1
|
Fu Y, Yao M, Qiu P, Song M, Ni X, Niu E, Shi J, Wang T, Zhang Y, Yu H, Qian L. Identification of transcription factor BnHDG4-A08 as a novel candidate associated with the accumulation of oleic, linoleic, linolenic, and erucic acid in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:243. [PMID: 39352575 DOI: 10.1007/s00122-024-04733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/24/2024] [Indexed: 10/03/2024]
Abstract
KEY MESSAGE We screened 47 significantly associated haplotype blocks for oleic, linoleic, linolenic, and erucic acid, with 17 blocks influencing multiple traits. A novel candidate of transcription factor BnHDG4 A08 influencing oleic, linoleic, linolenic, and erucic acid was identified, by a joint strategy of haplotype-based genome-wide association study, genomic resequencing, gene cloning, and co-expression network Fatty acid (FA) composition determines the quality and economic value of rapeseed oil (Brassica napus). However, the molecular network of FAs is unclear. In the current study, multi-strategies of haplotype-based genome-wide association study (GWAS), genomic resequencing, gene cloning, and co-expression network were joint to reveal novel genetic factors influencing FA accumulation in rapeseed. We identified 47 significantly associated haplotype blocks for oleic, linoleic, linolenic, and erucic acid, with 17 blocks influencing multiple traits, using a haplotype-based GWAS with phenotype data from 203 Chinese semi-winter accessions. A total of 61 rapeseed orthologs involved in acyl-lipid metabolism, carbohydrate metabolism, or photosynthesis were identified in these 17 blocks. Among these genes, BnHDG4-A08, encoding a class IV homeodomain leucine-zipper transcription factor, exhibited two single-nucleotide polymorphisms (SNPs) in the exon and intron, with significant associations with oleic, linoleic, linolenic, and erucic acid. Gene cloning further validated two SNPs in the exon of BnHDG4-A08 in a population with 75 accessions, leading to two amino acid changes (T372A and P366L) and significant variation of oleic, linoleic, linolenic, and erucic acid. A competitive allele-specific PCR (KASP) marker based on the SNPs was successfully developed and validated. Moreover, 98 genes exhibiting direct interconnections and high weight values with BnHDG4-A08 were identified through co-expression network analysis using transcriptome data from 13 accessions. Our study identified a novel FA candidate of transcription factor BnHDG4-A08 influencing oleic, linoleic, linolenic, and erucic acid. This gene provides a potential promising gene resource for the novel mechanistic understanding of transcription factors regulating FA accumulation.
Collapse
Affiliation(s)
- Ying Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Min Yao
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Ping Qiu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Maolin Song
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Xiyuan Ni
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Erli Niu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianghua Shi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tanliu Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaofeng Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Lunwen Qian
- College of Agronomy, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
2
|
Serson WR, Gishini MFS, Stupar RM, Stec AO, Armstrong PR, Hildebrand D. Identification and Candidate Gene Evaluation of a Large Fast Neutron-Induced Deletion Associated with a High-Oil Phenotype in Soybean Seeds. Genes (Basel) 2024; 15:892. [PMID: 39062671 PMCID: PMC11276498 DOI: 10.3390/genes15070892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Since the dawn of agriculture, crops have been genetically altered for desirable characteristics. This has included the selection of natural and induced mutants. Increasing the production of plant oils such as soybean (Glycine max) oil as a renewable resource for food and fuel is valuable. Successful breeding for higher oil levels in soybeans, however, usually results in reduced seed protein. A soybean fast neutron population was screened for oil content, and three high oil mutants with minimal reductions in protein levels were found. Three backcross F2 populations derived from these mutants exhibited segregation for seed oil content. DNA was pooled from the high-oil and normal-oil plants within each population and assessed by comparative genomic hybridization. A deletion encompassing 20 gene models on chromosome 14 was found to co-segregate with the high-oil trait in two of the three populations. Eighteen genes in the deleted region have known functions that appear unrelated to oil biosynthesis and accumulation pathways, while one of the unknown genes (Glyma.14G101900) may contribute to the regulation of lipid droplet formation. This high-oil trait can facilitate the breeding of high-oil soybeans without protein reduction, resulting in higher meal protein levels.
Collapse
Affiliation(s)
- William R. Serson
- Department of Biology, Penn State University, Lehigh Valley, Center Valley, PA 18034, USA
| | | | - Robert M. Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA; (R.M.S.); (A.O.S.)
| | - Adrian O. Stec
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA; (R.M.S.); (A.O.S.)
