1
|
Hennessy MR, Creed SM, Gutridge AM, Rusali LE, Luo D, Sepehri B, Rhoda ES, Villegas JA, van Rijn RM, Riley AP. Discovery of Potent Kappa Opioid Receptor Agonists Derived from Akuammicine. J Med Chem 2024; 67:20842-20857. [PMID: 39565354 DOI: 10.1021/acs.jmedchem.4c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Akuammicine (1), an alkaloid isolated from Picralima nitida, is an agonist of the kappa opioid receptor (κOR). To establish structure-activity relationships (SARs) for this structurally unique κOR ligand, a collection of semisynthetic derivatives was synthesized. Evaluating these derivatives for their ability to activate the κOR and mu opioid receptor (μOR) revealed key SAR trends and identified derivatives with enhanced κOR potency. Most notably, substitutions to the C10 position of the aryl ring led to a > 200-fold improvement in κOR potency and nearly complete selectivity for the κOR. A selection of the most potent ligands was shown to possess differing abilities recruitment of β-Arrestin-2 to the κOR, indicating they have distinct signaling properties from each other and existing κOR ligands. The discovery of these κOR agonists underscores the potential of using natural products to identify new classes of potent and selective ligands and provides new tools to probe the κOR.
Collapse
Affiliation(s)
- Madeline R Hennessy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Simone M Creed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Anna M Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lisa E Rusali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Dan Luo
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Bakhtyar Sepehri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Elizabeth S Rhoda
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - José A Villegas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew P Riley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
2
|
Cole RH, Moussawi K, Joffe ME. Opioid modulation of prefrontal cortex cells and circuits. Neuropharmacology 2024; 248:109891. [PMID: 38417545 PMCID: PMC10939756 DOI: 10.1016/j.neuropharm.2024.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Several neurochemical systems converge in the prefrontal cortex (PFC) to regulate cognitive and motivated behaviors. A rich network of endogenous opioid peptides and receptors spans multiple PFC cell types and circuits, and this extensive opioid system has emerged as a key substrate underlying reward, motivation, affective behaviors, and adaptations to stress. Here, we review the current evidence for dysregulated cortical opioid signaling in the pathogenesis of psychiatric disorders. We begin by providing an introduction to the basic anatomy and function of the cortical opioid system, followed by a discussion of endogenous and exogenous opioid modulation of PFC function at the behavioral, cellular, and synaptic level. Finally, we highlight the therapeutic potential of endogenous opioid targets in the treatment of psychiatric disorders, synthesizing clinical reports of altered opioid peptide and receptor expression and activity in human patients and summarizing new developments in opioid-based medications. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Chen YL, Lai YH, Huang EYK, Wang HJ, Hung HY. Nalbuphine-6-glucuronide is a potent analgesic with superior safety profiles by altering binding affinity and selectivity for mu-/kappa-opioid receptors. Life Sci 2024; 340:122441. [PMID: 38253309 DOI: 10.1016/j.lfs.2024.122441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
Although nalbuphine, a semi-synthetic analgesic compound, is less potent than morphine in terms of alleviating severe pain, our recent findings have revealed that nalbuphine-6-glucuronide (N6G), one of the glucuronide metabolites of nalbuphine, promotes a significantly more robust analgesic effect than its parent drug. Nevertheless, despite these promising observations, the precise mechanisms underlying the analgesic effects of nalbuphine glucuronides have yet to be determined. In this study, we aim to elucidate the mechanisms associated with the analgesic effects of nalbuphine glucuronides. Pharmacokinetic and pharmacodynamic studies were conducted to investigate the relationship between the central and peripheral compartments of nalbuphine and its derivatives. The analgesic responses of these compounds were evaluated based on multiple behavioral tests involving thermal and mechanical stimuli. Radioligand binding assays were also performed to determine the binding affinity and selectivity of these compounds for different opioid receptors. The results of these tests consistently confirmed that the heightened analgesic effects of N6G are mediated through its enhanced binding affinity for both mu- and kappa-opioid receptors, even comparable to those of morphine. Notably, N6G exhibited fewer side effects and did not induce sudden death, thereby highlighting its superior safety profile. Additionally, pharmacokinetic studies indicated that N6G could cross the blood-brain barrier when administered peripherally, offering pain relief. Overall, N6G provides great analgesic efficacy and enhanced safety. These findings highlight the potential value of nalbuphine glucuronides, particularly N6G, as promising candidates for the development of novel analgesic drugs.
Collapse
Affiliation(s)
- Yen-Lun Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yen-Hsun Lai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Eagle Yi-Kung Huang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Hong-Jaan Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| | - Hao-Yuan Hung
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China; Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, Republic of China; Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
4
|
Hirai R, Uesawa Y. Analysis of Opioid-Related Adverse Events in Japan Using FAERS Database. Pharmaceuticals (Basel) 2023; 16:1541. [PMID: 38004407 PMCID: PMC10675800 DOI: 10.3390/ph16111541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Adverse events associated with opioid use in palliative care have been extensively studied. However, predicting the occurrence of adverse events based on the specific opioid used remains difficult. This study aimed to comprehensively analyze the adverse events related to µ-opioid receptor stimulation of opioids approved in Japan and investigate the tendencies of adverse event occurrence among different opioids. We utilized the FDA Adverse Event Reporting System database to extract reported adverse events for opioids approved in Japan. Cluster analysis was performed on reporting odds ratios (RORs) of adverse event names among opioids to visualize relationships between opioids and adverse events, facilitating a comparative study of their classifications. We calculated the RORs of adverse events for the target opioids. Cluster analysis based on these RORs resulted in five broad clusters based on the reported adverse events: i.e., strong opioids, weak opioids, loperamide, tapentadol, and remifentanil. This study provides a comprehensive classification of the association between μ-opioid-receptor-stimulating opioids and adverse events.
Collapse
Affiliation(s)
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| |
Collapse
|
5
|
Barrett JE, Shekarabi A, Inan S. Oxycodone: A Current Perspective on Its Pharmacology, Abuse, and Pharmacotherapeutic Developments. Pharmacol Rev 2023; 75:1062-1118. [PMID: 37321860 PMCID: PMC10595024 DOI: 10.1124/pharmrev.121.000506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Oxycodone, a semisynthetic derivative of naturally occurring thebaine, an opioid alkaloid, has been available for more than 100 years. Although thebaine cannot be used therapeutically due to the occurrence of convulsions at higher doses, it has been converted to a number of other widely used compounds that include naloxone, naltrexone, buprenorphine, and oxycodone. Despite the early identification of oxycodone, it was not until the 1990s that clinical studies began to explore its analgesic efficacy. These studies were followed by the pursuit of several preclinical studies to examine the analgesic effects and abuse liability of oxycodone in laboratory animals and the subjective effects in human volunteers. For a number of years oxycodone was at the forefront of the opioid crisis, playing a significant role in contributing to opioid misuse and abuse, with suggestions that it led to transitioning to other opioids. Several concerns were expressed as early as the 1940s that oxycodone had significant abuse potential similar to heroin and morphine. Both animal and human abuse liability studies have confirmed, and in some cases amplified, these early warnings. Despite sharing a similar structure with morphine and pharmacological actions also mediated by the μ-opioid receptor, there are several differences in the pharmacology and neurobiology of oxycodone. The data that have emerged from the many efforts to analyze the pharmacological and molecular mechanism of oxycodone have generated considerable insight into its many actions, reviewed here, which, in turn, have provided new information on opioid receptor pharmacology. SIGNIFICANCE STATEMENT: Oxycodone, a μ-opioid receptor agonist, was synthesized in 1916 and introduced into clinical use in Germany in 1917. It has been studied extensively as a therapeutic analgesic for acute and chronic neuropathic pain as an alternative to morphine. Oxycodone emerged as a drug with widespread abuse. This article brings together an integrated, detailed review of the pharmacology of oxycodone, preclinical and clinical studies of pain and abuse, and recent advances to identify potential opioid analgesics without abuse liability.
