one RAPD-PCR profile in fecal and NEFT samples and 11% of the total profiles were found at least once simultaneously in NEFT and fecal samples from the same patient. Conclusion The results indicate a parallel bacterial colonization of the gut of preterm neonates and the NEFTs used for feeding, potentially involving strain sharing between these niches. Moreover, the same bacterial RAPD profiles were found in neonates hospitalized in different boxes, suggesting a microbial transference within the NICU environment. This study may assist clinical staff in implementing best practices to mitigate the spread of pathogens that could threaten the health of preterm infants.
Collapse
Affiliation(s)
- J. Jara
- Department of Galenic Pharmacy and Food Science, School of Veterinary Sciences, University Complutense of Madrid (UCM), Madrid, Spain
| | - C. Alba
- Department of Nutrition and Food Science, School of Veterinary Sciences, University Complutense of Madrid (UCM), Madrid, Spain
| | - R. Del Campo
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - L. Fernández
- Department of Galenic Pharmacy and Food Science, School of Veterinary Sciences, University Complutense of Madrid (UCM), Madrid, Spain
| | - M. Sáenz de Pipaón
- Department of Neonatology, La Paz University Hospital of Madrid, Madrid, Spain
- Department of Pediatrics, Autonoma University of Madrid, Madrid, Spain
| | - J. M. Rodríguez
- Department of Nutrition and Food Science, School of Veterinary Sciences, University Complutense of Madrid (UCM), Madrid, Spain
| | - B. Orgaz
- Department of Galenic Pharmacy and Food Science, School of Veterinary Sciences, University Complutense of Madrid (UCM), Madrid, Spain
| |
Collapse
|
3
|
Jain A, Jain K, Jhurani D, Mishra A, Mohapatra S, Sharma A, Manchanda V, Sankar MJ, Agarwal R. Umbilical Cord Blood IgA Levels and Bacterial Profile in Preterm Neonates Born with Maternal Risk Factors for Early-Onset Neonatal Sepsis. Indian J Pediatr 2024; 91:541-547. [PMID: 37523074 DOI: 10.1007/s12098-023-04708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/19/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVES To investigate the IgA levels and bacterial profile in umbilical cord blood (UCB) samples of mothers with risk factors compared to those without risk factors; and to understand the link between UCB culture positivity and neonatal outcomes [early-onset sepsis (EOS) or death within 7 d of life]. METHODS This is a pilot prospective case-control study. Mothers with preterm deliveries (gestational age <34 wk) were enrolled in two groups- Cases: Those with antenatal risk factors (prolonged duration of rupture of membranes of ≥24 h or chorioamnionitis) and controls: Those without these two risk factors. Serum IgA levels was assayed and microbiological culture was tested in UCB samples. 16S sequencing to determine the UCB microbiome was performed in a subset of samples (n = 15). Neonates were followed-up for the occurrence of EOS or death until 7 d of life. RESULTS Forty-nine mothers as cases and 50 mothers as controls were consecutively enrolled. No significant difference was observed in the IgA levels (60.5 vs. 58.1 mg/L; p = 0.71), neonatal blood culture positivity (4.1% vs. 8.0%; p = 0.41) and UCB culture positivity (30.6% vs. 26.0%; p = 0.61) in the two groups. No difference was observed between the groups in occurrence of EOS or death within 7 d of life. Proteobacteria, Firmicutes and Actinobacteria were the most abundant phyla. Serratia, Bifidobacterium, Collinsella, Meganomas and Blautia being the most common genera. CONCLUSIONS Cord blood IgA concentration could not differentiate the neonates at-risk of infection due to its presence in both the groups.