| | - Paul R. Armstrong
- United States Department of Agriculture-Agricultural Research Service, Manhattan, KS 66502, USA
| | - David Hildebrand
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA;
| |
Collapse
|
3
|
Kim WJ, Yang B, Kim DG, Kim SH, Lee YJ, Kim J, Baek SH, Kang SY, Ahn JW, Choi YJ, Bae CH, Iwar K, Kim SH, Ryu J. Genotyping-by-Sequencing Analysis Reveals Associations between Agronomic and Oil Traits in Gamma Ray-Derived Mutant Rapeseed ( Brassica napus L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1576. [PMID: 38891384 PMCID: PMC11174930 DOI: 10.3390/plants13111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Rapeseed (Brassica napus L.) holds significant commercial value as one of the leading oil crops, with its agronomic features and oil quality being crucial determinants. In this investigation, 73,226 single nucleotide polymorphisms (SNPs) across 95 rapeseed mutant lines induced by gamma rays, alongside the original cultivar ('Tamra'), using genotyping-by-sequencing (GBS) analysis were examined. This study encompassed gene ontology (GO) analysis and a genomewide association study (GWAS), thereby concentrating on agronomic traits (e.g., plant height, ear length, thousand-seed weight, and seed yield) and oil traits (including fatty acid composition and crude fat content). The GO analysis unveiled a multitude of genes with SNP variations associated with cellular processes, intracellular anatomical structures, and organic cyclic compound binding. Through GWAS, we detected 320 significant SNPs linked to both agronomic (104 SNPs) and oil traits (216 SNPs). Notably, two novel candidate genes, Bna.A05p02350D (SFGH) and Bna.C02p22490D (MDN1), are implicated in thousand-seed weight regulation. Additionally, Bna.C03p14350D (EXO70) and Bna.A09p05630D (PI4Kα1) emerged as novel candidate genes associated with erucic acid and crude fat content, respectively. These findings carry implications for identifying superior genotypes for the development of new cultivars. Association studies offer a cost-effective means of screening mutants and selecting elite rapeseed breeding lines, thereby enhancing the commercial viability of this pivotal oil crop.
Collapse
Affiliation(s)
- Woon Ji Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (D.-G.K.); (S.H.K.); (Y.-J.L.); (J.K.); (J.-W.A.)
| | - Baul Yang
- Imsil Cheese & Food Research Institute, Imsil-gun 55918, Republic of Korea; (B.Y.); (Y.-J.C.)
| | - Dong-Gun Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (D.-G.K.); (S.H.K.); (Y.-J.L.); (J.K.); (J.-W.A.)
| | - Sang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (D.-G.K.); (S.H.K.); (Y.-J.L.); (J.K.); (J.-W.A.)
| | - Ye-Jin Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (D.-G.K.); (S.H.K.); (Y.-J.L.); (J.K.); (J.-W.A.)
| | - Juyoung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (D.-G.K.); (S.H.K.); (Y.-J.L.); (J.K.); (J.-W.A.)
| | - So Hyeon Baek
- Department of Plant Production Sciences, Graduate School, Sunchon National University, Suncheon 57922, Republic of Korea; (S.H.B.); (C.-H.B.)
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea;
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (D.-G.K.); (S.H.K.); (Y.-J.L.); (J.K.); (J.-W.A.)
| | - Yu-Jin Choi
- Imsil Cheese & Food Research Institute, Imsil-gun 55918, Republic of Korea; (B.Y.); (Y.-J.C.)
| | - Chang-Hyu Bae
- Department of Plant Production Sciences, Graduate School, Sunchon National University, Suncheon 57922, Republic of Korea; (S.H.B.); (C.-H.B.)
| | - Kanivalan Iwar
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.I.); (S.-H.K.)
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.I.); (S.-H.K.)
| | - Jaihyunk Ryu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (D.-G.K.); (S.H.K.); (Y.-J.L.); (J.K.); (J.-W.A.)
| |
Collapse
|
4
|
Hakla HR, Sharma S, Urfan M, Mandlik R, Kumawat S, Rajput P, Khajuria B, Chowdhary R, Deshmukh R, Roychowdhury R, Pal S. Genome-Wide Association Study (GWAS) for Identifying SNPs and Genes Related to Phosphate-Induced Phenotypic Traits in Tomato ( Solanum lycopersicum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:457. [PMID: 38337989 PMCID: PMC10857258 DOI: 10.3390/plants13030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Phosphate (P) is a crucial macronutrient for normal plant growth and development. The P availability in soils is a limitation factor, and understanding genetic factors playing roles in plant adaptation for improving P uptake is of great biological importance. Genome-wide association studies (GWAS) have become indispensable tools in unraveling the genetic basis of complex traits in various plant species. In this study, a comprehensive GWAS was conducted on diverse tomato (Solanum lycopersicum L.) accessions grown under normal and low P conditions for two weeks. Plant traits such as shoot height, primary root length, plant biomass, shoot inorganic content (SiP), and root inorganic content (RiP) were measured. Among several models of GWAS tested, the Bayesian-information and linkage disequilibrium iteratively nested keyway (BLINK) models were used for the identification of single nucleotide polymorphisms (SNPs). Among all the traits analyzed, significantly associated SNPs were recorded for PB, i.e., 1 SNP (SSL4.0CH10_49261145) under control P, SiP, i.e., 1 SNP (SSL4.0CH08_58433186) under control P and 1 SNP (SSL4.0CH08_51271168) under low P and RiP i.e., 2 SNPs (SSL4.0CH04_37267952 and SSL4.0CH09_4609062) under control P and 1 SNP (SSL4.0CH09_3930922) under low P condition. The identified SNPs served as genetic markers pinpointing regions of the tomato genome linked to P-responsive traits. The novel candidate genes associated with the identified SNPs were further analyzed for their protein-protein interactions using STRING. The study provided novel candidate genes, viz. Solyc10g050370 for PB under control, Solyc08g062490, and Solyc08g062500 for SiP and Solyc09g010450, Solyc09g010460, Solyc09g010690, and Solyc09g010710 for RiP under low P condition. These findings offer a glimpse into the genetic diversity of tomato accessions' responses to P uptake, highlighting the potential for tailored breeding programs to develop P-efficient tomato varieties that could adapt to varying soil conditions, making them crucial for sustainable agriculture and addressing global challenges, such as soil depletion and food security.