Collapse
Affiliation(s)
- James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Aryan Shekarabi
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Olson KM, Devereaux AL, Chatterjee P, Saldaña-Shumaker SL, Shafer A, Plotkin A, Kandasamy R, MacKerell AD, Traynor JR, Cunningham CW. Nitro-benzylideneoxymorphone, a bifunctional mu and delta opioid receptor ligand with high mu opioid receptor efficacy. Front Pharmacol 2023; 14:1230053. [PMID: 37469877 PMCID: PMC10352325 DOI: 10.3389/fphar.2023.1230053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction: There is a major societal need for analgesics with less tolerance, dependence, and abuse liability. Preclinical rodent studies suggest that bifunctional ligands with both mu (MOPr) and delta (DOPr) opioid peptide receptor activity may produce analgesia with reduced tolerance and other side effects. This study explores the structure-activity relationships (SAR) of our previously reported MOPr/DOPr lead, benzylideneoxymorphone (BOM) with C7-methylene-substituted analogs. Methods: Analogs were synthesized and tested in vitro for opioid receptor binding and efficacy. One compound, nitro-BOM (NBOM, 12) was evaluated for antinociceptive effects in the warm water tail withdrawal assay in C57BL/6 mice. Acute and chronic antinociception was determined, as was toxicologic effects on chronic administration. Molecular modeling experiments were performed using the Site Identification by Ligand Competitive Saturation (SILCS) method. Results: NBOM was found to be a potent MOPr agonist/DOPr partial agonist that produces high-efficacy antinociception. Antinociceptive tolerance was observed, as was weight loss; this toxicity was only observed with NBOM and not with BOM. Modeling supports the hypothesis that the increased MOPr efficacy of NBOM is due to the substituted benzylidene ring occupying a nonpolar region within the MOPr agonist state. Discussion: Though antinociceptive tolerance and non-specific toxicity was observed on repeated administration, NBOM provides an important new tool for understanding MOPr/DOPr pharmacology.
Collapse
Affiliation(s)
- Keith M. Olson
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea L. Devereaux
- Department of Pharmaceutical Sciences, Concordia University Wisconsin School of Pharmacy, Mequon, WI, United States
| | - Payal Chatterjee
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Savanah L. Saldaña-Shumaker
- Department of Pharmaceutical Sciences, Concordia University Wisconsin School of Pharmacy, Mequon, WI, United States
| | - Amanda Shafer
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Adam Plotkin
- Department of Pharmaceutical Sciences, Concordia University Wisconsin School of Pharmacy, Mequon, WI, United States
| | - Ram Kandasamy
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Psychology, California State University, East Bay, Hayward, CA, United States
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - John R. Traynor
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Christopher W. Cunningham
- Department of Pharmaceutical Sciences, Concordia University Wisconsin School of Pharmacy, Mequon, WI, United States
| |
Collapse
|
7
|
Youngblood B, Medina JC, Gehlert DR, Schwartz N. EPD1504: a novel μ-opioid receptor partial agonist attenuates obsessive-compulsive disorder (OCD)-like behaviors. Front Psychiatry 2023; 14:1170541. [PMID: 37457777 PMCID: PMC10349350 DOI: 10.3389/fpsyt.2023.1170541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 07/18/2023] Open
Abstract
Low doses of μ-opioid receptor (MOR) agonists rapidly ameliorate symptoms in treatment-resistant obsessive-compulsive disorder (OCD) patients (10-50% of OCD patients). However, the utility of MOR agonists is limited by their safety liabilities. We developed a novel MOR partial agonist (EPD1540) that has an improved respiratory safety profile when compared to buprenorphine. Buprenorphine is a MOR partial agonist primarily used in the treatment of opiate-use disorder, which in investigator-led trials, has been shown to rapidly ameliorate symptoms in treatment-resistant OCD patients. In this study, we show that doses of EPD1504 and buprenorphine that occupy small fractions of MORs in the CNS (approximately 20%) are as effective as fluoxetine at ameliorating OCD-like behaviors in two different rat models (an operant probabilistic reversal task and marble burying). Importantly, effective doses of EPD1504 did not impair either locomotor activity, or respiration under normoxic or hypercapnic conditions. Additionally, EPD1504 had effects comparable to buprenorphine in the conditioned place preference assay. These results indicate that EPD1504 may provide a safer alternative to buprenorphine for the treatment of OCD patients.
Collapse
|
8
|
Janganati V, Salazar P, Parks BJ, Gorman GS, Prather PL, Peterson EC, Alund AW, Moran JH, Crooks PA, Brents LK. Deuterated buprenorphine retains pharmacodynamic properties of buprenorphine and resists metabolism to the active metabolite norbuprenorphine in rats. Front Pharmacol 2023; 14:1123261. [PMID: 37229250 PMCID: PMC10204800 DOI: 10.3389/fphar.2023.1123261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/04/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: An active metabolite of buprenorphine (BUP), called norbuprenorphine (NorBUP), is implicated in neonatal opioid withdrawal syndrome when BUP is taken during pregnancy. Therefore, reducing or eliminating metabolism of BUP to NorBUP is a novel strategy that will likely lower total fetal exposure to opioids and thus improve offspring outcomes. Precision deuteration alters pharmacokinetics of drugs without altering pharmacodynamics. Here, we report the synthesis and testing of deuterated buprenorphine (BUP-D2). Methods: We determined opioid receptor affinities of BUP-D2 relative to BUP with radioligand competition receptor binding assays, and the potency and efficacy of BUP-D2 relative to BUP to activate G-proteins via opioid receptors with [35S]GTPγS binding assays in homogenates containing the human mu, delta, or kappa opioid receptors. The antinociceptive effects of BUP-D2 and BUP were compared using the warm-water tail withdrawal assay in rats. Blood concentration versus time profiles of BUP, BUP-D2, and NorBUP were measured in rats following intravenous BUP-D2 or BUP injection. Results: The synthesis provided a 48% yield and the product was ≥99% deuterated. Like BUP, BUP-D2 had sub-nanomolar affinity for opioid receptors. BUP-D2 also activated opioid receptors and induced antinociception with equal potency and efficacy as BUP. The maximum concentration and the area under the curve of NorBUP in the blood of rats that received BUP-D2 were over 19- and 10-fold lower, respectively, than in rats that received BUP. Discussion: These results indicate that BUP-D2 retains key pharmacodynamic properties of BUP and resists metabolism to NorBUP and therefore holds promise as an alternative to BUP.
Collapse
Affiliation(s)
- Venumadhav Janganati
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Paloma Salazar
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Brian J. Parks
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Gregory S. Gorman
- Pharmaceutical Sciences Research Institute, McWhorter School of Pharmacy, Samford University, Birmingham, AL, United States
| | - Paul L. Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Eric C. Peterson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Jeffery H. Moran
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- PinPoint Testing, LLC., Little Rock, AR, United States
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lisa K. Brents
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
9
|
Krstenansky JL, Bacsa J, Zambon A. Synthesis, structure, in vitro pharmacology, and in vivo activity of trans-3,4-dichloro-N-[[1-(dimethylamino)-4-phenylcyclohexyl]methyl]-benzamide (AP01; 4-phenyl-AH-7921), a novel mixed μ-/κ-opioid. J Forensic Sci 2023; 68:978-989. [PMID: 36812253 DOI: 10.1111/1556-4029.15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Analogs of non-fentanyl novel synthetic opioids (NSO) with modifications that fall outside of established structure-activity relationships (SARs) for that class of drugs create the question whether or not it should be considered an analog, as defined by 21 U.S.C. §802(32)(A), which is important for its inclusion in the US system of drug scheduling. AH-7921 is a US Schedule I drug and an example of the 1-benzamidomethyl-1-cyclohexyldialkylamine class of NSO. The SARs regarding substitution of the central cyclohexyl ring have not been well characterized in the literature. Therefore, in order to expand the SAR surrounding AH-7921 analogs, trans-3,4-dichloro-N-[[1-(dimethylamino)-4-phenylcyclohexyl]methyl]-benzamide (AP01; 4-phenyl-AH-7921) has been synthesized, analytically characterized, and tested in vitro and in vivo pharmacologically. Using methods described in the original patents for this class of NSO, it was found that the single trans geometric isomer was obtained. The proton nuclear magnetic resonance, mass spectrum, infrared spectrum, and Raman spectrum are reported along with the melting point of the hydrochloride salt. In vitro binding to a battery of 43 central nervous system receptors showed it to be a high-affinity μ-opioid receptor (MOR) and κ-opioid receptor (KOR) ligand (60 nM and 34 nM, respectively). AP01 also had a 4 nM affinity for the serotonin transporter (SERT), which is a higher level of potency at this receptor than most other opioids. In rats, it exhibited antinociception in the acetic acid writhing test. Therefore, the 4-phenyl modification results in an active NSO, but carries with it potential toxicities beyond those expected for currently approved opioid drugs.
