1
|
Chakraborty A, Kim A, AlAbdullatif S, Campbell JD, Alekseyev YO, Kaplan U, Dambal V, Ligresti G, Trojanowska M. Endothelial Erg Regulates Expression of Pulmonary Lymphatic Junctional and Inflammation Genes in Mouse Lungs Impacting Lymphatic Transport. RESEARCH SQUARE 2024:rs.3.rs-3808970. [PMID: 38343832 PMCID: PMC10854286 DOI: 10.21203/rs.3.rs-3808970/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The ETS transcription factor ERG is a master regulator of endothelial gene specificity and highly enriched in the capillary, vein, and arterial endothelial cells. ERG expression is critical for endothelial barrier function, permeability, and vascular inflammation. A dysfunctional vascular endothelial ERG has been shown to impair lung capillary homeostasis, contributing to pulmonary fibrosis as previously observed in IPF lungs. Our preliminary observations indicate that lymphatic endothelial cells (LEC) in the human IPF lung also lack ERG. To understand the role of ERG in pulmonary LECs, we developed LEC-specific inducible Erg-CKO and Erg-GFP-CKO conditional knockout (CKO) mice under Prox1 promoter. Whole lung microarray analysis, flow cytometry, and qPCR confirmed an inflammatory and pro-lymphvasculogenic predisposition in Erg-CKO lung. FITC-Dextran tracing analysis showed an increased pulmonary interstitial lymphatic fluid transport from the lung to the axial lymph node. Single-cell transcriptomics confirmed that genes associated with cell junction integrity were downregulated in Erg-CKO pre-collector and collector LECs. Integrating Single-cell transcriptomics and CellChatDB helped identify LEC specific communication pathways contributing to pulmonary inflammation, trans-endothelial migration, inflammation, and Endo-MT in Erg-CKO lung. Our findings suggest that downregulation of lymphatic Erg crucially affects LEC function, LEC permeability, pulmonary LEC communication pathways and lymphatic transcriptomics.
Collapse
Affiliation(s)
- Adri Chakraborty
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alex Kim
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Salam AlAbdullatif
- Division of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Joshua D Campbell
- Division of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yuriy O Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ulas Kaplan
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Vrinda Dambal
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Giovanni Ligresti
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Maria Trojanowska
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
2
|
Pritchard JE, Pearce JE, Snoeren IAM, Fuchs SNR, Götz K, Peisker F, Wagner S, Benabid A, Lutterbach N, Klöker V, Nagai JS, Hannani MT, Galyga AK, Sistemich E, Banjanin B, Flosdorf N, Bindels E, Olschok K, Biaesch K, Chatain N, Bhagwat N, Dunbar A, Sarkis R, Naveiras O, Berres ML, Koschmieder S, Levine RL, Costa IG, Gleitz HFE, Kramann R, Schneider RK. Non-canonical Hedgehog signaling mediates profibrotic hematopoiesis-stroma crosstalk in myeloproliferative neoplasms. Cell Rep 2024; 43:113608. [PMID: 38117649 PMCID: PMC10828549 DOI: 10.1016/j.celrep.2023.113608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/28/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023] Open
Abstract
The role of hematopoietic Hedgehog signaling in myeloproliferative neoplasms (MPNs) remains incompletely understood despite data suggesting that Hedgehog (Hh) pathway inhibitors have therapeutic activity in patients. We aim to systematically interrogate the role of canonical vs. non-canonical Hh signaling in MPNs. We show that Gli1 protein levels in patient peripheral blood mononuclear cells (PBMCs) mark fibrotic progression and that, in murine MPN models, absence of hematopoietic Gli1, but not Gli2 or Smo, significantly reduces MPN phenotype and fibrosis, indicating that GLI1 in the MPN clone can be activated in a non-canonical fashion. Additionally, we establish that hematopoietic Gli1 has a significant effect on stromal cells, mediated through a druggable MIF-CD74 axis. These data highlight the complex interplay between alterations in the MPN clone and activation of stromal cells and indicate that Gli1 represents a promising therapeutic target in MPNs, particularly that Hh signaling is dispensable for normal hematopoiesis.
Collapse
Affiliation(s)
- Jessica E Pritchard
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany; Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands; Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Juliette E Pearce
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Inge A M Snoeren
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands; Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Stijn N R Fuchs
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands; Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Katrin Götz
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Fabian Peisker
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Silke Wagner
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Adam Benabid
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Niklas Lutterbach
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Vanessa Klöker
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - James S Nagai
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - Monica T Hannani
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Hospital, Aachen, Germany; Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna K Galyga
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Ellen Sistemich
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Bella Banjanin
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands; Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Niclas Flosdorf
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Eric Bindels
- Department of Hematology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Kathrin Olschok
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University Hospital, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Katharina Biaesch
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University Hospital, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University Hospital, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | | | - Andrew Dunbar
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rita Sarkis
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences (DSB), Université de Lausanne (UNIL), Lausanne, Switzerland
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences (DSB), Université de Lausanne (UNIL), Lausanne, Switzerland
| | - Marie-Luise Berres
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Medical Department III, RWTH University Hospital Aachen, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University Hospital, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - Hélène F E Gleitz
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands; Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Hospital, Aachen, Germany; Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Rebekka K Schneider
- Institute for Cell and Tumor Biology, RWTH Aachen University Hospital, Aachen, Germany; Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands; Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Ramachandra N, Gupta M, Schwartz L, Todorova T, Shastri A, Will B, Steidl U, Verma A. Role of IL8 in myeloid malignancies. Leuk Lymphoma 2023; 64:1742-1751. [PMID: 37467070 DOI: 10.1080/10428194.2023.2232492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023]
Abstract
Aberrant overexpression of Interleukin-8 (IL8) has been reported in Myelodysplastic Syndromes (MDS), Acute Myeloid Leukemia (AML), Myeloproliferative Neoplasms (MPNs) and other myeloid malignancies. IL8 (CXCL8) is a CXC chemokine that is secreted by aberrant hematopoietic stem and progenitors as well as other cells in the tumor microenvironment. IL8 can bind to CXCR1/CXCR2 receptors and activate oncogenic signaling pathways, and also increase the recruitment of myeloid derived suppressor cells to the tumor microenvironment. IL8/CXCR1/2 overexpression has been associated with poorer prognosis in MDS and AML and increased bone marrow fibrosis in Myelofibrosis. Preclinical studies have demonstrated benefit of inhibiting the IL8/CXCR1/2 pathways via restricting the growth of leukemic stem cells as well as normalizing the immunosuppressive microenvironment in tumors. Targeting the IL8-CXCR1/2 pathway is a potential therapeutic strategy in myeloid neoplasms and is being evaluated with small molecule inhibitors as well as monoclonal antibodies in ongoing clinical trials. We review the role of IL8 signaling pathway in myeloid cancers and discuss future directions on therapeutic targeting of IL8 in these diseases.