Collapse
Affiliation(s)
- Ashish Jain
- Department of Neonatology, Central Health Service, Maulana Azad Medical College, (University of Delhi), Govt. of India, New Delhi, India
| | - Kajal Jain
- Department of Pediatrics, WHO Collaborating Centre for Education and Research in Newborn Health, Newborn Health Knowledge Centre, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Divashree Jhurani
- Department of Pediatrics, WHO Collaborating Centre for Education and Research in Newborn Health, Newborn Health Knowledge Centre, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Asha Mishra
- Department of Gastroenterology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sarita Mohapatra
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Akash Sharma
- Department of Pediatrics, WHO Collaborating Centre for Education and Research in Newborn Health, Newborn Health Knowledge Centre, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vikas Manchanda
- Department of Microbiology, Central Health Service, Maulana Azad Medical College, (University of Delhi), Govt. of India, New Delhi, India
| | - M Jeeva Sankar
- Department of Pediatrics, WHO Collaborating Centre for Education and Research in Newborn Health, Newborn Health Knowledge Centre, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ramesh Agarwal
- Department of Pediatrics, WHO Collaborating Centre for Education and Research in Newborn Health, Newborn Health Knowledge Centre, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
4
|
Turunen J, Tejesvi MV, Paalanne N, Pokka T, Amatya SB, Mishra S, Kaisanlahti A, Reunanen J, Tapiainen T. Investigating prenatal and perinatal factors on meconium microbiota: a systematic review and cohort study. Pediatr Res 2024; 95:135-145. [PMID: 37591927 PMCID: PMC10798900 DOI: 10.1038/s41390-023-02783-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND The first-pass meconium has been suggested as a proxy for the fetal gut microbiota because it is formed in utero. This systematic review and cohort study investigated how pre- and perinatal factors influence the composition of the meconium microbiota. METHODS We performed the systematic review using Covidence by searching PubMed, Scopus, and Web of Science databases with the search terms "meconium microbiome" and "meconium microbiota". In the cohort study, we performed 16 S rRNA gene sequencing on 393 meconium samples and analyzed the sequencing data using QIIME2. RESULTS Our systematic review identified 69 studies exploring prenatal factors, immediate perinatal factors, and microbial composition in relation to subsequent health of infants but gave only limited comparative evidence regarding factors related to the composition of the meconium microbiota. The cohort study pointed to a low-biomass microbiota consisting of the phyla Firmicutes, Proteobacteria and Actinobacteriota and the genera Staphylococcus, Escherichia-Shigella and Lactobacillus, and indicated that immediate perinatal factors affected the composition of the meconium microbiota more than did prenatal factors. CONCLUSIONS This finding supports the idea that the meconium microbiota mostly starts developing during delivery. IMPACT It is unclear when the first-pass meconium microbiota develops, and what are the sources of the colonization. In this systematic review, we found 69 studies exploring prenatal factors, immediate perinatal factors, and microbial composition relative to subsequent health of infants, but there was no consensus on the factors affecting the meconium microbiota development. In this cohort study, immediate perinatal factors markedly affected the meconium microbiota development while prenatal factors had little effect on it. As the meconium microbiota composition was influenced by immediate perinatal factors, the present study supports the idea that the initial gut microbiota develops mainly during delivery.
Collapse
Affiliation(s)
- Jenni Turunen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland.
- Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Mysore V Tejesvi
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland
| | - Niko Paalanne
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Tytti Pokka
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Research Service Unit, Oulu University Hospital, Oulu, Finland
| | - Sajeen Bahadur Amatya
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Surbhi Mishra
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Anna Kaisanlahti
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Justus Reunanen
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Terhi Tapiainen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
5
|
Shikov AE, Merkushova AV, Savina IA, Nizhnikov AA, Antonets KS. The man, the plant, and the insect: shooting host specificity determinants in Serratia marcescens pangenome. Front Microbiol 2023; 14:1211999. [PMID: 38029097 PMCID: PMC10656689 DOI: 10.3389/fmicb.2023.1211999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Serratia marcescens is most commonly known as an opportunistic pathogen causing nosocomial infections. It, however, was shown to infect a wide range of hosts apart from vertebrates such as insects or plants as well, being either pathogenic or growth-promoting for the latter. Despite being extensively studied in terms of virulence mechanisms during human infections, there has been little evidence of which factors determine S. marcescens host specificity. On that account, we analyzed S. marcescens pangenome to reveal possible specificity factors. Methods We selected 73 high-quality genome assemblies of complete level and reconstructed the respective pangenome and reference phylogeny based on core genes alignment. To find an optimal pipeline, we tested current pangenomic tools and obtained several phylogenetic inferences. The pangenome was rich in its accessory component and was considered open according to the Heaps' law. We then applied the pangenome-wide associating method (pan-GWAS) and predicted positively associated gene clusters attributed to three host groups, namely, humans, insects, and plants. Results According to the results, significant factors relating to human infections included transcriptional regulators, lipoproteins, ABC transporters, and