Collapse
Affiliation(s)
- Haroon Rashid Hakla
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India; (H.R.H.); (S.S.); (M.U.); (P.R.); (B.K.); (R.C.)
- Central Integrated Pest Management Centre (CIPMC), Srinagar 190008, India
| | - Shubham Sharma
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India; (H.R.H.); (S.S.); (M.U.); (P.R.); (B.K.); (R.C.)
| | - Mohammad Urfan
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India; (H.R.H.); (S.S.); (M.U.); (P.R.); (B.K.); (R.C.)
| | - Rushil Mandlik
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India; (R.M.); (S.K.); (R.D.)
- Department of Biotechnology, Central University of Haryana, Mahendergarh 123031, India
| | - Surbhi Kumawat
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India; (R.M.); (S.K.); (R.D.)
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Prakriti Rajput
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India; (H.R.H.); (S.S.); (M.U.); (P.R.); (B.K.); (R.C.)
| | - Bhubneshwari Khajuria
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India; (H.R.H.); (S.S.); (M.U.); (P.R.); (B.K.); (R.C.)
| | - Rehana Chowdhary
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India; (H.R.H.); (S.S.); (M.U.); (P.R.); (B.K.); (R.C.)
| | - Rupesh Deshmukh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India; (R.M.); (S.K.); (R.D.)
- Department of Biotechnology, Central University of Haryana, Mahendergarh 123031, India
| | - Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO)—Volcani Center, Rishon LeZion 7505101, Israel
| | - Sikander Pal
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India; (H.R.H.); (S.S.); (M.U.); (P.R.); (B.K.); (R.C.)
| |
Collapse
|
5
|
Sabbahi R, Azzaoui K, Rhazi L, Ayerdi-Gotor A, Aussenac T, Depeint F, Taleb M, Hammouti B. Factors Affecting the Quality of Canola Grains and Their Implications for Grain-Based Foods. Foods 2023; 12:foods12112219. [PMID: 37297464 DOI: 10.3390/foods12112219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Canola, Brassica napus L., is a major oilseed crop that has various uses in the food, feed, and industrial sectors. It is one of the most widely produced and consumed oilseeds in the world because of its high oil content and favorable fatty acid composition. Canola grains and their derived products, such as canola oil, meal, flour, and bakery products, have a high potential for food applications as they offer various nutritional and functional benefits. However, they are affected by various factors during the production cycle, post-harvest processing, and storage. These factors may compromise their quality and quantity by affecting their chemical composition, physical properties, functional characteristics, and sensory attributes. Therefore, it is important to optimize the production and processing methods of canola grains and their derived products to ensure their safety, stability, and suitability for different food applications. This literature review provides a comprehensive overview of how these factors affect the quality of canola grains and their derived products. The review also suggests future research needs and challenges for enhancing canola quality and its utilization in food.