Collapse
Affiliation(s)
- Nandini Ramachandra
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Malini Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Leya Schwartz
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
| | - Tihomira Todorova
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Aditi Shastri
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Britta Will
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Ulrich Steidl
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Amit Verma
- Department of Oncology, Blood Cancer Institute, Montefiore Einstein Cancer Center, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
4
|
Pozzi G, Carubbi C, Cerreto GM, Scacchi C, Cortellazzi S, Vitale M, Masselli E. Functionally Relevant Cytokine/Receptor Axes in Myelofibrosis. Biomedicines 2023; 11:2462. [PMID: 37760903 PMCID: PMC10525259 DOI: 10.3390/biomedicines11092462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Dysregulated inflammatory signaling is a key feature of myeloproliferative neoplasms (MPNs), most notably of myelofibrosis (MF). Indeed, MF is considered the prototype of onco-inflammatory hematologic cancers. While increased levels of circulatory and bone marrow cytokines are a well-established feature of all MPNs, a very recent body of literature is intriguingly pinpointing the selective overexpression of cytokine receptors by MF hematopoietic stem and progenitor cells (HSPCs), which, by contrast, are nearly absent or scarcely expressed in essential thrombocythemia (ET) or polycythemia vera (PV) cells. This new evidence suggests that MF CD34+ cells are uniquely capable of sensing inflammation, and that activation of specific cytokine signaling axes may contribute to the peculiar aggressive phenotype and biological behavior of this disorder. In this review, we will cover the main cytokine systems peculiarly activated in MF and how cytokine receptor targeting is shaping a novel therapeutic avenue in this disease.
Collapse
Affiliation(s)
- Giulia Pozzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Cecilia Carubbi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Giacomo Maria Cerreto
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Chiara Scacchi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Samuele Cortellazzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Marco Vitale
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| | - Elena Masselli
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| |
Collapse
|
5
|
Dunbar AJ, Kim D, Lu M, Farina M, Bowman RL, Yang JL, Park Y, Karzai A, Xiao W, Zaroogian Z, O’Connor K, Mowla S, Gobbo F, Verachi P, Martelli F, Sarli G, Xia L, Elmansy N, Kleppe M, Chen Z, Xiao Y, McGovern E, Snyder J, Krishnan A, Hill C, Cordner K, Zouak A, Salama ME, Yohai J, Tucker E, Chen J, Zhou J, McConnell T, Migliaccio AR, Koche R, Rampal R, Fan R, Levine RL, Hoffman R. CXCL8/CXCR2 signaling mediates bone marrow fibrosis and is a therapeutic target in myelofibrosis. Blood 2023; 141:2508-2519. [PMID: 36800567 PMCID: PMC10273167 DOI: 10.1182/blood.2022015418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Proinflammatory signaling is a hallmark feature of human cancer, including in myeloproliferative neoplasms (MPNs), most notably myelofibrosis (MF). Dysregulated inflammatory signaling contributes to fibrotic progression in MF; however, the individual cytokine mediators elicited by malignant MPN cells to promote collagen-producing fibrosis and disease evolution are yet to be fully elucidated. Previously, we identified a critical role for combined constitutive JAK/STAT and aberrant NF-κB proinflammatory signaling in MF development. Using single-cell transcriptional and cytokine-secretion studies of primary cells from patients with MF and the human MPLW515L (hMPLW515L) murine model of MF, we extend our previous work and delineate the role of CXCL8/CXCR2 signaling in MF pathogenesis and bone marrow fibrosis progression. Hematopoietic stem/progenitor cells from patients with MF are enriched for a CXCL8/CXCR2 gene signature and display enhanced proliferation and fitness in response to an exogenous CXCL8 ligand in vitro. Genetic deletion of Cxcr2 in the hMPLW515L-adoptive transfer model abrogates fibrosis and extends overall survival, and pharmacologic inhibition of the CXCR1/2 pathway improves hematologic parameters, attenuates bone marrow fibrosis, and synergizes with JAK inhibitor therapy. Our mechanistic insights provide a rationale for therapeutic targeting of the CXCL8/CXCR2 pathway among patients with MF.