membrane proteins. Host preference toward insects, in its turn, was associated with diverse enzymes, such as hydrolases, isochorismatase, and N-acetyltransferase with the latter possibly exerting a neurotoxic effect. Finally, plant infection may be conducted through type VI secretion systems and modulation of plant cell wall synthesis. Interestingly, factors associated with plants also included putative growth-promoting proteins like enzymes performing xenobiotic degradation and releasing ammonium irons. We also identified overrepresented functional annotations within the sets of specificity factors and found that their functional characteristics fell into separate clusters, thus, implying that host adaptation is represented by diverse functional pathways. Finally, we found that mobile genetic elements bore specificity determinants. In particular, prophages were mainly associated with factors related to humans, while genetic islands-with insects and plants, respectively. Discussion In summary, functional enrichments coupled with pangenomic inferences allowed us to hypothesize that the respective host preference is carried out through distinct molecular mechanisms of virulence. To the best of our knowledge, the presented research is the first to identify specific genomic features of S. marcescens assemblies isolated from different hosts at the pangenomic level.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Anastasiya V. Merkushova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - Iuliia A. Savina
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
6
|
Coggins SA, Edwards EM, Flannery DD, Gerber JS, Horbar JD, Puopolo KM. Serratia Infection Epidemiology Among Very Preterm Infants in the Neonatal Intensive Care Unit. Pediatr Infect Dis J 2023; 42:152-158. [PMID: 36638403 PMCID: PMC9846441 DOI: 10.1097/inf.0000000000003736] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Serratia spp. are opportunistic, multidrug resistant, Gram-negative pathogens, previously described among preterm infants in case reports or outbreaks of infection. We describe Serratia late-onset infection (LOI) in very preterm infants in a large, contemporary, nationally representative cohort. METHODS In this secondary analysis of prospectively collected data of preterm infants born 401-1500 grams and/or 22-29 weeks gestational age from 2018 to 2020 at 774 Vermont Oxford Network members, LOI was defined as culture-confirmed blood and/or cerebrospinal fluid infection > 3 days after birth. The primary outcome was incidence of Serratia LOI. Secondary outcomes compared rates of survival and discharge morbidities between infants with Serratia and non-Serratia LOI. RESULTS Among 119,565 infants, LOI occurred in 10,687 (8.9%). Serratia was isolated in 279 cases (2.6% of all LOI; 2.3 Serratia infections per 1000 infants). Of 774 hospitals, 161 (21%) reported at least one Serratia LOI; 170 of 271 (63%) cases occurred at hospitals reporting 1 or 2 Serratia infections, and 53 of 271 (20%) occurred at hospitals reporting ≥5 Serratia infections. Serratia LOI was associated with a lower rate of survival to discharge compared with those with non-Serratia LOI (adjusted relative risk 0.88, 95% CI: 0.82-0.95). Among survivors, infants with Serratia LOI had higher rates of tracheostomy, gastrostomy and home oxygen use compared with those with non-Serratia LOI. CONCLUSIONS The incidence of Serratia LOI was 2.3 infections per 1000 very preterm infants in this cohort. Lower survival and significant morbidity among Serratia LOI survivors highlight the need for recognition and targeted prevention strategies for this opportunistic nosocomial infection.
Collapse
Affiliation(s)
- Sarah A. Coggins
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Erika M. Edwards
- University of Vermont, Burlington, VT, USA
- Vermont-Oxford Network, Burlington, VT, USA
| | - Dustin D. Flannery
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey S. Gerber
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey D. Horbar
- University of Vermont, Burlington, VT, USA
- Vermont-Oxford Network, Burlington, VT, USA
| | - Karen M. Puopolo
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
7
|
Shana SS, Sreenath KR, Sumithra TG, Krishnaveny SMS, Joshi KK, Nameer PO, Gopalakrishnan A. A Global-Scale Ecological Niche Modeling of the Emerging Pathogen Serratia marcescens to Aid in its Spatial Ecology. Curr Microbiol 2023; 80:59. [PMID: 36588127 DOI: 10.1007/s00284-022-03159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/17/2022] [Indexed: 01/03/2023]
Abstract
Serratia marcescens is a big emerging concern for human health and coral biodiversity. Spatial ecology and the influencing factors on pathogen ecology, however, remain unknown. The study forms the first global risk assessment of S. marcescens. MaxEnt niche modeling was applied using two biotic and sixteen abiotic variables. The world was classified into five risk-level categories based on the pathogen ecology, and the world population exposed to S. marcescens infection was then quantified. The prepared model showed an area under the curve value of 0.918 ± 0.028, implying excellent prediction ability. The highly and moderately suitable areas occupied around 0.52% and 17.9% of the total global land area. The order of probability of having S. marcescens-related infections was Asia > North America > South America > Europe > Africa > Australia. Human population density and temperature were the most influential factors in the distribution. The moderate to high transmission risk zones contained 0.20% (1.61 billion people) of the human population. In brief, these results give novel insights into its spatial ecology and provide the risk maps that can be utilized to plan targeted strategic control measures against future invasions of this emerging pathogen.
Collapse
Affiliation(s)
- S S Shana
- Marine Biodiversity and Environment Management Division, Central Marine Fisheries Research Institute, Kochi, 682018, Kerala, India.,College of Climate Change and Environmental Science, Kerala Agricultural University, Thrissur, 680656, Kerala, India
| | - K R Sreenath
- Marine Biodiversity and Environment Management Division, Central Marine Fisheries Research Institute, Kochi, 682018, Kerala, India.