Collapse
Affiliation(s)
- Rachid Sabbahi
- Laboratory of Development and Valorization of Resources in Desert Zones, Higher School of Technology, Ibn Zohr University, Quartier 25 Mars, Laayoune 70000, Morocco
| | - Khalil Azzaoui
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Larbi Rhazi
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, UniLaSalle, 19 rue Pierre Waguet, 60026 Beauvais, France
| | - Alicia Ayerdi-Gotor
- Institut Polytechnique UniLaSalle, AGHYLE, UP 2018.C101, UniLaSalle, 19 rue Pierre Waguet, 60026 Beauvais, France
| | - Thierry Aussenac
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, UniLaSalle, 19 rue Pierre Waguet, 60026 Beauvais, France
| | - Flore Depeint
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, UniLaSalle, 19 rue Pierre Waguet, 60026 Beauvais, France
| | - Mustapha Taleb
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Belkheir Hammouti
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco
| |
Collapse
|
6
|
Gritsenko D, Daurova A, Pozharskiy A, Nizamdinova G, Khusnitdinova M, Sapakhova Z, Daurov D, Zhapar K, Shamekova M, Kalendar R, Zhambakin K. Investigation of mutation load and rate in androgenic mutant lines of rapeseed in early generations evaluated by high-density SNP genotyping. Heliyon 2023; 9:e14065. [PMID: 36923873 PMCID: PMC10008989 DOI: 10.1016/j.heliyon.2023.e14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Oilseed rape (Brassica napus) is an important oil crop distributed worldwide with a broad adaptation to different climate zones. The cultivation of rapeseed is one of the most commercially viable areas in crop production. Altogether 269,093 ha of rapeseed are cultivated in Kazakhstan. However, all rapeseed cultivars and lines cultivated in Kazakhstan on an industrial scale predominantly belong to the foreign breeding system. Therefore, the formation of a diverse genetic pool for breeding new, highly productive cultivars adopted to the environmental conditions of Kazakhstan is the most important goal in country selection programs. In this work, we have developed ethyl methanesulfonate (EMS) doubled haploid mutant lines from plant material of cultivars 'Galant' and 'Kris' to broad diversity of rapeseed in Kazakhstan. The development of mutant lines was performed via embryo callusogenesis or embryo secondary callusogenesis. Mutants were investigated by Brassica90k SNP array, and we were able to locate 24,657 SNPs from 26,256 SNPs filtered by quality control on the genome assembly (Bra_napus_v2.0). Only 18,831 SNPs were assigned to the available annotated genomic features. The most frequent combination of mutations according to reference controls was adenine with guanine (70%), followed by adenine with cytosine (28.8%), and only minor fractions were cytosine with guanine (0.54%) and adenine with thymine (0.59%). We revealed 5606.27 markers for 'Kris' and 4893.01 markers for 'Galant' by mutation occurrence. Most mutation occurrences were occupied by double mutations where progenitors and offspring were homozygous by different alleles, enabling the selection of appropriate genotypes in a short period of time. Regarding the biological impact of mutations, 861 variants were reported as having a low predicted impact, with 1042 as moderate and 121 as high; all others were reported as belonging to non-coding sequences, intergenic regions, and other features with the effect of modifiers. Protein encoding genes, such as wall-associated receptor kinase-like protein 5, TAO1-like disease resistance protein, receptor-like protein 12, and At5g42460-like F-box protein, contained more than two variable positions, with an impact on their biological activities. Nevertheless, the obtained mutant lines were able to survive and reproduce. Mutant lines, which include moderate and high impact mutations in encoding genes, are a perfect pool not only for MAS but also for the investigation of the fundamental basis of protein functions. For the first time, a collection of mutant lines was developed in our country to improve the selection of local rapeseed cultivars.
Collapse
Affiliation(s)
- Dilyara Gritsenko
- Dept. of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Ainash Daurova
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Alexandr Pozharskiy
- Dept. of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Gulnaz Nizamdinova
- Dept. of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Marina Khusnitdinova
- Dept. of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Zagipa Sapakhova
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Dias Daurov
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Kuanysh Zhapar
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Malika Shamekova
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Ruslan Kalendar
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Kabyl Zhambakin
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| |
Collapse
|
7
|
Contreras C, Pierantozzi P, Maestri D, Tivani M, Searles P, Brizuela M, Fernández F, Toro A, Puertas C, Trentacoste ER, Kiessling J, Mariotti R, Baldoni L, Mousavi S, Fernandez P, Moschen S, Torres M. How Temperatures May Affect the Synthesis of Fatty Acids during Olive Fruit Ripening: Genes at Work in the Field. PLANTS (BASEL, SWITZERLAND) 2022; 12:54. [PMID: 36616181 PMCID: PMC9824132 DOI: 10.3390/plants12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
A major concern for olive cultivation in many extra-Mediterranean regions is the adaptation of recently introduced cultivars to environmental conditions different from those prevailing in the original area, such as the Mediterranean basin. Some of these cultivars can easily adapt their physiological and biochemical parameters in new agro-environments, whereas others show unbalanced values of oleic acid content. The objective of this study was to evaluate the effects of the thermal regime during oil synthesis on the expression of fatty acid desaturase genes and on the unsaturated fatty acid contents at the field level. Two cultivars (Arbequina and Coratina) were included in the analysis over a wide latitudinal gradient in Argentina. The results suggest that the thermal regime exerts a regulatory effect at the transcriptional level on both OeSAD2 and OeFAD2-2 genes and that this regulation is cultivar-dependent. It was also observed that the accumulated thermal time affects gene expression and the contents of oleic and linoleic acids in cv. Arbequina more than in Coratina. The fatty acid composition of cv. Arbequina is more influenced by the temperature regime than Coratina, suggesting its greater plasticity. Overall, findings from this study may drive future strategies for olive spreading towards areas with different or extreme thermal regimes serve as guidance for the evaluation olive varietal patrimony.