Collapse
Affiliation(s)
- Andrew J. Dunbar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Min Lu
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mirko Farina
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Blood Diseases and Bone Marrow Transplantation Unit, Cell Therapies and Hematology Research Program, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Robert L. Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Julie L. Yang
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Young Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Abdul Karzai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenbin Xiao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zach Zaroogian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kavi O’Connor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Shoron Mowla
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Francesca Gobbo
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Fabrizio Martelli
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Lijuan Xia
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nada Elmansy
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zhuo Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Yang Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Erin McGovern
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jenna Snyder
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aishwarya Krishnan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Corrine Hill
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Keith Cordner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anouar Zouak
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mohamed E. Salama
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pathology, Mayo Clinic School of Medicine, Rochester, MN
| | - Jayden Yohai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | - Anna R. Migliaccio
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Altius Institute for Biomedical Sciences, Seattle, WA
- Unit of Microscopic and Ultrastructural Anatomy, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Richard Koche
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Raajit Rampal
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ronald Hoffman
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
6
|
Deepening Our Understanding of the Factors Affecting Landscape of Myeloproliferative Neoplasms: What Do We Know about Them? Cancers (Basel) 2023; 15:cancers15041348. [PMID: 36831689 PMCID: PMC9954305 DOI: 10.3390/cancers15041348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) arise from the uncontrolled proliferation of hematopoietic stem and progenitor cells in bone marrow. As with all tumors, the development of MPNs is a consequence of alterations in malignant cells and their interaction with other extrinsic factors that support and promote tumor progression. Since the discovery of driver mutations, much work has focused on studying and reviewing the genomic features of the disease but has neglected to delve into the important role that many other mechanisms may play. This review discusses the genetic component of MPNs but focuses mainly on some of the most relevant work investigating other non-genetic factors that may be crucial for the disease. The studies summarized here address MPN cell-intrinsic or -extrinsic factors and the interaction between them through transcriptomic, proteomic and microbiota studies, among others.
Collapse
|
7
|
Mascarenhas J, Gleitz HFE, Chifotides HT, Harrison CN, Verstovsek S, Vannucchi AM, Rampal RK, Kiladjian JJ, Vainchenker W, Hoffman R, Schneider RK, List AF. Biological drivers of clinical phenotype in myelofibrosis. Leukemia 2023; 37:255-264. [PMID: 36434065 PMCID: PMC9898039 DOI: 10.1038/s41375-022-01767-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
Myelofibrosis (MF) is a myeloproliferative disorder that exhibits considerable biological and clinical heterogeneity. At the two ends of the disease spectrum are the myelodepletive or cytopenic phenotype and the myeloproliferative phenotype. The cytopenic phenotype has a high prevalence in primary MF (PMF) and is characterized by low blood counts. The myeloproliferative phenotype is typically associated with secondary MF (SMF), mild anemia, minimal need for transfusion support, and normal to mild thrombocytopenia. Differences in somatic driver mutations and allelic burden, as well as the acquisition of non-driver mutations further influences these phenotypic differences, prognosis, and response to therapies such as JAK2 inhibitors. The outcome of patients with the cytopenic phenotype are comparatively worse and frequently pose a challenge to treat given the inherent exacerbation of cytopenias. Recent data indicate that an innate immune deregulated state that hinges on the myddosome-IRAK-NFκB axis favors the cytopenic myelofibrosis phenotype and offers opportunity for novel treatment approaches. We will review the biological and clinical features of the MF disease spectrum and associated treatment considerations.
Collapse
Affiliation(s)
- John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hélène F E Gleitz
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Helen T Chifotides
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Srdan Verstovsek
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Raajit K Rampal
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | | | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebekka K Schneider
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Institute of Cell and Tumor Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | | |
Collapse
|
8
|
Vining KH, Marneth AE, Adu-Berchie K, Grolman JM, Tringides CM, Liu Y, Wong WJ, Pozdnyakova O, Severgnini M, Stafford A, Duda GN, Hodi FS, Mullally A, Wucherpfennig KW, Mooney DJ. Mechanical checkpoint regulates monocyte differentiation in fibrotic niches. NATURE MATERIALS 2022; 21:939-950. [PMID: 35817965 PMCID: PMC10197159 DOI: 10.1038/s41563-022-01293-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/18/2022] [Indexed: 05/05/2023]
Abstract
Myelofibrosis is a progressive bone marrow malignancy associated with monocytosis, and is believed to promote the pathological remodelling of the extracellular matrix. Here we show that the mechanical properties of myelofibrosis, namely the liquid-to-solid properties (viscoelasticity) of the bone marrow, contribute to aberrant differentiation of monocytes. Human monocytes cultured in stiff, elastic hydrogels show proinflammatory polarization and differentiation towards dendritic cells, as opposed to those cultured in a viscoelastic matrix. This mechanically induced cell differentiation is blocked by inhibiting a myeloid-specific isoform of phosphoinositide 3-kinase, PI3K-γ. We further show that murine bone marrow with myelofibrosis has a significantly increased stiffness and unveil a positive correlation between myelofibrosis grading and viscoelasticity. Treatment with a PI3K-γ inhibitor in vivo reduced frequencies of monocyte and dendritic cell populations in murine bone marrow with myelofibrosis. Moreover, transcriptional changes driven by viscoelasticity are consistent with transcriptional profiles of myeloid cells in other human fibrotic diseases. These results demonstrate that a fibrotic bone marrow niche can physically promote a proinflammatory microenvironment.