| | - T G Sumithra
- Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Kochi, 682018, Kerala, India
| | - S M S Krishnaveny
- Marine Biodiversity and Environment Management Division, Central Marine Fisheries Research Institute, Kochi, 682018, Kerala, India.,Cochin University of Science and Technology, Kalamassery, Kochi, 682022, Kerala, India
| | - K K Joshi
- Marine Biodiversity and Environment Management Division, Central Marine Fisheries Research Institute, Kochi, 682018, Kerala, India
| | - P O Nameer
- College of Climate Change and Environmental Science, Kerala Agricultural University, Thrissur, 680656, Kerala, India
| | - A Gopalakrishnan
- Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Kochi, 682018, Kerala, India
| |
Collapse
|
8
|
Intestinal Dominance by Multidrug-Resistant Bacteria in Pediatric Liver Transplant Patients. Microbiol Spectr 2022; 10:e0284222. [PMID: 36346231 PMCID: PMC9769714 DOI: 10.1128/spectrum.02842-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pediatric liver transplantation (PLTx) is commonly associated with extensive antibiotic treatments that can produce gut microbiome alterations and open the way to dominance by multidrug-resistant organisms (MDROs). In this study, the relationship between intestinal Relative Loads (RLs) of β-lactamase genes, antibiotic consumption, microbiome disruption, and the extraintestinal dissemination of MDROs among PLTx patients is investigated. 28 PLTx patients were included, from whom 169 rectal swabs were collected. Total DNA was extracted and blaCTX-M-1-Family, blaOXA-1, blaOXA-48, and blaVIM were quantified via quantitative polymerase chain reaction (qPCR) and normalized to the total bacterial load (16SrRNA) through LogΔΔCt to determine the RLs. 16SrRNA sequencing was performed for 18 samples, and metagenomic sequencing was performed for 2. Patients' clinical data were retrieved from the hospital's database. At least one of the genes tested were detected in all of the patients. The RLs for blaCTX-M-1-Family, blaOXA-1, blaOXA-48, and blaVIM were higher than 1% of the total bacterial population in 67 (80.73%), 56 (78.87%), 57 (77.03%) and 39 (61.9%) samples, respectively. High RLs for blaCTX-M-1-Family, blaOXA-1, and/or blaOXA-48, were positively associated with the consumption of carbapenems with trimethoprim-sulfamethoxazole and coincided with low diversity in the gut microbiome. Low RLs were associated with the consumption of noncarbapenem β-lactams with aminoglycosides (P < 0.05). Extraintestinal isolates harboring the same gene(s) as those detected intraintestinally were found in 18 samples, and the RLs of the respective swabs were high. We demonstrated a relationship between the consumption of carbapenems with trimethoprim-sulfamethoxazole, intestinal dominance by MDROs and extraintestinal spread of these organisms among PLTx patients. IMPORTANCE In this study, we track the relative intestinal loads of antibiotic resistance genes among pediatric liver transplant patients and determine the relationship between this load, antibiotic consumption, and infections caused by antibiotic-resistant organisms. We demonstrate that the consumption of broad spectrum antibiotics increase this load and decrease the gut microbial diversity among these patients. Moreover, the high loads of resistance genes were related to the extraintestinal spread of multidrug-resistant organisms. Together, our data show that the tracking of the relative intestinal loads of antibiotic resistance genes can be used as a biomarker that has the potential to stop the extraintestinal spread of antibiotic-resistant bacteria via the measurement of the intestinal dominance of these organisms, thereby allowing for the application of preventive measures.
Collapse
|
9
|
Jara J, Jurado R, Almendro-Vedia VG, López-Montero I, Fernández L, Rodríguez JM, Orgaz B. Interspecies relationships between nosocomial pathogens associated to preterm infants and lactic acid bacteria in dual-species biofilms. Front Cell Infect Microbiol 2022; 12:1038253. [PMID: 36325465 PMCID: PMC9618709 DOI: 10.3389/fcimb.2022.1038253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 12/08/2023] Open
Abstract
The nasogastric enteral feeding tubes (NEFTs) used to feed preterm infants are commonly colonized by bacteria with the ability to form complex biofilms in their inner surfaces. Among them, staphylococci (mainly Staphylococcus epidermidis and Staphylococcus aureus) and some species belonging to the Family Enterobacteriaceae are of special concern since they can cause nosocomial infections in this population. NETF-associated biofilms can also include lactic acid bacteria (LAB), with the ability to compete with pathogenic species for nutrients and space. Ecological interactions among the main colonizers of these devices have not been explored yet; however, such approach could guide future strategies involving the pre-coating of the inner surfaces of NEFTs with well adapted LAB strains in order to reduce the rates of nosocomial infections in neonatal intensive care units (NICUs). In this context, this work implied the formation of dual-species biofilms involving one LAB strain (either Ligilactobacillus salivarius 20SNG2 or Limosilactobacillus reuteri 7SNG3) and one nosocomial strain (either Klebsiella pneumoniae 9SNG3, Serratia marcescens 10SNG3, Staphylococcus aureus 45SNG3 or Staphylococcus epidermidis 46SNG3). The six strains used in this study had been isolated from the inner surface of NEFTs. Changes in adhesion ability of the pathogens were characterized using a culturomic approach. Species interactions and structural changes of the resulting biofilms were analyzed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). No aggregation was observed in dual-species biofilms between any of the two LAB strains and either K. pneumoniae 9SNG3 or S. marcescens 10SNG3. In addition, biofilm thickness and volume were reduced, suggesting that both LAB strains can control the capacity to form biofilms of these enterobacteria. In contrast, a positive ecological relationship was observed in the combination L. reuteri 7SNG3-S. aureus 45SNG3. This relationship was accompanied by a stimulation of S. aureus matrix production when compared with its respective monospecies biofilm. The knowledge provided by this study may guide the selection of potentially probiotic strains that share the same niche with nosocomial pathogens, enabling the establishment of a healthier microbial community inside NEFTs.