Collapse
Affiliation(s)
- Cibeles Contreras
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan 5427, Argentina
| | - Pierluigi Pierantozzi
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan 5427, Argentina
| | - Damián Maestri
- Instituto Multidisciplinario de Biología Vegetal, X5000 IMBIV—CONICET—Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Martín Tivani
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan 5427, Argentina
| | - Peter Searles
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja, 5301 CRILAR La Rioja—UNLaR-SEGEMAR-UNCa, CONICET, Anillaco 5301, Argentina
| | - Magdalena Brizuela
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja, 5301 CRILAR La Rioja—UNLaR-SEGEMAR-UNCa, CONICET, Anillaco 5301, Argentina
| | - Fabricio Fernández
- Estación Experimental Agropecuaria Catamarca, INTA, Sumalao 4705, Argentina
| | - Alejandro Toro
- Estación Experimental Agropecuaria Cerro Azul, INTA, Cerro Azul 3313, Argentina
| | - Carlos Puertas
- Estación Experimental Agropecuaria Junín, INTA, Junín 5573, Argentina
| | | | - Juan Kiessling
- Agencia de Extensión Rural Centenario, INTA, Plottier 8316, Argentina
| | - Roberto Mariotti
- CNR—Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Luciana Baldoni
- CNR—Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Soraya Mousavi
- CNR—Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Paula Fernandez
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo—INTA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, INTA, Hurlingham 1686, Argentina
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín 1650, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Ciudad Autónoma de Buenos Aires, Viamonte 2671, Argentina
| | - Sebastián Moschen
- Estación Experimental Agropecuaria Famaillá, INTA, CONICET, Famaillá 4132, Argentina
| | - Mariela Torres
- Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Juan 5427, Argentina
| |
Collapse
|
8
|
Zhou W, Song S, Segla Koffi Dossou S, Zhou R, Wei X, Wang Z, Sheng C, Zhang Y, You J, Wang L. Genome-wide association analysis and transcriptome reveal novel loci and a candidate regulatory gene of fatty acid biosynthesis in sesame (Sesamum indicum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:220-231. [PMID: 35921726 DOI: 10.1016/j.plaphy.2022.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The regulatory mechanisms of fatty acid (FA) biosynthesis and triacylglycerols (TAGs) assembly remain largely misunderstood in sesame. Gas chromatography was used to analyze the natural variation in FA compositions and oil content (OC) in 400 sesame accessions grown in three different environments. The phenotypic data was associated with the newly released SNP data from whole-genome resequencing, and 43 significant loci for FA and OC were identified. Comparative transcriptomics analysis of high-OC and low-OC materials was performed, and 515 differentially expressed genes (DEGs) were identified across three seed developmental stages. By integrating the genome-wide association study (GWAS) and DEGs analysis, twenty candidate genes were identified, of which SiTPS1 (trehalose-6-phosphate synthase 1) has emerged as a key regulatory gene of FAs and TAGs metabolism in sesame. Overexpression of SiTPS1 in transgenic Arabidopsis influenced FA composition and significantly increased OC. Our study provides resources for the markers-based improvement of OC and quality in sesame and other crops.
Collapse
Affiliation(s)
- Wangyi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shengnan Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhijian Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Chen Sheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
9
|
Schilbert HM, Pucker B, Ries D, Viehöver P, Micic Z, Dreyer F, Beckmann K, Wittkop B, Weisshaar B, Holtgräwe D. Mapping‑by‑Sequencing Reveals Genomic Regions Associated with Seed Quality Parameters in Brassica napus. Genes (Basel) 2022; 13:genes13071131. [PMID: 35885914 PMCID: PMC9317104 DOI: 10.3390/genes13071131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Rapeseed (Brassica napus L.) is an important oil crop and has the potential to serve as a highly productive source of protein. This protein exhibits an excellent amino acid composition and has high nutritional value for humans. Seed protein content (SPC) and seed oil content (SOC) are two complex quantitative and polygenic traits which are negatively correlated and assumed to be controlled by additive and epistatic effects. A reduction in seed glucosinolate (GSL) content is desired as GSLs cause a stringent and bitter taste. The goal here was the identification of genomic intervals relevant for seed GSL content and SPC/SOC. Mapping by sequencing (MBS) revealed 30 and 15 new and known genomic intervals associated with seed GSL content and SPC/SOC, respectively. Within these intervals, we identified known but also so far unknown putatively causal genes and sequence variants. A 4 bp insertion in the MYB28 homolog on C09 shows a significant association with a reduction in seed GSL content. This study provides insights into the genetic architecture and potential mechanisms underlying seed quality traits, which will enhance future breeding approaches in B. napus.
Collapse
Affiliation(s)
- Hanna Marie Schilbert
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (H.M.S.); (B.P.); (D.R.); (P.V.); (B.W.)
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Boas Pucker
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (H.M.S.); (B.P.); (D.R.); (P.V.); (B.W.)