Collapse
|
10
|
Clark TP. The history and pharmacology of buprenorphine: New advances in cats. J Vet Pharmacol Ther 2022; 45 Suppl 1:S1-S30. [DOI: 10.1111/jvp.13073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 11/30/2022]
|
11
|
Otte L, Wilde M, Auwärter V, Grafinger KE. Investigation of the μ and κ‐opioid receptor activation by eight new synthetic opioids using the [
35
S]‐GTPγS assay: U‐47700, isopropyl U‐47700, U‐49900, U‐47931E,
N
‐methyl U‐47931E, U‐51754, U‐48520 and U‐48800. Drug Test Anal 2022; 14:1187-1199. [DOI: 10.1002/dta.3238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Lorina Otte
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg Freiburg Germany
- Institute of Applied Biosciences, Department of Food Chemistry and Toxicology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Maurice Wilde
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg Freiburg Germany
- Hermann Staudinger Graduate School University of Freiburg Freiburg Germany
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg Freiburg Germany
| | - Katharina Elisabeth Grafinger
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg Freiburg Germany
| |
Collapse
|
12
|
Keresztes A, Olson K, Nguyen P, Lopez-Pier MA, Hecksel R, Barker NK, Liu Z, Hruby V, Konhilas J, Langlais PR, Streicher JM. Antagonism of the mu-delta opioid receptor heterodimer enhances opioid antinociception by activating Src and calcium/calmodulin-dependent protein kinase II signaling. Pain 2022; 163:146-158. [PMID: 34252907 PMCID: PMC8688156 DOI: 10.1097/j.pain.0000000000002320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/13/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT The opioid receptors are important regulators of pain, reward, and addiction. Limited evidence suggests the mu and delta opioid receptors form a heterodimer (MDOR), which may act as a negative feedback brake on opioid-induced analgesia. However, evidence for the MDOR in vivo is indirect and limited, and there are few selective tools available. We recently published the first MDOR-selective antagonist, D24M, allowing us to test the role of the MDOR in mice. We thus cotreated CD-1 mice with D24M and opioids in tail flick, paw incision, and chemotherapy-induced peripheral neuropathy pain models. D24M treatment enhanced oxymorphone antinociception in all models by 54.7% to 628%. This enhancement could not be replicated with the mu and delta selective antagonists CTAP, naltrindole, and naloxonazine, and D24M had a mild transient effect in the rotarod test, suggesting this increase is selective to the MDOR. However, D24M had no effect on morphine or buprenorphine, suggesting that only specific opioids interact with the MDOR. To find a mechanism, we performed phosphoproteomic analysis on brainstems of mice. We found that the kinases Src and CaMKII were repressed by oxymorphone, which was restored by D24M. We were able to confirm the role of Src and CaMKII in D24M-enhanced antinociception using small molecule inhibitors (KN93 and Src-I1). Together, these results provide direct in vivo evidence that the MDOR acts as an opioid negative feedback brake, which occurs through the repression of Src and CaMKII signal transduction. These results further suggest that MDOR antagonism could be a means to improve clinical opioid therapy.
Collapse
Affiliation(s)
- Attila Keresztes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson AZ USA
| | - Keith Olson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson AZ USA
- Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson AZ USA
| | - Paul Nguyen
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson AZ USA
| | | | - Ryan Hecksel
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson AZ USA
| | - Natalie K. Barker
- Department of Medicine, College of Medicine, University of Arizona, Tucson AZ USA
| | - Zekun Liu
- Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson AZ USA
| | - Victor Hruby
- Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson AZ USA
| | - John Konhilas
- Department of Physiology, College of Medicine, University of Arizona, Tucson AZ USA
| | - Paul R. Langlais
- Department of Medicine, College of Medicine, University of Arizona, Tucson AZ USA
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson AZ USA
| |
Collapse
|
13
|
Discovery of Novel Delta Opioid Receptor (DOR) Inverse Agonist and Irreversible (Non-Competitive) Antagonists. Molecules 2021; 26:molecules26216693. [PMID: 34771099 PMCID: PMC8587863 DOI: 10.3390/molecules26216693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 02/03/2023] Open
Abstract
The delta opioid receptor (DOR) is a crucial receptor system that regulates pain, mood, anxiety, and similar mental states. DOR agonists, such as SNC80, and DOR-neutral antagonists, such as naltrindole, were developed to investigate the DOR in vivo and as potential therapeutics for pain and depression. However, few inverse agonists and non-competitive/irreversible antagonists have been developed, and none are widely available. This leaves a gap in our pharmacological toolbox and limits our ability to investigate the biology of this receptor. Thus, we designed and synthesized the novel compounds SRI-9342 as an irreversible antagonist and SRI-45128 as an inverse agonist. These compounds were then evaluated in vitro for their binding affinity by radioligand binding, their functional activity by 35S-GTPγS coupling, and their cAMP accumulation in cells expressing the human DOR. Both compounds demonstrated high binding affinity and selectivity at the DOR, and both displayed their hypothesized molecular pharmacology of irreversible antagonism (SRI-9342) or inverse agonism (SRI-45128). Together, these results demonstrate that we have successfully designed new inverse agonists and irreversible antagonists of the DOR based on a novel chemical scaffold. These new compounds will provide new tools to investigate the biology of the DOR or even new potential therapeutics.
Collapse
|
14
|
Olson KM, Traynor JR, Alt A. Allosteric Modulator Leads Hiding in Plain Site: Developing Peptide and Peptidomimetics as GPCR Allosteric Modulators. Front Chem 2021; 9:671483. [PMID: 34692635 PMCID: PMC8529114 DOI: 10.3389/fchem.2021.671483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Allosteric modulators (AMs) of G-protein coupled receptors (GPCRs) are desirable drug targets because they can produce fewer on-target side effects, improved selectivity, and better biological specificity (e.g., biased signaling or probe dependence) than orthosteric drugs. An underappreciated source for identifying AM leads are peptides and proteins-many of which were evolutionarily selected as AMs-derived from endogenous protein-protein interactions (e.g., transducer/accessory proteins), intramolecular receptor contacts (e.g., pepducins or extracellular domains), endogenous peptides, and exogenous libraries (e.g., nanobodies or conotoxins). Peptides offer distinct advantages over small molecules, including high affinity, good tolerability, and good bioactivity, and specific disadvantages, including relatively poor metabolic stability and bioavailability. Peptidomimetics are molecules that combine the advantages of both peptides and small molecules by mimicking the peptide's chemical features responsible for bioactivity while improving its druggability. This review 1) discusses sources and strategies to identify peptide/peptidomimetic AMs, 2) overviews strategies to convert a peptide lead into more drug-like "peptidomimetic," and 3) critically analyzes the advantages, disadvantages, and future directions of peptidomimetic AMs. While small molecules will and should play a vital role in AM drug discovery, peptidomimetics can complement and even exceed the advantages of small molecules, depending on the target, site, lead, and associated factors.