Collapse
Affiliation(s)
- Josué Jara
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rubén Jurado
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Víctor G. Almendro-Vedia
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Iván López-Montero
- Departamento de Química Física, Facultad de Químicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Leonides Fernández
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Miguel Rodríguez
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Belén Orgaz
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Lopez-Santamarina A, Cardelle-Cobas A, Lamas A, Mondragon-Portocarrero A, Cepeda A, Miranda JM. Nutritional composition, heavy metal content and in vitro effect on the human gut microbiota of Talitrus saltator, an underutilized crustacean from the Atlantic coast. Front Nutr 2022; 9:943133. [PMID: 36313116 PMCID: PMC9608505 DOI: 10.3389/fnut.2022.943133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, an undervalued marine crustacean (Talitrus saltator) was characterized in terms of nutritional and heavy metal composition and its potential to affect human gut microbiota. Nutritional analysis of this crustacean revealed that it complies with the criteria established in European legislation to include nutritional claims in their labeling, such as "source of fiber," "low in fat," "low in sugars" and "high in protein." The analysis of the heavy metal content did not reveal any risk derived from the presence of Cd, Hg, or Pb, whereas essential metals contained in 100 g exceeded the minimum daily requirements recommended in Europe for Zn (19.78 mg/kg), Cu (2.28 mg/kg), and Fe (32.96 mg/kg). Using an in vitro system, the effect of T. saltator on the human colonic microbiota shows some beneficial effects, such as fermentation-maintained populations of Bifidobacterium or Lactobacillus, did not increase Firmicutes phylum counts, decreased the Firmicutes/Bacteroidetes ratio, and stimulated 11 metabolic pathways with respect to baseline. These results are unusual in a high protein content-food. However, negative effects were also found in gut microbiota relative proportions, such as an increase in the Proteobacteria phylum and especially some opportunistic bacteria from this phylum, probably due to the antimicrobial effect of chitin on other groups more sensitive to its effect. This work shows for the first time the effect of T. saltator on human colonic microbiota using and in vitro system. The presence of chitin in its composition could provide some beneficial effects by modulating the microbiota, but as T. saltator is a high-protein food, more studies should be carried out showing these benefits.
Collapse
Affiliation(s)
| | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, Lugo, Spain
| | | | | | | | | |
Collapse
|
11
|
Piccirilli A, Cherubini S, Brisdelli F, Fazii P, Stanziale A, Di Valerio S, Chiavaroli V, Principe L, Perilli M. Molecular Characterization by Whole-Genome Sequencing of Clinical and Environmental Serratia marcescens Strains Isolated during an Outbreak in a Neonatal Intensive Care Unit (NICU). Diagnostics (Basel) 2022; 12:diagnostics12092180. [PMID: 36140580 PMCID: PMC9498040 DOI: 10.3390/diagnostics12092180] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
The whole-genome sequencing (WGS) of eighteen S. marcescens clinical strains isolated from 18 newborns hospitalized in the Neonatal Intensive Care Unit (NICU) at Pescara Public Hospital, Italy, was compared with that of S. marcescens isolated from cradles surfaces in the same ward. The identical antibiotic resistance genes (ARGs) and virulence factors were found in both clinical and environmental S. marcescens strains. The aac(6′)-Ic, tetA(41), blaSRT-3, adeFGH, rsmA, and PBP3 (D350N) genes were identified in all strains. The SRT-3 enzyme, which exhibited 10 amino acid substitutions with respect to SST-1, the constitutive AmpC β-lactamase in S. marcescens, was partially purified and tested against some β-lactams. It showed a good activity against cefazolin. Both clinical and environmental S. marcescens strains exhibited susceptibility to all antibiotics tested, with the exception of amoxicillin/clavulanate.