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - David Ries
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (H.M.S.); (B.P.); (D.R.); (P.V.); (B.W.)
| | - Prisca Viehöver
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (H.M.S.); (B.P.); (D.R.); (P.V.); (B.W.)
| | - Zeljko Micic
- Deutsche Saatveredelung AG, Weissenburger Straße 5, 59557 Lippstadt, Germany;
| | - Felix Dreyer
- NPZ Innovation GmbH, Hohenlieth-Hof 1, 24363 Holtsee, Germany; (F.D.); (K.B.)
| | - Katrin Beckmann
- NPZ Innovation GmbH, Hohenlieth-Hof 1, 24363 Holtsee, Germany; (F.D.); (K.B.)
| | - Benjamin Wittkop
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (H.M.S.); (B.P.); (D.R.); (P.V.); (B.W.)
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (H.M.S.); (B.P.); (D.R.); (P.V.); (B.W.)
- Correspondence:
| |
Collapse
|
10
|
Raboanatahiry N, Chao H, He J, Li H, Yin Y, Li M. Construction of a Quantitative Genomic Map, Identification and Expression Analysis of Candidate Genes for Agronomic and Disease-Related Traits in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:862363. [PMID: 35360294 PMCID: PMC8963808 DOI: 10.3389/fpls.2022.862363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 06/12/2023]
Abstract
Rapeseed is the second most important oil crop in the world. Improving seed yield and seed oil content are the two main highlights of the research. Unfortunately, rapeseed development is frequently affected by different diseases. Extensive research has been made through many years to develop elite cultivars with high oil, high yield, and/or disease resistance. Quantitative trait locus (QTL) analysis has been one of the most important strategies in the genetic deciphering of agronomic characteristics. To comprehend the distribution of these QTLs and to uncover the key regions that could simultaneously control multiple traits, 4,555 QTLs that have been identified during the last 25 years were aligned in one unique map, and a quantitative genomic map which involved 128 traits from 79 populations developed in 12 countries was constructed. The present study revealed 517 regions of overlapping QTLs which harbored 2,744 candidate genes and might affect multiple traits, simultaneously. They could be selected to customize super-rapeseed cultivars. The gene ontology and the interaction network of those candidates revealed genes that highly interacted with the other genes and might have a strong influence on them. The expression and structure of these candidate genes were compared in eight rapeseed accessions and revealed genes of similar structures which were expressed differently. The present study enriches our knowledge of rapeseed genome characteristics and diversity, and it also provided indications for rapeseed molecular breeding improvement in the future.
Collapse
Affiliation(s)
- Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Ibrahim S, Li K, Ahmad N, Kuang L, Sadau SB, Tian Z, Huang L, Wang X, Dun X, Wang H. Genetic Dissection of Mature Root Characteristics by Genome-Wide Association Studies in Rapeseed ( Brassica napus L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122569. [PMID: 34961040 PMCID: PMC8705616 DOI: 10.3390/plants10122569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Roots are complicated quantitative characteristics that play an essential role in absorbing water and nutrients. To uncover the genetic variations for root-related traits in rapeseed, twelve mature root traits of a Brassica napus association panel were investigated in the field within three environments. All traits showed significant phenotypic variation among genotypes, with heritabilities ranging from 55.18% to 79.68%. Genome-wide association studies (GWAS) using 20,131 SNPs discovered 172 marker-trait associations, including 103 significant SNPs (-log10 (p) > 4.30) that explained 5.24-20.31% of the phenotypic variance. With the linkage disequilibrium r2 > 0.2, these significant associations were binned into 40 quantitative trait loci (QTL) clusters. Among them, 14 important QTL clusters were discovered in two environments and/or with phenotypic contributions greater than 10%. By analyzing the genomic regions within 100 kb upstream and downstream of the peak SNPs within the 14 loci, 334 annotated genes were found. Among these, 32 genes were potentially associated with root development according to their expression analysis. Furthermore, the protein interaction network using the 334 annotated genes gave nine genes involved in a substantial number of interactions, including a key gene associated with root development, BnaC09g36350D. This research provides the groundwork for deciphering B. napus' genetic variations and improving its root system architecture.
Collapse
Affiliation(s)
- Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
- Department of Plant Biology, Faculty of Life Sciences, College of Physical and Pharmaceutical Sciences, Bayero University, Kano, P.M.B. 3011, Kano 700006, Nigeria
| | - Keqi Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Salisu Bello Sadau
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Lintao Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (S.I.); (K.L.); (N.A.); (L.K.); (Z.T.); (L.H.); (X.W.); (H.W.)