Collapse
Affiliation(s)
- Keith M. Olson
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, United States
| | - John R. Traynor
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Andrew Alt
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Hillhouse TM, Olson KM, Hallahan JE, Rysztak LG, Sears BF, Meurice C, Ostovar M, Koppenhaver PO, West JL, Jutkiewicz EM, Husbands SM, Traynor JR. The Buprenorphine Analogue BU10119 Attenuates Drug-Primed and Stress-Induced Cocaine Reinstatement in Mice. J Pharmacol Exp Ther 2021; 378:287-299. [PMID: 34183434 PMCID: PMC11047085 DOI: 10.1124/jpet.121.000524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023] Open
Abstract
There are no Food and Drug Administration-approved medications for cocaine use disorder, including relapse. The μ-opioid receptor (MOPr) partial agonist buprenorphine alone or in combination with naltrexone has been shown to reduce cocaine-positive urine tests and cocaine seeking in rodents. However, there are concerns over the abuse liability of buprenorphine. Buprenorphine's partial agonist and antagonist activity at the nociception receptor (NOPr) and κ-opioid receptor (KOPr), respectively, may contribute to its ability to inhibit cocaine seeking. Thus, we hypothesized that a buprenorphine derivative that exhibits antagonist activity at MOPr and KOPr with enhanced agonist activity at the NOPr could provide a more effective treatment. Here we compare the pharmacology of buprenorphine and two analogs, BU10119 and BU12004, in assays for antinociception and for cocaine- and stress-primed reinstatement in the conditioned place preference paradigm. In vitro and in vivo assays showed that BU10119 acts as an antagonist at MOPr, KOPr, and δ-opioid receptor (DOPr) and a partial agonist at NOPr, whereas BU12004 showed MOPr partial agonist activity and DOPr, KOPr, and NOPr antagonism. BU10119 and buprenorphine but not BU12004 lessened cocaine-primed reinstatement. In contrast, BU10119, BU12004, and buprenorphine blocked stress-primed reinstatement. The selective NOPr agonist SCH221510 but not naloxone decreased cocaine-primed reinstatement. Together, these findings are consistent with the concept that NOPr agonism contributes to the ability of BU10119 and buprenorphine to attenuate reinstatement of cocaine-conditioned place preference in mice. The findings support the development of buprenorphine analogs lacking MOPr agonism with increased NOPr agonism for relapse prevention to cocaine addiction. SIGNIFICANCE STATEMENT: There are no Food and Drug Administration-approved medications for cocaine use disorder. Buprenorphine has shown promise as a treatment for cocaine relapse prevention; however, there are concerns over the abuse liability of buprenorphine. Here we show a buprenorphine analogue, BU10119, which lacks μ-opioid receptor agonism and inhibits cocaine-primed and stress-primed reinstatement in a conditioned place-preference paradigm. The results suggest the development of BU10119 for the management of relapse to cocaine seeking.
Collapse
MESH Headings
- Animals
- Buprenorphine/pharmacology
- Buprenorphine/analogs & derivatives
- Mice
- Male
- Cocaine/pharmacology
- Stress, Psychological/drug therapy
- Stress, Psychological/metabolism
- Cocaine-Related Disorders/drug therapy
- Mice, Inbred C57BL
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Drug-Seeking Behavior/drug effects
- Humans
- Receptors, Opioid/metabolism
- Receptors, Opioid/agonists
- Narcotic Antagonists/pharmacology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
Collapse
Affiliation(s)
- Todd M Hillhouse
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Keith M Olson
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - James E Hallahan
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Lauren G Rysztak
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Bryan F Sears
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Claire Meurice
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Mehrnoosh Ostovar
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Peyton O Koppenhaver
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Joshua L West
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Emily M Jutkiewicz
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Stephen M Husbands
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - John R Traynor
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| |
Collapse
|
16
|
Relative potency of intravenous oxymorphone compared to other µ opioid agonists in humans - pilot study outcomes. Psychopharmacology (Berl) 2021; 238:2503-2514. [PMID: 34106317 PMCID: PMC8514134 DOI: 10.1007/s00213-021-05872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
AIMS Intravenous (IV) misuse of the µ opioid analgesic oxymorphone has caused significant public health harms; however, no controlled data on its IV abuse potential are available. The primary aims of this pilot study were to directly compare IV oxymorphone to IV oxycodone, morphine, and hydromorphone on a subjective measure of drug liking and to assess relative potency. METHODS Participants (n = 6) with opioid use disorder, physical dependence, and current IV use completed this two-site, within-subject, double-blind, placebo-controlled, inpatient pilot study. During each session, one IV dose (mg/70 kg) was administered: oxymorphone (1.8, 3.2, 5.6, 10, 18, 32), hydromorphone (1.8, 3.2, 5.6, 10, 18), oxycodone (18, 32, 56), morphine (18, 32), and placebo. Data were collected before and for 6 h after dosing. Primary outcomes included safety/physiological effects, subjective reports of drug liking, and relative potency estimates. RESULTS All active test drugs produced prototypical, dose-related µ opioid agonist effects (e.g., miosis). Oxymorphone was more potent than the comparator opioids on several measures, including drug liking and respiratory depression (p < 0.05). Across abuse-related subjective outcomes, oxymorphone was 2.3-2.8-fold more potent than hydromorphone and 12.5-14-fold more potent than oxycodone (p < 0.05). CONCLUSIONS Despite the relatively small sample size, this pilot study detected robust oxymorphone effects. Oxymorphone was far more potent than the comparator opioids, particularly on abuse potential outcomes. Overall, these findings may help explain surveillance reports that demonstrate, after adjusting for prescription availability, oxymorphone is injected at the highest frequency, relative to other prescription opioids.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Opioids are administered to cancer patients although concerns have been raised that they may promote tumour growth or metastasis owing to their ability to suppress anti-cancer immunity. Tramadol has been reported to preserve or promote the immune response and may therefore be preferred to other opioids in cancer patients. We reviewed the literature documenting the immunomodulatory effects of tramadol. RECENT FINDINGS Recent clinical evidence appears to confirm that tramadol possesses anti-inflammatory properties, and preserves some signalling cascades of the immune system relevant to anti-cancer defence. Tramadol is reported to promote or preserve immunity including natural killer cell activity which is important in anti-cancer defences.
Collapse
|
18
|
Kibaly C, Alderete JA, Liu SH, Nasef HS, Law PY, Evans CJ, Cahill CM. Oxycodone in the Opioid Epidemic: High 'Liking', 'Wanting', and Abuse Liability. Cell Mol Neurobiol 2021; 41:899-926. [PMID: 33245509 PMCID: PMC8155122 DOI: 10.1007/s10571-020-01013-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
It is estimated that nearly a third of people who abuse drugs started with prescription opioid medicines. Approximately, 11.5 million Americans used prescription drugs recreationally in 2016, and in 2018, 46,802 Americans died as the result of an opioid overdose, including prescription opioids, heroin, and illicitly manufactured fentanyl (National Institutes on Drug Abuse (2020) Opioid Overdose Crisis. https://www.drugabuse.gov/drugs-abuse/opioids/opioid-overdose-crisis . Accessed 06 June 2020). Yet physicians will continue to prescribe oral opioids for moderate-to-severe pain in the absence of alternative therapeutics, underscoring the importance in understanding how drug choice can influence detrimental outcomes. One of the opioid prescription medications that led to this crisis is oxycodone, where misuse of this drug has been rampant. Being one of the most highly prescribed opioid medications for treating moderate-to-severe pain as reflected in the skyrocketed increase in retail sales of 866% between 1997 and 2007, oxycodone was initially suggested to be less addictive than morphine. The false-claimed non-addictive formulation of oxycodone, OxyContin, further contributed to the opioid crisis. Abuse was often carried out by crushing the pills for immediate burst release, typically by nasal insufflation, or by liquefying the pills for intravenous injection. Here, we review oxycodone pharmacology and abuse liability as well as present the hypothesis that oxycodone may exhibit a unique pharmacology that contributes to its high likability and abuse susceptibility. We will discuss various mechanisms that likely contribute to the high abuse rate of oxycodone including clinical drug likability, pharmacokinetics, pharmacodynamics, differences in its actions within mesolimbic reward circuity compared to other opioids, and the possibility of differential molecular and cellular receptor interactions that contribute to its selective effects. We will also discuss marketing strategies and drug difference that likely contributes to the oxycodone opioid use disorders and addiction.