Collapse
Affiliation(s)
- Kyle H Vining
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Preventative and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science and Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna E Marneth
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kwasi Adu-Berchie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Joshua M Grolman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Materials Science and Engineering, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Christina M Tringides
- Harvard Program in Biophysics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yutong Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Waihay J Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mariano Severgnini
- Center for Immuno-Oncology Immune Assessment Laboratory at the Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alexander Stafford
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Georg N Duda
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration at Berlin Institute of Health and Charité - Universitätsmedizin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health and Charité - Universitätsmedizin, Berlin, Germany
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ann Mullally
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
| |
Collapse
|
9
|
Bhuria V, Baldauf CK, Schraven B, Fischer T. Thromboinflammation in Myeloproliferative Neoplasms (MPN)-A Puzzle Still to Be Solved. Int J Mol Sci 2022; 23:ijms23063206. [PMID: 35328626 PMCID: PMC8954909 DOI: 10.3390/ijms23063206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs), a group of malignant hematological disorders, occur as a consequence of somatic mutations in the hematopoietic stem cell compartment and show excessive accumulation of mature myeloid cells in the blood. A major cause of morbidity and mortality in these patients is the marked prothrombotic state leading to venous and arterial thrombosis, including myocardial infarction (MI), deep vein thrombosis (DVT), and strokes. Additionally, many MPN patients suffer from inflammation-mediated constitutional symptoms, such as fever, night sweats, fatigue, and cachexia. The chronic inflammatory syndrome in MPNs is associated with the up-regulation of various inflammatory cytokines in patients and is involved in the formation of the so-called MPN thromboinflammation. JAK2-V617F, the most prevalent mutation in MPNs, has been shown to activate a number of integrins on mature myeloid cells, including granulocytes and erythrocytes, which increase adhesion and drive venous thrombosis in murine knock-in/out models. This review aims to shed light on the current understanding of thromboinflammation, involvement of neutrophils in the prothrombotic state, plausible molecular mechanisms triggering the process of thrombosis, and potential novel therapeutic targets for developing effective strategies to reduce the MPN disease burden.
Collapse
Affiliation(s)
- Vikas Bhuria
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (V.B.); (C.K.B.); (T.F.)
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention—ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Conny K. Baldauf
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (V.B.); (C.K.B.); (T.F.)
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (V.B.); (C.K.B.); (T.F.)
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention—ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-67-15338; Fax: +49-391-67-15852
| | - Thomas Fischer
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (V.B.); (C.K.B.); (T.F.)
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention—ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
10
|
Bhuria V, Baldauf CK, Schraven B, Fischer T. Thromboinflammation in Myeloproliferative Neoplasms (MPN)-A Puzzle Still to Be Solved. Int J Mol Sci 2022. [PMID: 35328626 DOI: 10.3390/ijms23063206.pmid:35328626;pmcid:pmc8954909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs), a group of malignant hematological disorders, occur as a consequence of somatic mutations in the hematopoietic stem cell compartment and show excessive accumulation of mature myeloid cells in the blood. A major cause of morbidity and mortality in these patients is the marked prothrombotic state leading to venous and arterial thrombosis, including myocardial infarction (MI), deep vein thrombosis (DVT), and strokes. Additionally, many MPN patients suffer from inflammation-mediated constitutional symptoms, such as fever, night sweats, fatigue, and cachexia. The chronic inflammatory syndrome in MPNs is associated with the up-regulation of various inflammatory cytokines in patients and is involved in the formation of the so-called MPN thromboinflammation. JAK2-V617F, the most prevalent mutation in MPNs, has been shown to activate a number of integrins on mature myeloid cells, including granulocytes and erythrocytes, which increase adhesion and drive venous thrombosis in murine knock-in/out models. This review aims to shed light on the current understanding of thromboinflammation, involvement of neutrophils in the prothrombotic state, plausible molecular mechanisms triggering the process of thrombosis, and potential novel therapeutic targets for developing effective strategies to reduce the MPN disease burden.
Collapse
Affiliation(s)
- Vikas Bhuria
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention-ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Conny K Baldauf
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention-ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Thomas Fischer
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention-ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
11
|
Hodeib H, Abd EL Hai D, Tawfik MA, Allam AA, Selim A, Elsawy AA, Youssef A. CCL2 rs1024611Gene Polymorphism in Philadelphia-Negative Myeloproliferative Neoplasms. Genes (Basel) 2022; 13:genes13030492. [PMID: 35328046 PMCID: PMC8948730 DOI: 10.3390/genes13030492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction: The onset of the Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) is caused by acquired somatic mutations in target myeloid genes “driver mutations”. The CCL2 gene is overexpressed by non-Hodgkin lymphomas and multiple solid tumors. Aim of the study: to evaluate the possible association of CCL2 rs1024611 SNP and its expression level and the risk of developing Philadelphia-negative MPNs. Patients and methods: A total of 128 newly diagnosed Philadelphia-negative MPN patient and 141 healthy subjects were evaluated for the genotype distribution of CCL2 rs1024611 and CCL2 expression levels. Results: The CCL2 rs1024611 G/G genotype was more frequent and significantly frequent among PMF and Post-PV/ET-MF patients and the mean CCL2 expression levels were significantly higher in PMF and Post-PV/ET-MF compared to the healthy subjects. The CCL2 rs1024611 SNP was significantly correlated to the CCL2 gene expression level and fibrosis grade. ROC analysis for the CCL2 gene expression level that discriminates MF patients from PV + ET patients revealed a sensitivity of 80.43% and a specificity of 73.17% with an AUC of 0.919 (p < 0.001). Conclusion: The CCL2 rs1024611 polymorphism could be an independent risk factor for developing MF (PMF and Post-PV/ET-MF). Moreover, CCL2 gene expression could be potential genetic biomarker of fibrotic progression.
Collapse
Affiliation(s)
- Hossam Hodeib
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (H.H.); (D.A.E.H.); (A.Y.)
| | - Dina Abd EL Hai
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (H.H.); (D.A.E.H.); (A.Y.)
| | - Mohamed A Tawfik
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (A.A.A.); (A.S.); (A.A.E.)