| |
Collapse
|
12
|
Khan SU, Saeed S, Khan MHU, Fan C, Ahmar S, Arriagada O, Shahzad R, Branca F, Mora-Poblete F. Advances and Challenges for QTL Analysis and GWAS in the Plant-Breeding of High-Yielding: A Focus on Rapeseed. Biomolecules 2021; 11:1516. [PMID: 34680149 PMCID: PMC8533950 DOI: 10.3390/biom11101516] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Yield is one of the most important agronomic traits for the breeding of rapeseed (Brassica napus L), but its genetic dissection for the formation of high yield remains enigmatic, given the rapid population growth. In the present review, we review the discovery of major loci underlying important agronomic traits and the recent advancement in the selection of complex traits. Further, we discuss the benchmark summary of high-throughput techniques for the high-resolution genetic breeding of rapeseed. Biparental linkage analysis and association mapping have become powerful strategies to comprehend the genetic architecture of complex agronomic traits in crops. The generation of improved crop varieties, especially rapeseed, is greatly urged to enhance yield productivity. In this sense, the whole-genome sequencing of rapeseed has become achievable to clone and identify quantitative trait loci (QTLs). Moreover, the generation of high-throughput sequencing and genotyping techniques has significantly enhanced the precision of QTL mapping and genome-wide association study (GWAS) methodologies. Furthermore, this study demonstrates the first attempt to identify novel QTLs of yield-related traits, specifically focusing on ovule number per pod (ON). We also highlight the recent breakthrough concerning single-locus-GWAS (SL-GWAS) and multi-locus GWAS (ML-GWAS), which aim to enhance the potential and robust control of GWAS for improved complex traits.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Muhammad Hafeez Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile;
| | - Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Raheel Shahzad
- Department of Biotechnology, Faculty of Science & Technology, Universitas Muhammadiyah Bandung, Bandung 40614, Indonesia;
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile;
| |
Collapse
|
13
|
Mohammadi Alaghuz R, Darvishzadeh R, Alijanpour A, Razi M. Toward the identification of molecular markers associated with phytochemical traits in the Iranian sumac ( Rhus coriaria L.) population. Food Sci Nutr 2021; 9:3142-3154. [PMID: 34136179 PMCID: PMC8194943 DOI: 10.1002/fsn3.2273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 02/04/2023] Open
Abstract
Sumac (Rhus coriaria L.) is one of the important forest species dispersed in the northwest of Iran. It is one of the important spice in Iran and the Middle East because of active components containing organic acids, phenolic acids, flavonoids, anthocyanins, tannins and terpenoids. This study aimed to investigate population structure and linkage disequilibrium (LD) extent within Rhus coriaria L. genotypes using ISSR markers and identify molecular markers associated with phytochemical traits using association analysis. In the molecular part of the experiment, the genetic diversity of 75 sumac genotypes from five different areas of northwest Iran was assessed by 18 ISSR primers. In the phenotypic assessment, the fruits of the sumac genotypes were analyzed using HPLC-LC/MSMS for determining phytochemical components including maleic acid, ellagic acid, maleic acid hexoside, gallic acid, coumaric acid, quercetin, caftaric acid, and linoleic acid. The phenotypic data analysis revealed the great phenotypic diversity among and within Iranian sumac populations for the studied phytochemical traits. The studied sumac genotypes were divided into two subpopulations based on molecular marker-based structure analysis. A significant level of LD was observed in 11.64% of the ISSR marker pairs (p < .05). The mixed linear model procedure showed that 12 loci had a significant association with investigated traits. The ISSR loci identified in this study can be potentially used in marker-assisted selection in sumac breeding programs.
Collapse
Affiliation(s)
- Rasoul Mohammadi Alaghuz
- Agricultural BiotechnologyDepartment of Plant Production and GeneticsFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Reza Darvishzadeh
- Department of Plant Production and GeneticsFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Ahmad Alijanpour
- Department of ForestryFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Mitra Razi
- Department of Plant Production and GeneticsFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| |
Collapse
|
14
|
Ton LB, Neik TX, Batley J. The Use of Genetic and Gene Technologies in Shaping Modern Rapeseed Cultivars ( Brassica napus L.). Genes (Basel) 2020; 11:E1161. [PMID: 33008008 PMCID: PMC7600269 DOI: 10.3390/genes11101161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Since their domestication, Brassica oilseed species have undergone progressive transformation allied with the development of breeding and molecular technologies. The canola (Brassica napus) crop has rapidly expanded globally in the last 30 years with intensive innovations in canola varieties, providing for a wider range of markets apart from the food industry. The breeding efforts of B. napus, the main source of canola oil and canola meal, have been mainly focused on improving seed yield, oil quality, and meal quality along with disease resistance, abiotic stress tolerance, and herbicide resistance. The revolution in genetics and gene technologies, including genetic mapping, molecular markers, genomic tools, and gene technology, especially gene editing tools, has allowed an understanding of the complex genetic makeup and gene functions in the major bioprocesses of the Brassicales, especially Brassica oil crops. Here, we provide an overview on the contributions of these technologies in improving the major traits of B. napus and discuss their potential use to accomplish new improvement targets.