Collapse
Affiliation(s)
- Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence: (A.P.); (M.P.); Tel.: +39-0862433489 (M.P.)
| | - Sabrina Cherubini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Fabrizia Brisdelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Paolo Fazii
- Clinical Microbiology and Virology Unit, Pescara Public Hospital, 65122 Pescara, Italy
| | - Andrea Stanziale
- Clinical Microbiology and Virology Unit, Pescara Public Hospital, 65122 Pescara, Italy
| | - Susanna Di Valerio
- Neonatal Intensive Care Unit, Pescara Public Hospital, 65123 Pescara, Italy
| | - Valentina Chiavaroli
- Neonatal Intensive Care Unit, Pescara Public Hospital, 65123 Pescara, Italy
- Liggins Institute, The University of Auckland, Auckland 1141, New Zealand
| | - Luigi Principe
- Clinical Pathology and Microbiology Unit, “S. Giovanni di Dio” Hospital, 88900 Crotone, Italy
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence: (A.P.); (M.P.); Tel.: +39-0862433489 (M.P.)
| |
Collapse
|
12
|
Williams DJ, Grimont PAD, Cazares A, Grimont F, Ageron E, Pettigrew KA, Cazares D, Njamkepo E, Weill FX, Heinz E, Holden MTG, Thomson NR, Coulthurst SJ. The genus Serratia revisited by genomics. Nat Commun 2022; 13:5195. [PMID: 36057639 PMCID: PMC9440931 DOI: 10.1038/s41467-022-32929-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The genus Serratia has been studied for over a century and includes clinically-important and diverse environmental members. Despite this, there is a paucity of genomic information across the genus and a robust whole genome-based phylogenetic framework is lacking. Here, we have assembled and analysed a representative set of 664 genomes from across the genus, including 215 historic isolates originally used in defining the genus. Phylogenomic analysis of the genus reveals a clearly-defined population structure which displays deep divisions and aligns with ecological niche, as well as striking congruence between historical biochemical phenotyping data and contemporary genomics data. We highlight the genomic, phenotypic and plasmid diversity of Serratia, and provide evidence of different patterns of gene flow across the genus. Our work provides a framework for understanding the emergence of clinical and other lineages of Serratia.
Collapse
Affiliation(s)
- David J Williams
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Patrick A D Grimont
- Unité Biodiversité des Bactéries Pathogènes Emergentes, INSERM Unité 389, Institut Pasteur, Paris, France
| | - Adrián Cazares
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Francine Grimont
- Unité Biodiversité des Bactéries Pathogènes Emergentes, INSERM Unité 389, Institut Pasteur, Paris, France
| | - Elisabeth Ageron
- Unité Biodiversité des Bactéries Pathogènes Emergentes, INSERM Unité 389, Institut Pasteur, Paris, France
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | | | - Daniel Cazares
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elisabeth Njamkepo
- Institut Pasteur, Université de Paris, Unité des Bactéries Pathogènes Entériques, Paris, France
| | - François-Xavier Weill
- Institut Pasteur, Université de Paris, Unité des Bactéries Pathogènes Entériques, Paris, France
| | - Eva Heinz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Nicholas R Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Sarah J Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
13
|
Hou J, Mao D, Zhang Y, Huang R, Li L, Wang X, Luo Y. Long-term spatiotemporal variation of antimicrobial resistance genes within the Serratia marcescens population and transmission of S. marcescens revealed by public whole-genome datasets. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127220. [PMID: 34844350 DOI: 10.1016/j.jhazmat.2021.127220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The development of antimicrobial resistance (AMR) is accelerated by the selective pressure exerted by the widespread use of antimicrobial drugs, posing an increasing danger to public health. However, long-term spatiotemporal variation in AMR genes in microorganisms, particularly in bacterial pathogens in response to antibiotic consumption, is not fully understood. Here, we used the NCBI RefSeq database to collect 478 whole-genome sequences for Serratia marcescens ranging from 1961 up to 2019, to document global long-term AMR trends in S. marcescens populations. In total, 100 AMR gene subtypes (16 AMR gene types) were detected in the genomes of S. marcescens populations. We identified 3 core resistance genes in S. marcescens genomes, and a high diversity of AMR genes was observed in S. marcescens genomes after corresponding antibiotics were discovered and introduced into clinical practice, suggesting the adaptation of S. marcescens populations to challenges with therapeutic antibiotics. Our findings indicate spatiotemporal variation of AMR genes in S. marcescens populations in relation to antibiotic consumption and suggest the potential transmission of S. marcescens isolates harboring AMR genes among countries and between the environment and the clinic, representing a public health threat that necessitates international solidarity to overcome.