- Correspondence: ; Tel.: +20-1550844075
| | - Alzahraa A. Allam
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (A.A.A.); (A.S.); (A.A.E.)
| | - Amal Selim
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (A.A.A.); (A.S.); (A.A.E.)
| | - Abdallah Ahmed Elsawy
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (A.A.A.); (A.S.); (A.A.E.)
| | - Amira Youssef
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (H.H.); (D.A.E.H.); (A.Y.)
| |
Collapse
|
12
|
Inhibition of proinflammatory signaling impairs fibrosis of bone marrow mesenchymal stromal cells in myeloproliferative neoplasms. Exp Mol Med 2022; 54:273-284. [PMID: 35288649 PMCID: PMC8980093 DOI: 10.1038/s12276-022-00742-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/04/2021] [Accepted: 12/21/2021] [Indexed: 12/03/2022] Open
Abstract
Although bone marrow-derived mesenchymal stromal cells (BM-MSCs) have been identified as a major cellular source of fibrosis, the exact molecular mechanism and signaling pathways involved have not been identified thus far. Here, we show that BM-MSCs contribute to fibrosis in myeloproliferative neoplasms (MPNs) by differentiating into αSMA-positive myofibroblasts. These cells display a dysregulated extracellular matrix with increased FN1 production and secretion of profibrotic MMP9 compared to healthy donor cells. Fibrogenic TGFβ and inflammatory JAK2/STAT3 and NFκB signaling pathway activity is increased in BM-MSCs of MPN patients. Moreover, coculture with mononuclear cells from MPN patients was sufficient to induce fibrosis in healthy BM-MSCs. Inhibition of JAK1/2, SMAD3 or NFκB significantly reduced the fibrotic phenotype of MPN BM-MSCs and was able to prevent the development of fibrosis induced by coculture of healthy BM-MSCs and MPN mononuclear cells with overly active JAK/STAT signaling, underlining their involvement in fibrosis. Combined treatment with JAK1/2 and SMAD3 inhibitors showed synergistic and the most favorable effects on αSMA and FN1 expression in BM-MSCs. These results support the combined inhibition of TGFβ and inflammatory signaling to extenuate fibrosis in MPN. The treatment of fibrosis in patients with rare bone marrow disorders could be improved with a combined therapy that targets inflammatory pathways. Myeloproliferative neoplasms (MPN) are a group of bone marrow disorders characterized by the over-production of blood cells, which can lead to fibrosis in the bone marrow. Vladan Čokić at the University of Belgrade, Serbia, and co-workers examined how stem cells known as mesenchymal stromal cells from the bone marrow contribute to MPN fibrosis. They found an increase in three pro-inflammatory signaling pathways in MPN patients, resulting in the stromal cells differentiating into cells with dysregulated extracellular matrices. The differentiated cells did not behave correctly nor degrade properly, triggering fibrosis. The team combined two drugs that target the inflammatory signaling pathways, and successfully inhibited the development of fibrosis in MPN cell cultures.
Collapse
|
13
|
Schischlik F. Transcriptional configurations of myeloproliferative neoplasms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 366:25-39. [PMID: 35153005 DOI: 10.1016/bs.ircmb.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Myeloproliferative neoplasms (MPNs) is an umbrella term for several heterogenous diseases, which are characterized by their stem cell origin, clonal hematopoiesis and increase of blood cells of the myeloid lineage. The focus will be on BCR-ABL1 negative MPNs, polycythemia vera (PV), primary myelofibrosis (PMF), essential thrombocythemia (ET). Seminal findings in the field of MPN were driven by genomic analysis, focusing on dissecting genomic changes MPN patients. This led to identification of major MPN driver genes, JAK2, MPL and CALR. Transcriptomic analysis promises to bridge the gap between genetic and phenotypic characterization of each patient's tumor and with the advent of single cell sequencing even for each MPN cancer cell. This review will focus on efforts to mine the bulk transcriptome of MPN patients, including analysis of fusion genes and splicing alterations which can be addressed with RNA-seq technologies. Furthermore, this paper aims to review recent endeavors to elucidate tumor heterogeneity in MPN hematopoietic stem and progenitor cells using single cell technologies. Finally, it will highlight current shortcoming and future applications to advance the field in MPN biology and improve patient diagnostics using RNA-based assays.
Collapse
Affiliation(s)
- Fiorella Schischlik
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.