Collapse
Affiliation(s)
- Cherkaouia Kibaly
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA.
| | - Jacob A Alderete
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Steven H Liu
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Hazem S Nasef
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Ping-Yee Law
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Christopher J Evans
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Tapentadol Versus Tramadol: A Narrative and Comparative Review of Their Pharmacological, Efficacy and Safety Profiles in Adult Patients. Drugs 2021; 81:1257-1272. [PMID: 34196947 PMCID: PMC8318929 DOI: 10.1007/s40265-021-01515-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
We conducted a narrative review of the literature to compare the pharmacological, efficacy and safety profiles of tapentadol and tramadol, and to assess the clinical interest of tapentadol in adult patients. Tapentadol and tramadol share a mixed mechanism of action, including both mu-agonist and monoaminergic properties. Tapentadol is approximately two to three times more potent than tramadol and two to three times less potent than morphine. It has no identified analgesically active metabolite and is not significantly metabolised by cytochrome P450 enzymes, thus overcoming some limitations of tramadol, including the potential for pharmacokinetic drug-drug interactions and interindividual variability due to genetic polymorphisms of cytochrome P450 enzymes. The toxicity profiles of tramadol and tapentadol are similar; however tapentadol is likely to result in less exposure to serotoninergic adverse effects (nausea, vomiting, hypoglycaemia) but cause more opioid adverse effects (constipation, respiratory depression, abuse) than tramadol. The safety of tapentadol in real-world conditions remains poorly documented, particularly in at-risk patient subgroups and also in the ability to assess the risk associated with its residual serotonergic activity (serotonin syndrome, seizures). Because of an earlier market introduction, more real-world safety data are available for tramadol, including data from at-risk patient subgroups. The level of evidence on the efficacy of both tramadol and tapentadol for the treatment of chronic pain is globally low. The trials published to date show overall that tapentadol does not provide a clinically significant analgesic improvement compared to existing treatments, for which the safety profile is much better known. In conclusion, tapentadol is not a first-line opioid but represents an additional analgesic in the therapeutic choices, which some patients may benefit from after careful examination of their clinical situation, co-morbidities and co-medications.
Collapse
|
20
|
Abstract
This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
21
|
Childers WE, Abou-Gharbia MA. "I'll Be Back": The Resurrection of Dezocine. ACS Med Chem Lett 2021; 12:961-968. [PMID: 34141081 DOI: 10.1021/acsmedchemlett.1c00233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022] Open
Abstract
Beginning with opium itself, natural and synthetic opioids have been used as analgesics for over 8000 years and were likely abused as drugs of recreation for that long as well. However, the "opioid crisis" resulted in attempts to avoid or limit opioid analgesics in favor of other therapies and methods. Mu opioid agonists can be effective analgesics but suffer from addiction, tolerance, and dangerous, sometimes fatal, side effects. One exception to this generalization is dezocine (Dalgan), a mixed mu/kappa opioid partial agonist. Dezocine is at least as effective as morphine in reducing acute pain in animal models and clinical applications such as postoperative pain. And while dezocine was discontinued in western markets in 2011, it has become the favored opioid analgesic in China, capturing over 40% of the market. Additionally, dezocine possesses norepinephrine uptake inhibitory activity, which may synergize with mu agonism in the case of acute pain treatment and possibly endow the drug with antinociceptive activity in neuropathic pain conditions. This Innovations article summarizes the history and properties of dezocine and presents evidence and rationale for why dezocine has undergone a resurrection.
Collapse
Affiliation(s)
- Wayne E. Childers
- The Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, 3307 N. Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Magid A. Abou-Gharbia
- The Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, 3307 N. Broad Street, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
22
|
Pharmacokinetic neuroimaging to study the dose-related brain kinetics and target engagement of buprenorphine in vivo. Neuropsychopharmacology 2021; 46:1220-1228. [PMID: 33603137 PMCID: PMC8115308 DOI: 10.1038/s41386-021-00976-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/18/2020] [Accepted: 01/24/2021] [Indexed: 12/31/2022]
Abstract
A wide range of buprenorphine doses are used for either pain management or maintenance therapy in opioid addiction. The complex in vitro profile of buprenorphine, with affinity for µ-, δ-, and κ-opioid receptors (OR), makes it difficult to predict its dose-related neuropharmacology in vivo. In rats, microPET imaging and pretreatment by OR antagonists were performed to assess the binding of radiolabeled buprenorphine (microdose 11C-buprenorphine) to OR subtypes in vivo (n = 4 per condition). The µ-selective antagonist naloxonazine (10 mg/kg) and the non-selective OR antagonist naloxone (1 mg/kg) blocked the binding of 11C-buprenorphine, while pretreatment by the δ-selective (naltrindole, 3 mg/kg) or the κ-selective antagonist (norbinaltorphimine, 10 mg/kg) did not. In four macaques, PET imaging and kinetic modeling enabled description of the regional brain kinetics of 11C-buprenorphine, co-injected with increasing doses of unlabeled buprenorphine. No saturation of the brain penetration of buprenorphine was observed for doses up to 0.11 mg/kg. Regional differences in buprenorphine-associated receptor occupancy were observed. Analgesic doses of buprenorphine (0.003 and 0.006 mg/kg), respectively, occupied 20% and 49% of receptors in the thalamus while saturating the low but significant binding observed in cerebellum and occipital cortex. Occupancy >90% was achieved in most brain regions with plasma concentrations >7 µg/L. PET data obtained after co-injection of an analgesic dose of buprenorphine (0.003 mg/kg) predicted the binding potential of microdose 11C-buprenorphine. This strategy could be further combined with pharmacodynamic exploration or pharmacological MRI to investigate the neuropharmacokinetics and neuroreceptor correlate, at least at µ-OR, of the acute effects of buprenorphine in humans.
Collapse
|
23
|
Quantitative mapping of individual voxels in the peritumoral region of IDH-wildtype glioblastoma to distinguish between tumor infiltration and edema. J Neurooncol 2021; 153:251-261. [PMID: 33905055 DOI: 10.1007/s11060-021-03762-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE The peritumoral region (PTR) in glioblastoma (GBM) represents a combination of infiltrative tumor and vasogenic edema, which are indistinguishable on magnetic resonance imaging (MRI). We developed a radiomic signature by using imaging data from low grade glioma (LGG) (marker of tumor) and PTR of brain metastasis (BM) (marker of edema) and applied it on the GBM PTR to generate probabilistic maps. METHODS 270 features were extracted from T1-weighted, T2-weighted, and apparent diffusion coefficient maps in over 3.5 million voxels of LGG (36 segments) and BM (45 segments) scanned in a 1.5T MRI. A support vector machine classifier was used to develop the radiomics model from approximately 50% voxels (downsampled to 10%) and validated with the remaining. The model was applied to over 575,000 voxels of the PTR of 10 patients with GBM to generate a quantitative map using Platt scaling (infiltrative tumor vs. edema). RESULTS The radiomics model had an accuracy of 0.92 and 0.79 in the training and test set, respectively (LGG vs. BM). When extrapolated on the GBM PTR, 9 of 10 patients had a higher percentage of voxels with a tumor-like signature over radiological recurrence areas. In 7 of 10 patients, the areas under curves (AUC) were > 0.50 confirming a positive correlation. Including all the voxels from the GBM patients, the infiltration signature had an AUC of 0.61 to predict recurrence. CONCLUSION A radiomic signature can demarcate areas of microscopic tumors from edema in the PTR of GBM, which correlates with areas of future recurrence.