Collapse
Affiliation(s)
- Jie Hou
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yulin Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Ruiyang Huang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Linyun Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Xiaolong Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
14
|
A Genome-Scale Antibiotic Screen in Serratia marcescens Identifies YdgH as a Conserved Modifier of Cephalosporin and Detergent Susceptibility. Antimicrob Agents Chemother 2021; 65:e0078621. [PMID: 34491801 DOI: 10.1128/aac.00786-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serratia marcescens, a member of the order Enterobacterales, is adept at colonizing health care environments and is an important cause of invasive infections. Antibiotic resistance is a daunting problem in S. marcescens because, in addition to plasmid-mediated mechanisms, most isolates have considerable intrinsic resistance to multiple antibiotic classes. To discover endogenous modifiers of antibiotic susceptibility in S. marcescens, a high-density transposon insertion library was subjected to sub-MICs of two cephalosporins, cefoxitin, and cefepime, as well as the fluoroquinolone ciprofloxacin. Comparisons of transposon insertion abundance before and after antibiotic exposure identified hundreds of potential modifiers of susceptibility to these agents. Using single-gene deletions, we validated several candidate modifiers of cefoxitin susceptibility and chose ydgH, a gene of unknown function, for further characterization. In addition to cefoxitin, deletion of ydgH in S. marcescens resulted in decreased susceptibility to multiple third-generation cephalosporins and, in contrast, to increased susceptibility to both cationic and anionic detergents. YdgH is highly conserved throughout the Enterobacterales, and we observed similar phenotypes in Escherichia coli O157:H7 and Enterobacter cloacae mutants. YdgH is predicted to localize to the periplasm, and we speculate that it may be involved there in cell envelope homeostasis. Collectively, our findings provide insight into chromosomal mediators of antibiotic resistance in S. marcescens and will serve as a resource for further investigations of this important pathogen.
Collapse
|
15
|
Celejewski-Marciniak P, Wolinowska R, Wróblewska M. Molecular Characterization of Class 1, 2 and 3 Integrons in Serratia spp. Clinical Isolates in Poland - Isolation of a New Plasmid and Identification of a Gene for a Novel Fusion Protein. Infect Drug Resist 2021; 14:4601-4610. [PMID: 34764657 PMCID: PMC8575446 DOI: 10.2147/idr.s325943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Gram-negative rods of the genus Serratia play an increasing role as etiological agents of healthcare-associated infections (HAI) in humans. These bacteria are characterized by natural and acquired resistance to several groups of antibacterial agents. The aim of the study was to characterize class 1, 2 and 3 integrons in the clinical isolates of Serratia spp. in Poland. Methods The study comprised 112 clinical strains of Serratia, isolated from patients hospitalized in Poland in 2010-2012. Identification of strains was confirmed using MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) system. Detection of class 1, 2 and 3 integrase DNA sequence was performed by multiplex-PCR. Amplicons obtained in the PCR reactions were purified and then sequenced bidirectionally. Results Among the analyzed strains, Serratia marcescens was a predominant species (103/112, 92.0%). All three classes of integrase DNA sequence were detected in the analyzed strains of Serratia spp. DNA sequence of class 3 integron, besides integrase gene, revealed three gene cassettes (dfrB3, bla GES-7,bla OXA/aac(6')-Ib-cr). BLAST analysis of DNA sequence revealed that class 3 integron was carried on 9448 bp plasmid which was named pPCMI3 - whole sequence of its DNA was submitted to GenBank NCBI (National Center for Biotechnology Information) - NCBI MH569711. Conclusion In this study, we identified a new plasmid pPCMI3 harboring class 3 integron. This is the first report of a gene oxa/aac(6')-Ib-cr coding for a novel fusion protein, which consists of OXA β-lactamase and acetyltransferase aac(6')-Ib-cr. In the analyzed strains, class 1 and 2 integrons were also detected. Among the strains with class 1 integron, nine contained cassette array 5'CS-aadA2-ORF-dfrA12-3'CS, and two - cassette array 5'CS-aacC1-ORF-ORF-aadA1-3'CS, which were not previously reported in Serratia spp.
Collapse
Affiliation(s)
| | - Renata Wolinowska
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marta Wróblewska
- Department of Dental Microbiology, Medical University of Warsaw, Warsaw, Poland.,Department of Microbiology, Central Clinical Hospital, University Clinical Centre, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Dahdouh E, Lázaro-Perona F, Ruiz-Carrascoso G, Sánchez García L, Saenz de Pipaón M, Mingorance J. Intestinal Dominance by Serratia marcescens and Serratia ureilytica among Neonates in the Setting of an Outbreak. Microorganisms 2021; 9:microorganisms9112271. [PMID: 34835397 PMCID: PMC8624583 DOI: 10.3390/microorganisms9112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
(1) Background: We determined the relevance of intestinal dominance by Serratia spp. during a neonatal outbreak over 13 weeks. (2) Methods: Rectal swabs (n = 110) were obtained from 42 neonates. Serratia spp. was cultured from swabs obtained from 13 neonates (Group 1), while the other 29 neonates were culture-negative (Group 2). Total DNA was extracted from rectal swabs, and quantitative PCRs (qPCRs) using Serratia- and 16SrRNA-gene-specific primers were performed. relative intestinal loads (RLs) were determined using ΔΔCt. Clonality was investigated by random amplified polymorphic DNA analysis and whole-genome sequencing. (3) Results: The outbreak was caused by Serratia marcescens during the first eight weeks and Serratia ureilytica during the remaining five weeks. Serratia spp. were detected by qPCR in all Group 1 neonates and eleven Group 2 neonates. RLs of Serratia spp. were higher in Group 1 as compared to Group 2 (6.31% vs. 0.09%, p < 0.05) and in the first swab compared to the last (26.9% vs. 4.37%, p < 0.05). Nine neonates had extraintestinal detection of Serratia spp.; eight of them were infected. RLs of the patients with extraintestinal spread were higher than the rest (2.79% vs. 0.29%, p < 0.05). (4) Conclusions: Intestinal dominance by Serratia spp. plays a role in outbreaks and extraintestinal spread.