| |
Collapse
|
14
|
Shen Z, Du W, Perkins C, Fechter L, Natu V, Maecker H, Rowley J, Gotlib J, Zehnder J, Krishnan A. Platelet transcriptome identifies progressive markers and potential therapeutic targets in chronic myeloproliferative neoplasms. Cell Rep Med 2021; 2:100425. [PMID: 34755136 PMCID: PMC8561315 DOI: 10.1016/j.xcrm.2021.100425] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/08/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Predicting disease progression remains a particularly challenging endeavor in chronic degenerative disorders and cancer, thus limiting early detection, risk stratification, and preventive interventions. Here, profiling the three chronic subtypes of myeloproliferative neoplasms (MPNs), we identify the blood platelet transcriptome as a proxy strategy for highly sensitive progression biomarkers that also enables prediction of advanced disease via machine-learning algorithms. The MPN platelet transcriptome reveals an incremental molecular reprogramming that is independent of patient driver mutation status or therapy. Subtype-specific markers offer mechanistic and therapeutic insights, and highlight impaired proteostasis and a persistent integrated stress response. Using a LASSO model with validation in two independent cohorts, we identify the advanced subtype MF at high accuracy and offer a robust progression signature toward clinical translation. Our platelet transcriptome snapshot of chronic MPNs demonstrates a proof-of-principle for disease risk stratification and progression beyond genetic data alone, with potential utility in other progressive disorders.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blood Platelets/metabolism
- Blood Platelets/pathology
- Cellular Reprogramming
- Child
- Child, Preschool
- Cohort Studies
- Diagnosis, Differential
- Disease Progression
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Middle Aged
- Polycythemia Vera/diagnosis
- Polycythemia Vera/genetics
- Polycythemia Vera/metabolism
- Polycythemia Vera/pathology
- Primary Myelofibrosis/diagnosis
- Primary Myelofibrosis/genetics
- Primary Myelofibrosis/metabolism
- Primary Myelofibrosis/pathology
- Proteostasis/genetics
- Risk Assessment
- Thrombocythemia, Essential/diagnosis
- Thrombocythemia, Essential/genetics
- Thrombocythemia, Essential/metabolism
- Thrombocythemia, Essential/pathology
- Transcriptome
Collapse
Affiliation(s)
- Zhu Shen
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Wenfei Du
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Cecelia Perkins
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lenn Fechter
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Vanita Natu
- Stanford Functional Genomics Facility, Stanford University School of Medicine, Stanford, CA, USA
| | - Holden Maecker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jesse Rowley
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - James Zehnder
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Anandi Krishnan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| |
Collapse
|
15
|
Cominal JG, Cacemiro MDC, Berzoti-Coelho MG, Pereira IEG, Frantz FG, Souto EX, Covas DT, de Figueiredo-Pontes LL, Oliveira MC, Malmegrim KCR, de Castro FA. Bone Marrow Soluble Mediator Signatures of Patients With Philadelphia Chromosome-Negative Myeloproliferative Neoplasms. Front Oncol 2021; 11:665037. [PMID: 34084749 PMCID: PMC8167065 DOI: 10.3389/fonc.2021.665037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Background Essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF) are clonal hematological diseases classified as Philadelphia chromosome-negative myeloproliferative neoplasms (MPN). MPN pathogenesis is associated with the presence of somatic driver mutations, bone marrow (BM) niche alterations, and tumor inflammatory status. The relevance of soluble mediators in the pathogenesis of MPN led us to analyze the levels of cytokines, chemokines, and growth factors related to inflammation, angiogenesis and hematopoiesis regulation in the BM niche of MPN patients. Methods Soluble mediator levels in BM plasma samples from 17 healthy subjects, 28 ET, 19 PV, and 16 PMF patients were determined using a multiplex assay. Soluble mediator signatures were created from categorical analyses of high mediator producers. Soluble mediator connections and the correlation between plasma levels and clinic-laboratory parameters were also analyzed. Results The soluble mediator signatures of the BM niche of PV patients revealed a highly inflammatory and pro-angiogenic milieu, with increased levels of chemokines (CCL2, CCL5, CXCL8, CXCL12, CXCL10), and growth factors (GM-CSF M-CSF, HGF, IFN-γ, IL-1β, IL-6Ra, IL-12, IL-17, IL-18, TNF-α, VEGF, and VEGF-R2). ET and PMF patients presented intermediate inflammatory and pro-angiogenic profiles. Deregulation of soluble mediators was associated with some clinic-laboratory parameters of MPN patients, including vascular events, treatment status, risk stratification of disease, hemoglobin concentration, hematocrit, and red blood cell count. Conclusions Each MPN subtype exhibits a distinct soluble mediator signature. Deregulated production of BM soluble mediators may contribute to MPN pathogenesis and BM niche modification, provides pro-tumor stimuli, and is a potential target for future therapies.
Collapse
Affiliation(s)
- Juçara Gastaldi Cominal
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maira da Costa Cacemiro
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Gabriela Berzoti-Coelho
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Illy Enne Gomes Pereira
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabiani Gai Frantz
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Elizabeth Xisto Souto
- Department of Clinical Hematology, Euryclides de Jesus Zerbini Transplant Hospital, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lorena Lobo de Figueiredo-Pontes
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Division of Hematology, Hemotherapy and Cellular Therapy, Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Division of Rheumatology, Allergy and Immunotherapy, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabíola Attié de Castro
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
16
|
Patients with triple-negative, JAK2V617F- and CALR-mutated essential thrombocythemia share a unique gene expression signature. Blood Adv 2021; 5:1059-1068. [PMID: 33599741 DOI: 10.1182/bloodadvances.2020003172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Approximately 10% to 15% of patients with essential thrombocythemia (ET) lack the common driver mutations, so-called "triple-negative" (TN) disease. We undertook a systematic approach to investigate for somatic mutations and delineate gene expression signatures in 46 TN patients and compared the results to those with known driver mutations and healthy volunteers. Deep, error-corrected, next-generation sequencing of peripheral blood mononuclear cells using the HaloPlexHS platform and whole-exome sequencing was performed. Using this platform, 10 (22%) of 46 patients had detectable mutations (MPL, n = 6; JAK2V617F, n = 4) with 3 of 10 cases harboring germline MPL mutations. RNA-sequencing and DNA methylation analysis were also performed by using peripheral blood mononuclear cells. Pathway analysis comparing healthy volunteers and ET patients (regardless of mutational status) identified significant enrichment for genes in the tumor necrosis factor, NFκB, and MAPK pathways and upregulation of platelet proliferative drivers such as ITGA2B and ITGB3. Correlation with DNA methylation showed a consistent pattern of hypomethylation at upregulated gene promoters. Interrogation of these promoter regions highlighted enrichment of transcriptional regulators, which were significantly upregulated in patients with ET regardless of mutation status, including CEBPβ and NFκB. For "true" TN ET, patterns of gene expression and DNA methylation were similar to those in ET patients with known driver mutations. These observations suggest that the resultant ET phenotype may, at least in part and regardless of mutation type, be driven by transcriptional misregulation and may propagate downstream via the MAPK, tumor necrosis factor, and NFκB pathways with resultant JAK-STAT activation. These findings identify potential novel mechanisms of disease initiation that require further evaluation.