Collapse
|
24
|
LaVigne JE, Hecksel R, Keresztes A, Streicher JM. Cannabis sativa terpenes are cannabimimetic and selectively enhance cannabinoid activity. Sci Rep 2021; 11:8232. [PMID: 33859287 PMCID: PMC8050080 DOI: 10.1038/s41598-021-87740-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
Limited evidence has suggested that terpenes found in Cannabis sativa are analgesic, and could produce an "entourage effect" whereby they modulate cannabinoids to result in improved outcomes. However this hypothesis is controversial, with limited evidence. We thus investigated Cannabis sativa terpenes alone and with the cannabinoid agonist WIN55,212 using in vitro and in vivo approaches. We found that the terpenes α-humulene, geraniol, linalool, and β-pinene produced cannabinoid tetrad behaviors in mice, suggesting cannabimimetic activity. Some behaviors could be blocked by cannabinoid or adenosine receptor antagonists, suggesting a mixed mechanism of action. These behavioral effects were selectively additive with WIN55,212, suggesting terpenes can boost cannabinoid activity. In vitro experiments showed that all terpenes activated the CB1R, while some activated other targets. Our findings suggest that these Cannabis terpenes are multifunctional cannabimimetic ligands that provide conceptual support for the entourage effect hypothesis and could be used to enhance the therapeutic properties of cannabinoids.
Collapse
Affiliation(s)
- Justin E LaVigne
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Ryan Hecksel
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Attila Keresztes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
25
|
A modulator of the low-voltage-activated T-type calcium channel that reverses HIV glycoprotein 120-, paclitaxel-, and spinal nerve ligation-induced peripheral neuropathies. Pain 2021; 161:2551-2570. [PMID: 32541387 DOI: 10.1097/j.pain.0000000000001955] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The voltage-gated calcium channels CaV3.1-3.3 constitute the T-type subfamily, whose dysfunctions are associated with epilepsy, psychiatric disorders, and chronic pain. The unique properties of low-voltage-activation, faster inactivation, and slower deactivation of these channels support their role in modulation of cellular excitability and low-threshold firing. Thus, selective T-type calcium channel antagonists are highly sought after. Here, we explored Ugi-azide multicomponent reaction products to identify compounds targeting T-type calcium channel. Of the 46 compounds tested, an analog of benzimidazolonepiperidine-5bk (1-{1-[(R)-{1-[(1S)-1-phenylethyl]-1H-1,2,3,4-tetrazol-5-yl}(thiophen-3-yl)methyl]piperidin-4-yl}-2,3-dihydro-1H-1,3-benzodiazol-2-one) modulated depolarization-induced calcium influx in rat sensory neurons. Modulation of T-type calcium channels by 5bk was further confirmed in whole-cell patch clamp assays in dorsal root ganglion (DRG) neurons, where pharmacological isolation of T-type currents led to a time- and concentration-dependent regulation with a low micromolar IC50. Lack of an acute effect of 5bk argues against a direct action on T-type channels. Genetic knockdown revealed CaV3.2 to be the isoform preferentially modulated by 5bk. High voltage-gated calcium, as well as tetrodotoxin-sensitive and -resistant sodium, channels were unaffected by 5bk. 5bk inhibited spontaneous excitatory postsynaptic currents and depolarization-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices. Notably, 5bk did not bind human mu, delta, or kappa opioid receptors. 5bk reversed mechanical allodynia in rat models of HIV-associated neuropathy, chemotherapy-induced peripheral neuropathy, and spinal nerve ligation-induced neuropathy, without effects on locomotion or anxiety. Thus, 5bk represents a novel T-type modulator that could be used to develop nonaddictive pain therapeutics.
Collapse
|
26
|
Jia X, Ciallella HL, Russo DP, Zhao L, James MH, Zhu H. Construction of a Virtual Opioid Bioprofile: A Data-Driven QSAR Modeling Study to Identify New Analgesic Opioids. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:3909-3919. [PMID: 34239782 PMCID: PMC8259887 DOI: 10.1021/acssuschemeng.0c09139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Compared to traditional experimental approaches, computational modeling is a promising strategy to efficiently prioritize new candidates with low cost. In this study, we developed a novel data mining and computational modeling workflow proven to be applicable by screening new analgesic opioids. To this end, a large opioid data set was used as the probe to automatically obtain bioassay data from the PubChem portal. There were 114 PubChem bioassays selected to build quantitative structure-activity relationship (QSAR) models based on the testing results across the probe compounds. The compounds tested in each bioassay were used to develop 12 models using the combination of three machine learning approaches and four types of chemical descriptors. The model performance was evaluated by the coefficient of determination (R 2) obtained from 5-fold cross-validation. In total, 49 models developed for 14 bioassays were selected based on the criteria and were identified to be mainly associated with binding affinities to different opioid receptors. The models for these 14 bioassays were further used to fill data gaps in the probe opioids data set and to predict general drug compounds in the DrugBank data set. This study provides a universal modeling strategy that can take advantage of large public data sets for computer-aided drug design (CADD).
Collapse
Affiliation(s)
- Xuelian Jia
- The Rutgers Center for Computational and Integrative Biology, Joint Health Sciences Center, Camden, New Jersey 08103, United States
| | - Heather L Ciallella
- The Rutgers Center for Computational and Integrative Biology, Joint Health Sciences Center, Camden, New Jersey 08103, United States
| | - Daniel P Russo
- The Rutgers Center for Computational and Integrative Biology, Joint Health Sciences Center, Camden, New Jersey 08103, United States
| | - Linlin Zhao
- The Rutgers Center for Computational and Integrative Biology, Joint Health Sciences Center, Camden, New Jersey 08103, United States
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States; Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, New Jersey 08854, United States
| | - Hao Zhu
- The Rutgers Center for Computational and Integrative Biology, Joint Health Sciences Center, Camden, New Jersey 08103, United States; Department of Chemistry, Rutgers University, Camden, New Jersey 08102, United States
| |
Collapse
|
27
|
Largent-Milnes TM, Canals M, Streicher JM. Editorial: Novel Molecular Targets for the Treatment of Pain. Front Mol Neurosci 2021; 13:625714. [PMID: 33424551 PMCID: PMC7793778 DOI: 10.3389/fnmol.2020.625714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 12/02/2022] Open
Affiliation(s)
- Tally M Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
28
|
France CP, Ahern GP, Averick S, Disney A, Enright HA, Esmaeli-Azad B, Federico A, Gerak LR, Husbands SM, Kolber B, Lau EY, Lao V, Maguire DR, Malfatti MA, Martinez G, Mayer BP, Pravetoni M, Sahibzada N, Skolnick P, Snyder EY, Tomycz N, Valdez CA, Zapf J. Countermeasures for Preventing and Treating Opioid Overdose. Clin Pharmacol Ther 2020; 109:578-590. [PMID: 33113208 DOI: 10.1002/cpt.2098] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
The only medication available currently to prevent and treat opioid overdose (naloxone) was approved by the US Food and Drug Administration (FDA) nearly 50 years ago. Because of its pharmacokinetic and pharmacodynamic properties, naloxone has limited utility under some conditions and would not be effective to counteract mass casualties involving large-scale deployment of weaponized synthetic opioids. To address shortcomings of current medical countermeasures for opioid toxicity, a trans-agency scientific meeting was convened by the US National Institute of Allergy and Infectious Diseases/National Institutes of Health (NIAID/NIH) on August 6 and 7, 2019, to explore emerging alternative approaches for treating opioid overdose in the event of weaponization of synthetic opioids. The meeting was initiated by the Chemical Countermeasures Research Program (CCRP), was organized by NIAID, and was a collaboration with the National Institute on Drug Abuse/NIH (NIDA/NIH), the FDA, the Defense Threat Reduction Agency (DTRA), and the Biomedical Advanced Research and Development Authority (BARDA). This paper provides an overview of several presentations at that meeting that discussed emerging new approaches for treating opioid overdose, including the following: (1) intranasal nalmefene, a competitive, reversible opioid receptor antagonist with a longer duration of action than naloxone; (2) methocinnamox, a novel opioid receptor antagonist; (3) covalent naloxone nanoparticles; (4) serotonin (5-HT)1A receptor agonists; (5) fentanyl-binding cyclodextrin scaffolds; (6) detoxifying biomimetic "nanosponge" decoy receptors; and (7) antibody-based strategies. These approaches could also be applied to treat opioid use disorder.