Collapse
Affiliation(s)
- Elias Dahdouh
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana, 261, 28046 Madrid, Spain; (F.L.-P.); (G.R.-C.); (J.M.)
- Correspondence: ; Tel.: +34-917-277-000
| | - Fernando Lázaro-Perona
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana, 261, 28046 Madrid, Spain; (F.L.-P.); (G.R.-C.); (J.M.)
| | - Guillermo Ruiz-Carrascoso
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana, 261, 28046 Madrid, Spain; (F.L.-P.); (G.R.-C.); (J.M.)
| | - Laura Sánchez García
- Servicio de Neonatología, Hospital Universitario La Paz, 28046 Madrid, Spain; (L.S.G.); (M.S.d.P.)
| | - Miguel Saenz de Pipaón
- Servicio de Neonatología, Hospital Universitario La Paz, 28046 Madrid, Spain; (L.S.G.); (M.S.d.P.)
| | - Jesús Mingorance
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana, 261, 28046 Madrid, Spain; (F.L.-P.); (G.R.-C.); (J.M.)
| |
Collapse
|
17
|
Saralegui C, Ponce-Alonso M, Pérez-Viso B, Moles Alegre L, Escribano E, Lázaro-Perona F, Lanza VF, de Pipaón MS, Rodríguez JM, Baquero F, Del Campo R. Genomics of Serratia marcescens Isolates Causing Outbreaks in the Same Pediatric Unit 47 Years Apart: Position in an Updated Phylogeny of the Species. Front Microbiol 2020; 11:451. [PMID: 32296400 PMCID: PMC7136904 DOI: 10.3389/fmicb.2020.00451] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
The first documented nosocomial outbreak caused by Serratia marcescens in Spain occurred in 1969 at the neonatal intensive care unit (NICU) of the tertiary La Paz Children's Hospital in Madrid, Spain, and based on the available phenotyping techniques at this time, it was considered as a monoclonal outbreak. Only 47 years later, another S. marcescens outbreak of an equivalent dimension occurred at the same NICU. The aim of the present study was to study isolates from these historical and contemporary outbreaks by phenotypic analysis and whole-genome sequencing techniques and to position these strains along with 444 publicly available S. marcescens genomes, separately comparing core genome and accessory genome contents. Clades inferred by both approaches showed high correlation, indicating that core and accessory genomes seem to evolve in the same manner for S. marcescens. Nine S. marcescens clusters were identified, and isolates were grouped in two of them according to sampling year. One exception was isolate 13F-69, the most genetically distant strain, located in a different cluster. Categorical functions in the annotated accessory genes of both collections were preserved among all isolates. No significant differences in frequency of insertion sequences in historical (0.18-0.20)-excluding the outlier strain-versus contemporary isolates (0.11-0.19) were found despite the expected resting effect. The most dissimilar isolate, 13F-69, contains a highly preserved plasmid previously described in Bordetella bronchiseptica. This strain exhibited a few antibiotic resistance genes not resulting in a resistant phenotype, suggesting the value of gene down expression in adaptation to long-term starvation.
Collapse
Affiliation(s)
- Claudia Saralegui
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.,Red Española de Investigación en Patología Infecciosa, Madrid, Spain
| | - Manuel Ponce-Alonso
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.,Red Española de Investigación en Patología Infecciosa, Madrid, Spain
| | - Blanca Pérez-Viso
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Laura Moles Alegre
- Unidad de Esclerosis Múltiple, Instituto de Investigación Sanitaria Biodonostia, Donostia-San Sebastián, Spain
| | - Esperanza Escribano
- Servicio de Neonatología, Hospital Universitario La Paz, and Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Val F Lanza
- Unidad de Bioinformática del IRYCIS, Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Miguel Sáenz de Pipaón
- Servicio de Neonatología, Hospital Universitario La Paz, and Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Miguel Rodríguez
- Departamento de Nutrición y Ciencia de los Alimentos, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Rosa Del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.,Red Española de Investigación en Patología Infecciosa, Madrid, Spain
| |
Collapse
|