Collapse
|
17
|
Spampinato M, Giallongo C, Romano A, Longhitano L, La Spina E, Avola R, Scandura G, Dulcamare I, Bramanti V, Di Rosa M, Vicario N, Parenti R, Li Volti G, Tibullo D, Palumbo GA. Focus on Osteosclerotic Progression in Primary Myelofibrosis. Biomolecules 2021. [PMID: 33477816 DOI: 10.3390/biom11010122.pmid:33477816;pmcid:pmc7832894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hematopoietic stem-cell-derived clonal proliferation, leading to bone marrow (BM) fibrosis. Hematopoiesis alterations are closely associated with modifications of the BM microenvironment, characterized by defective interactions between vascular and endosteal niches. As such, neoangiogenesis, megakaryocytes hyperplasia and extensive bone marrow fibrosis, followed by osteosclerosis and bone damage, are the most relevant consequences of PMF. Moreover, bone tissue deposition, together with progressive fibrosis, represents crucial mechanisms of disabilities in patients. Although the underlying mechanisms of bone damage observed in PMF are still unclear, the involvement of cytokines, growth factors and bone marrow microenvironment resident cells have been linked to disease progression. Herein, we focused on the role of megakaryocytes and their alterations, associated with cytokines and chemokines release, in modulating functions of most of the bone marrow cell populations and in creating a complex network where impaired signaling strongly contributes to progression and disabilities.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Roberto Avola
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Ilaria Dulcamare
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Vincenzo Bramanti
- Division of Clinical Pathology, "Giovanni Paolo II" Hospital-A.S.P. Ragusa, 97100 Ragusa, Italy
| | - Michelino Di Rosa
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe A Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| |
Collapse
|
18
|
Spampinato M, Giallongo C, Romano A, Longhitano L, La Spina E, Avola R, Scandura G, Dulcamare I, Bramanti V, Di Rosa M, Vicario N, Parenti R, Li Volti G, Tibullo D, Palumbo GA. Focus on Osteosclerotic Progression in Primary Myelofibrosis. Biomolecules 2021; 11:biom11010122. [PMID: 33477816 PMCID: PMC7832894 DOI: 10.3390/biom11010122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hematopoietic stem-cell-derived clonal proliferation, leading to bone marrow (BM) fibrosis. Hematopoiesis alterations are closely associated with modifications of the BM microenvironment, characterized by defective interactions between vascular and endosteal niches. As such, neoangiogenesis, megakaryocytes hyperplasia and extensive bone marrow fibrosis, followed by osteosclerosis and bone damage, are the most relevant consequences of PMF. Moreover, bone tissue deposition, together with progressive fibrosis, represents crucial mechanisms of disabilities in patients. Although the underlying mechanisms of bone damage observed in PMF are still unclear, the involvement of cytokines, growth factors and bone marrow microenvironment resident cells have been linked to disease progression. Herein, we focused on the role of megakaryocytes and their alterations, associated with cytokines and chemokines release, in modulating functions of most of the bone marrow cell populations and in creating a complex network where impaired signaling strongly contributes to progression and disabilities.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Roberto Avola
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Ilaria Dulcamare
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Vincenzo Bramanti
- Division of Clinical Pathology, “Giovanni Paolo II” Hospital–A.S.P. Ragusa, 97100 Ragusa, Italy;
| | - Michelino Di Rosa
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
- Correspondence: (G.L.V.); (G.A.P.)
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Giuseppe A. Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
- Correspondence: (G.L.V.); (G.A.P.)
| |
Collapse
|
19
|
Genetics and Pathogenetic Role of Inflammasomes in Philadelphia Negative Chronic Myeloproliferative Neoplasms: A Narrative Review. Int J Mol Sci 2021; 22:ijms22020561. [PMID: 33429941 PMCID: PMC7827003 DOI: 10.3390/ijms22020561] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/01/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The last decade has been very important for the quantity of preclinical information obtained regarding chronic myeloproliferative neoplasms (MPNs) and the following will be dedicated to the translational implications of the new biological acquisitions. The overcoming of the mechanistic model of clonal evolution and the entry of chronic inflammation and dysimmunity into the new model are the elements on which to base a part of future therapeutic strategies. The innate immune system plays a major role in this context. Protagonists of the initiation and regulation of many pathological aspects, from cytokine storms to fibrosis, the NLRP3 and AIM2 inflammasomes guide and condition the natural history of the disease. For this reason, MPNs share many biological and clinical aspects with non-neoplastic diseases, such as autoimmune disorders. Finally, cardiovascular risk and disturbances in iron metabolism and myelopoiesis are also closely linked to the role of inflammasomes. Although targeted therapies are already being tested, an increase in knowledge on the subject is desirable and potentially translates into better care for patients with MPNs.
Collapse
|
20
|
Synergic Crosstalk between Inflammation, Oxidative Stress, and Genomic Alterations in BCR-ABL-Negative Myeloproliferative Neoplasm. Antioxidants (Basel) 2020; 9:antiox9111037. [PMID: 33114087 PMCID: PMC7690801 DOI: 10.3390/antiox9111037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) have recently been revealed to be related to chronic inflammation, oxidative stress, and the accumulation of reactive oxygen species. It has been proposed that MPNs represent a human inflammation model for tumor advancement, in which long-lasting inflammation serves as the driving element from early tumor stage (over polycythemia vera) to the later myelofibrotic cancer stage. It has been theorized that the starting event for acquired stem cell alteration may occur after a chronic inflammation stimulus with consequent myelopoietic drive, producing a genetic stem cell insult. When this occurs, the clone itself constantly produces inflammatory components in the bone marrow; these elements further cause clonal expansion. In BCR-ABL1-negative MPNs, the driver mutations include JAK 2, MPL, and CALR. Transcriptomic studies of hematopoietic stem cells from subjects with driver mutations have demonstrated the upregulation of inflammation-related genes capable of provoking the development of an inflammatory state. The possibility of acting on the inflammatory state as a therapeutic approach in MPNs appears promising, in which an intervention operating on the pathways that control the synthesis of cytokines and oxidative stress could be effective in reducing the possibility of leukemic progression and onset of complications.