Collapse
Affiliation(s)
- Charles P France
- Department of Pharmacology, Addiction Research, Treatment and Training Center of Excellence, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | - Saadyah Averick
- Neuroscience Institute, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Alex Disney
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | | - Babak Esmaeli-Azad
- CellCure (Stem Cell Division of CiBots, Inc.), San Diego, California, USA
| | - Arianna Federico
- CellCure (Stem Cell Division of CiBots, Inc.), San Diego, California, USA
| | - Lisa R Gerak
- Department of Pharmacology, Addiction Research, Treatment and Training Center of Excellence, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | | - Edmond Y Lau
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Victoria Lao
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - David R Maguire
- Department of Pharmacology, Addiction Research, Treatment and Training Center of Excellence, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | - Girardo Martinez
- CellCure (Stem Cell Division of CiBots, Inc.), San Diego, California, USA
| | - Brian P Mayer
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Marco Pravetoni
- Department of Pharmacology, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | - Phil Skolnick
- Opiant Pharmaceuticals, Inc., Santa Monica, California, USA
| | - Evan Y Snyder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Nestor Tomycz
- Neuroscience Institute, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Carlos A Valdez
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jim Zapf
- CellCure (Stem Cell Division of CiBots, Inc.), San Diego, California, USA
| |
Collapse
|
29
|
Altarifi AA, Moerke MJ, Alsalem MI, Negus SS. Preclinical assessment of tramadol abuse potential: Effects of acute and repeated tramadol on intracranial self-stimulation in rats. J Psychopharmacol 2020; 34:269881120944153. [PMID: 32842842 DOI: 10.1177/0269881120944153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Tramadol is a widely used analgesic that activates mu-opioid receptors (MOR) and inhibits serotonin and norepinephrine transporters. This mixed pharmacology may limit both its own abuse potential and its modulation of abuse potential of other MOR agonists. AIMS This study used an intracranial self-stimulation (ICSS) procedure to compare abuse-related effects produced by acute or repeated treatment with tramadol or morphine in rats. Abuse potential in ICSS procedures is indicated by a drug-induced increase (or 'facilitation') of ICSS responding. METHODS Adult male Sprague-Dawley rats were implanted with electrodes targeting the medial forebrain bundle and trained to respond on a lever for pulses of electrical brain stimulation. Tramadol effects were evaluated after acute administration (3.2-32 mg/kg) in the absence or presence of the opioid antagonist naltrexone, the CYP2D6 hepatic-enzyme inhibitor quinine or a combination of both. Additionally, both tramadol and morphine were also tested before and after repeated tramadol (32 mg/kg/day for six days) or repeated morphine (3.2 mg/kg/day for six days). RESULTS Acute tramadol produced primarily ICSS rate-decreasing effects that were antagonised by naltrexone but not by quinine or naltrexone + quinine. Tramadol also produced little or no ICSS facilitation after repeated tramadol or repeated morphine, and repeated tramadol did not enhance ICSS facilitation by morphine. By contrast, morphine-induced ICSS facilitation was enhanced by repeated morphine treatment. CONCLUSIONS These results suggest that tramadol has lower abuse potential than other abused MOR agonists and that repeated tramadol exposure produces relatively little enhancement of abuse potential of other MOR agonists.
Collapse
Affiliation(s)
- Ahmad A Altarifi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Megan J Moerke
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, USA
| | - Mohammad I Alsalem
- Department of Anatomy and Histology, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, USA
| |
Collapse
|
30
|
Åstrand A, Vikingsson S, Jakobsen I, Björn N, Kronstrand R, Gréen H. Activation of the μ-opioid receptor by alicyclic fentanyls: Changes from high potency full agonists to low potency partial agonists with increasing alicyclic substructure. Drug Test Anal 2020; 13:169-174. [PMID: 32749741 PMCID: PMC7891621 DOI: 10.1002/dta.2906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
Fentanyl analogs represent an important group of new psychoactive substances and knowing their efficacy and potency might assist in interpreting observed concentrations. The potency of fentanyl analogs can be estimated from in vitro studies and can be used to establish structure–activity relationships. In this study, recombinant CHO‐K1 cells (AequoScreen) expressing the human μ‐opioid receptor were used to establish dose–response curves via luminescent analysis for cyclopropyl‐, cyclobutyl‐, cyclopentyl‐, cyclohexyl‐, and 2,2,3,3‐tetramethylcyclopropylfentanyl (TMCPF), on three separate occasions, using eight different concentrations in an eight‐fold serial dilution in triplicates starting at ~60 μM. Fentanyl was used as a full agonist reference while morphine and buprenorphine were included for comparison. Cyclopropylfentanyl (EC50 = 4.3 nM), cyclobutylfentanyl (EC50 = 6.2 nM), and cyclopentylfentanyl (EC50 = 13 nM) were full agonists slightly less potent than fentanyl (EC50 = 1.7 nM). Cyclohexylfentanyl (EC50 = 3.1 μM, efficacy 48%) and TMCPF (EC50 = 1.5 μM, efficacy 65%) were partial agonists less potent than morphine (EC50 = 430 nM). Based on the results, cyclopropyl‐, cyclobutyl‐, and cyclopentylfentanyl would be expected to induce intoxication or cause fatal poisonings at similar concentrations to fentanyl, while the toxic or fatal concentrations of cyclohexylfentanyl and TMCPF would be expected to be much higher.
Collapse
Affiliation(s)
- Anna Åstrand
- Division of Drug Research, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Svante Vikingsson
- Division of Drug Research, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.,Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Ingrid Jakobsen
- Division of Drug Research, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.,Department of Laboratory Medicine, Örebro University Hospital, Örebro, Sweden
| | - Niclas Björn
- Division of Drug Research, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Robert Kronstrand
- Division of Drug Research, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.,Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Henrik Gréen
- Division of Drug Research, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.,Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| |
Collapse
|
31
|
Stine C, Coleman DL, Flohrschutz AT, Thompson AL, Mishra S, Blagg BS, Largent-Milnes TM, Lei W, Streicher JM. Heat shock protein 90 inhibitors block the antinociceptive effects of opioids in mouse chemotherapy-induced neuropathy and cancer bone pain models. Pain 2020; 161:1798-1807. [PMID: 32701840 PMCID: PMC8607824 DOI: 10.1097/j.pain.0000000000001886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heat shock protein 90 (Hsp90) is a ubiquitous signal transduction regulator, and Hsp90 inhibitors are in clinical development as cancer therapeutics. However, there have been very few studies on the impact of Hsp90 inhibitors on pain or analgesia, a serious concern for cancer patients. We previously found that Hsp90 inhibitors injected into the brain block opioid-induced antinociception in tail flick, paw incision, and HIV neuropathy pain. This study extended from that initial work to test the cancer-related clinical impact of Hsp90 inhibitors on opioid antinociception in cancer-induced bone pain in female BALB/c mice and chemotherapy-induced peripheral neuropathy in male and female CD-1 mice. Mice were treated with Hsp90 inhibitors (17-AAG, KU-32) by the intracerebroventricular, intrathecal, or intraperitoneal routes, and after 24 hours, pain behaviors were evaluated after analgesic drug treatment. Heat shock protein 90 inhibition in the brain or systemically completely blocked morphine and oxymorphone antinociception in chemotherapy-induced peripheral neuropathy; this effect was partly mediated by decreased ERK and JNK MAPK activation and by increased protein translation, was not altered by chronic treatment, and Hsp90 inhibition had no effect on gabapentin antinociception. We also found that the Hsp90 isoform Hsp90α and the cochaperone Cdc37 were responsible for the observed changes in opioid antinociception. By contrast, Hsp90 inhibition in the spinal cord or systemically partially reduced opioid antinociception in cancer-induced bone pain. These results demonstrate that Hsp90 inhibitors block opioid antinociception in cancer-related pain, suggesting that Hsp90 inhibitors for cancer therapy could decrease opioid treatment efficacy.