Collapse
Affiliation(s)
- Linh Bao Ton
- School of Biological Science, The University of Western Australia, Perth, WA 6009, Australia;
| | - Ting Xiang Neik
- Sunway College Kuala Lumpur, No. 2, Jalan Universiti, Bandar Sunway, Selangor 47500, Malaysia;
| | - Jacqueline Batley
- School of Biological Science, The University of Western Australia, Perth, WA 6009, Australia;
| |
Collapse
|
15
|
Singh RK, Prasad A, Muthamilarasan M, Parida SK, Prasad M. Breeding and biotechnological interventions for trait improvement: status and prospects. PLANTA 2020; 252:54. [PMID: 32948920 PMCID: PMC7500504 DOI: 10.1007/s00425-020-03465-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/12/2020] [Indexed: 05/06/2023]
Abstract
Present review describes the molecular tools and strategies deployed in the trait discovery and improvement of major crops. The prospects and challenges associated with these approaches are discussed. Crop improvement relies on modulating the genes and genomic regions underlying key traits, either directly or indirectly. Direct approaches include overexpression, RNA interference, genome editing, etc., while breeding majorly constitutes the indirect approach. With the advent of latest tools and technologies, these strategies could hasten the improvement of crop species. Next-generation sequencing, high-throughput genotyping, precision editing, use of space technology for accelerated growth, etc. had provided a new dimension to crop improvement programmes that work towards delivering better varieties to cope up with the challenges. Also, studies have widened from understanding the response of plants to single stress to combined stress, which provides insights into the molecular mechanisms regulating tolerance to more than one stress at a given point of time. Altogether, next-generation genetics and genomics had made tremendous progress in delivering improved varieties; however, the scope still exists to expand its horizon to other species that remain underutilized. In this context, the present review systematically analyses the different genomics approaches that are deployed for trait discovery and improvement in major species that could serve as a roadmap for executing similar strategies in other crop species. The application, pros, and cons, and scope for improvement of each approach have been discussed with examples, and altogether, the review provides comprehensive coverage on the advances in genomics to meet the ever-growing demands for agricultural produce.
Collapse
Affiliation(s)
- Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
16
|
Gubaev R, Gorlova L, Boldyrev S, Goryunova S, Goruynov D, Mazin P, Chernova A, Martynova E, Demurin Y, Khaitovich P. Genetic Characterization of Russian Rapeseed Collection and Association Mapping of Novel Loci Affecting Glucosinolate Content. Genes (Basel) 2020; 11:genes11080926. [PMID: 32806588 PMCID: PMC7465703 DOI: 10.3390/genes11080926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 01/17/2023] Open
Abstract
Rapeseed is the second most common oilseed crop worldwide. While the start of rapeseed breeding in Russia dates back to the middle of the 20th century, its widespread cultivation began only recently. In contrast to the world’s rapeseed genetic variation, the genetic composition of Russian rapeseed lines remained unexplored. We have addressed this question by performing genome-wide genotyping of 90 advanced rapeseed accessions provided by the All-Russian Research Institute of Oil Crops (VNIIMK). Genome-wide genetic analysis demonstrated a clear difference between Russian rapeseed varieties and the rapeseed varieties from the rest of the world, including the European ones, indicating that rapeseed breeding in Russia proceeded in its own independent direction. Hence, genetic determinants of agronomical traits might also be different in Russian rapeseed lines. To assess it, we collected the glucosinolate content data for the same 90 genotyped accessions obtained during three years and performed an association mapping of this trait. We indeed found that the loci significantly associated with glucosinolate content variation in the Russian rapeseed collection differ from those previously reported for the non-Russian rapeseed lines.
Collapse
Affiliation(s)
- Rim Gubaev
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (R.G.); (S.B.); (S.G.); (D.G.); (P.M.); (A.C.); (E.M.)
| | - Lyudmila Gorlova
- Pustovoit All-Russia Research Institute of Oil Crops, Krasnodar 350038, Russia; (L.G.); (Y.D.)
| | - Stepan Boldyrev
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (R.G.); (S.B.); (S.G.); (D.G.); (P.M.); (A.C.); (E.M.)
| | - Svetlana Goryunova
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (R.G.); (S.B.); (S.G.); (D.G.); (P.M.); (A.C.); (E.M.)
- Institute of General Genetics, Russian Academy of Science, Moscow 119333, Russia
- FSBSI Lorch Potato Research Institute, Kraskovo 140051, Russia
| | - Denis Goruynov
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (R.G.); (S.B.); (S.G.); (D.G.); (P.M.); (A.C.); (E.M.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Pavel Mazin
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (R.G.); (S.B.); (S.G.); (D.G.); (P.M.); (A.C.); (E.M.)
| | - Alina Chernova
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (R.G.); (S.B.); (S.G.); (D.G.); (P.M.); (A.C.); (E.M.)
| | - Elena Martynova
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (R.G.); (S.B.); (S.G.); (D.G.); (P.M.); (A.C.); (E.M.)
| | - Yakov Demurin
- Pustovoit All-Russia Research Institute of Oil Crops, Krasnodar 350038, Russia; (L.G.); (Y.D.)
| | - Philipp Khaitovich
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (R.G.); (S.B.); (S.G.); (D.G.); (P.M.); (A.C.); (E.M.)
- Correspondence: ; Tel.: +7-916-690-6088
| |
Collapse
|