Collapse
|
21
|
Masselli E, Pozzi G, Gobbi G, Merighi S, Gessi S, Vitale M, Carubbi C. Cytokine Profiling in Myeloproliferative Neoplasms: Overview on Phenotype Correlation, Outcome Prediction, and Role of Genetic Variants. Cells 2020. [PMID: 32967342 DOI: 10.3390/cells9092136.pmid:32967342;pmcid:pmc7564952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Among hematologic malignancies, the classic Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are considered a model of inflammation-related cancer development. In this context, the use of immune-modulating agents has recently expanded the MPN therapeutic scenario. Cytokines are key mediators of an auto-amplifying, detrimental cross-talk between the MPN clone and the tumor microenvironment represented by immune, stromal, and endothelial cells. This review focuses on recent advances in cytokine-profiling of MPN patients, analyzing different expression patterns among the three main Philadelphia-negative (Ph-negative) MPNs, as well as correlations with disease molecular profile, phenotype, progression, and outcome. The role of the megakaryocytic clone as the main source of cytokines, particularly in myelofibrosis, is also reviewed. Finally, we report emerging intriguing evidence on the contribution of host genetic variants to the chronic pro-inflammatory state that typifies MPNs.
Collapse
Affiliation(s)
- Elena Masselli
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
| | - Giulia Pozzi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giuliana Gobbi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Stefania Merighi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Stefania Gessi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
| | - Cecilia Carubbi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
22
|
Masselli E, Pozzi G, Gobbi G, Merighi S, Gessi S, Vitale M, Carubbi C. Cytokine Profiling in Myeloproliferative Neoplasms: Overview on Phenotype Correlation, Outcome Prediction, and Role of Genetic Variants. Cells 2020; 9:cells9092136. [PMID: 32967342 PMCID: PMC7564952 DOI: 10.3390/cells9092136] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/16/2022] Open
Abstract
Among hematologic malignancies, the classic Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are considered a model of inflammation-related cancer development. In this context, the use of immune-modulating agents has recently expanded the MPN therapeutic scenario. Cytokines are key mediators of an auto-amplifying, detrimental cross-talk between the MPN clone and the tumor microenvironment represented by immune, stromal, and endothelial cells. This review focuses on recent advances in cytokine-profiling of MPN patients, analyzing different expression patterns among the three main Philadelphia-negative (Ph-negative) MPNs, as well as correlations with disease molecular profile, phenotype, progression, and outcome. The role of the megakaryocytic clone as the main source of cytokines, particularly in myelofibrosis, is also reviewed. Finally, we report emerging intriguing evidence on the contribution of host genetic variants to the chronic pro-inflammatory state that typifies MPNs.
Collapse
Affiliation(s)
- Elena Masselli
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Correspondence: (E.M.); (M.V.); Tel.: +39-052-190-6655 (E.M.); +39-052-103-3032 (M.V.)
| | - Giulia Pozzi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.)
| | - Giuliana Gobbi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.)
| | - Stefania Merighi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (S.G.)
| | - Stefania Gessi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (S.G.)
| | - Marco Vitale
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Correspondence: (E.M.); (M.V.); Tel.: +39-052-190-6655 (E.M.); +39-052-103-3032 (M.V.)
| | - Cecilia Carubbi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.)
| |
Collapse
|
23
|
Role of Inflammatory Factors during Disease Pathogenesis and Stem Cell Transplantation in Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:cancers12082250. [PMID: 32806517 PMCID: PMC7463735 DOI: 10.3390/cancers12082250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/14/2022] Open
Abstract
Hematopoiesis is a highly regulated and complex process involving hematopoietic stem cells (HSCs), cell surface adhesion molecules, and cytokines as well as cells of the hematopoietic niche in the bone marrow (BM). Myeloproliferative neoplasms (MPNs) are characterized by clonal expansion of HSCs involving one or more blood cell lineages. Philadelphia-negative MPNs (Ph-neg MPNs) comprise polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). In nearly all patients with Ph-neg MPN, mutations in the genes encoding janus kinase 2 (JAK2), calreticulin (CALR), or the thrombopoietin receptor (MPL) can be detected and, together with additional mutations in epigenetic modifier genes, these genetic aberrations contribute to the clonal expansion of the cells. In addition to these intracellular changes in the malignant clone, inflammatory processes involving both the clonal and the non-clonal cells contribute to the signs and symptoms of the patients, as well as to progression of the disease to myelofibrosis (MF) or acute leukemia, and to thrombotic complications. This contribution has been corroborated in preclinical studies including mouse models and patient-derived iPS cells, and in clinical trials, using anti-inflammatory drugs such as JAK inhibitors and steroids, or immunomodulatory drugs such as IMiDs and interferon-alpha (IFNa), all of which change the (im)balance of circulating inflammatory factors (e.g., TNFa, IL-1b, and TGFβ) in MPN. Currently, allogeneic hematopoietic (stem) cell transplantation (allo-HCT) remains the only curative treatment for Ph-neg MPN and is the treatment of choice in intermediate-2 and high-risk MF. HCT can reverse inflammatory changes induced by MPN as well as fibrosis in a large proportion of patients, but it also induces itself profound changes in inflammatory cells and cytokines in the patient, which may help to eradicate the disease but also in part cause significant morbidity (e.g., by graft-versus-host disease). In this review, we focus on the contribution of aberrant inflammation to disease pathogenesis in Ph-neg MPN as well as the current understanding of its alterations after allogeneic HCT.
Collapse
|