Collapse
Affiliation(s)
- Carrie Stine
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724 USA
| | - Deziree L. Coleman
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724 USA
| | - Austin T. Flohrschutz
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724 USA
| | - Austen L. Thompson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724 USA
| | - Sanket Mishra
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Brian S. Blagg
- Department of Chemistry and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724 USA
| | - Wei Lei
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724 USA
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Presbyterian College, Clinton, SC 29325 USA
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724 USA
| |
Collapse
|
32
|
Preventive effects of naldemedine, peripherally acting μ-opioid receptor antagonist, on morphine-induced nausea and vomiting in ferrets. Life Sci 2020; 257:118048. [PMID: 32622946 DOI: 10.1016/j.lfs.2020.118048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
AIMS Naldemedine is a peripherally acting μ-opioid receptor antagonists (PAMORAs) indicated for the treatment of opioid-induced constipation (OIC). We investigated the preventive effect of naldemedine on morphine-induced nausea and vomiting in ferrets and conducted a pharmacokinetic/pharmacodynamic (PK/PD) analysis. MAIN METHODS The antiemetic effect of naldemedine was evaluated as the frequency and time of retching (rhythmic abdominal contractile motion) and vomiting (throwing up vomit or similar reactions) caused by morphine in ferrets. After a single oral administration of naldemedine to ferrets, the plasma concentrations of naldemedine and morphine were measured by liquid chromatography-tandem mass spectrometry. KEY FINDINGS Naldemedine showed a potent and dose-dependent anti-emetic effects against morphine-induced emetic responses, for up to 6 h. The dose of naldemedine that produced half the maximal effect (ED50) value for anti-emetic effect of naldemedine in the morphine-treated ferrets was 0.033 mg/kg. The PK/PD analysis revealed that the antiemetic effect was related to the plasma naldemedine concentration, with a half maximal effective concentration that produces half the maximal effect (EC50) of 3.51 ng/mL. The plasma concentration producing an antiemetic effect was almost 200-fold lower than that inducing an anti-analgesic effect in rats. SIGNIFICANCE Naldemedine showed potent inhibition of morphine-induced vomiting for up to 6 h after dosing. These data suggest that naldemedine possesses antiemetic properties and could be effective against opioid-induced nausea and vomiting (OINV).
Collapse
|
33
|
Vekariya RH, Lei W, Ray A, Saini SK, Zhang S, Molnar G, Barlow D, Karlage KL, Bilsky EJ, Houseknecht KL, Largent-Milnes TM, Streicher JM, Ananthan S. Synthesis and Structure–Activity Relationships of 5′-Aryl-14-alkoxypyridomorphinans: Identification of a μ Opioid Receptor Agonist/δ Opioid Receptor Antagonist Ligand with Systemic Antinociceptive Activity and Diminished Opioid Side Effects. J Med Chem 2020; 63:7663-7694. [DOI: 10.1021/acs.jmedchem.0c00503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rakesh H. Vekariya
- Chemistry Department, Southern Research, Birmingham, Alabama 35205, United States
| | - Wei Lei
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Abhisek Ray
- Chemistry Department, Southern Research, Birmingham, Alabama 35205, United States
| | - Surendra K. Saini
- Chemistry Department, Southern Research, Birmingham, Alabama 35205, United States
| | - Sixue Zhang
- Chemistry Department, Southern Research, Birmingham, Alabama 35205, United States
| | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Deborah Barlow
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, United States
| | - Kelly L. Karlage
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Edward J. Bilsky
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Karen L. Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, United States
| | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Subramaniam Ananthan
- Chemistry Department, Southern Research, Birmingham, Alabama 35205, United States
| |
Collapse
|
34
|
Daily intermittent fasting in mice enhances morphine-induced antinociception while mitigating reward, tolerance, and constipation. Pain 2020; 161:2353-2363. [PMID: 32427747 DOI: 10.1097/j.pain.0000000000001918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The opioid epidemic has plagued the United States with high levels of abuse and poor quality of life for chronic pain patients requiring continuous use of opioids. New drug discovery efforts have been implemented to mitigate this epidemic; however, new medications are still limited by low efficacy and/or high side effect and abuse potential. Intermittent fasting (IF) has recently been shown to improve a variety of pathological states, including stroke and neuroinflammation. Numerous animal and human studies have shown the benefits of IF in these disease states, but not in pain and opioid treatment. We thus subjected male and female CD-1 mice to 18-hour fasting intervals followed by 6-hour feed periods with standard chow for 1 week. Mice that underwent this diet displayed an enhanced antinociceptive response to morphine both in efficacy and duration using thermal tail-flick and postoperative paw incision pain models. While showing enhanced antinociception, IF mice also demonstrated no morphine reward and reduced tolerance and constipation. Seeking a mechanism for these improvements, we found that the mu-opioid receptor showed enhanced efficacy and reduced tolerance in the spinal cord and periaqueductal gray, respectively, from IF mice using a S-GTPγS coupling assay. These improvements in receptor function were not due to changes in mu-opioid receptor protein expression. These data suggest that a daily IF diet may improve the therapeutic index of acute and chronic opioid therapies for pain patients in the clinic, providing a novel tool to improve patient therapy and reduce potential abuse.
Collapse
|
35
|
Coutens B, Derreumaux C, Labaste F, Minville V, Guiard BP, Moulédous L, Bounes V, Roussin A, Frances B. Efficacy of multimodal analgesic treatment of severe traumatic acute pain in mice pretreated with chronic high dose of buprenorphine inducing mechanical allodynia. Eur J Pharmacol 2020; 875:172884. [PMID: 31870829 DOI: 10.1016/j.ejphar.2019.172884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022]
Abstract
Managing severe acute nociceptive pain in buprenorphine-maintained individuals for opioid use disorder management is challenging owing to the high affinity and very slow dissociation of buprenorphine from μ-opioid receptors that hinders the use of full agonist opioid analgesics. In a translational approach, the aim of this study was to use an animal setting to investigate the effects of a chronic high dose of buprenorphine treatment on nociceptive thresholds before and after applying a severe acute nociceptive traumatic surgery stimulus and to screen postoperative pharmacological analgesic strategies. A chronic treatment of mice with a high dose of buprenorphine (BUP HD, 2 × 200 μg/kg/day; i.p.) revealed significant mechanical allodynia. One and two days after having discontinued buprenorphine administration and having induced a severe nociceptive acute pain by a closed tibial fracture, acute administration of morphine at a dose which has analgesic effects in absence of pretreatment (4.5 mg/kg; i.p.), was ineffective to reduce pain in the BUP HD group. However, mimicking multimodal analgesia strategy used in human postoperative context, the combination of morphine (administered at the same dose) with a NMDA receptor antagonist (ketamine) or an NSAID (ketoprofen) produced antinociceptive responses in these animals. The mouse model of closed tibial fracture could be useful to identify analgesic strategies of postoperative pain for patients with chronic exposure to opioids and suffering from hyperalgesia.
Collapse
Affiliation(s)
- Basile Coutens
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, CNRS, UPS, 31000, Toulouse, France
| | - Céline Derreumaux
- Pôle Médecine d'Urgence, Hôpital Universitaire de Purpan, Toulouse, 31059, Cedex 9, France
| | - François Labaste
- Hôpital de Rangueil, Centre Hospitalier Universitaire de Toulouse-Rangueil, 31300, Toulouse, France
| | - Vincent Minville
- Pôle Médecine d'Urgence, Hôpital Universitaire de Purpan, Toulouse, 31059, Cedex 9, France
| | - Bruno Pierre Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, CNRS, UPS, 31000, Toulouse, France.
| | - Lionel Moulédous
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, CNRS, UPS, 31000, Toulouse, France
| | - Vincent Bounes
- Pôle Médecine d'Urgence, Hôpital Universitaire de Purpan, Toulouse, 31059, Cedex 9, France
| | - Anne Roussin
- Equipe de Pharmacoépidémiologie UMR1027, Université Paul Sabatier Toulouse III, 31000, Toulouse, France; Centre d'Addictovigilance, Service de Pharmacologie Médicale et Clinique, Centre Hospitalier Universitaire de Toulouse-Purpan, 31000, Toulouse, France
| | - Bernard Frances
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, CNRS, UPS, 31000, Toulouse, France
| |
Collapse
|