1
|
Siegler Lathrop T, Perego S, Bastiaanssen TFS, van Hemert S, Chronakis IS, Diaz Heijtz R. Multispecies probiotic intake during pregnancy modulates neurodevelopmental trajectories of offspring: Aiming towards precision microbial intervention. Brain Behav Immun 2024; 122:547-554. [PMID: 39197545 DOI: 10.1016/j.bbi.2024.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024] Open
Abstract
Recent research highlights the pivotal role of the maternal gut microbiome during pregnancy in shaping offspring neurodevelopment. In this study, we investigated the impact of maternal intake of a multispecies probiotic formulation during a critical prenatal window (from gestational day 6 until birth) on neurodevelopmental trajectories in mice. Our findings demonstrate significant and persistent benefits in emotional behavior, gut microbiota composition, and expression of tight junction-related genes, particularly in male offspring, who exhibited heightened sensitivity to the probiotic intervention compared to females. Additionally, we observed elevated gene expression levels of the anti-inflammatory cytokine IL-10 and the oxytocin receptor (Oxtr) in the prefrontal cortex (PFC) of exposed juvenile offspring; however, these changes persisted only in the adult male offspring. Furthermore, the sustained increase in the expression of the proton-coupled oligopeptide transporter 1 (PepT1), which is involved in the transport of bacterial peptidoglycan motifs, in the PFC of exposed male offspring suggests a potential mechanistic pathway underlying the observed sex-dependent effects on behavior and gene expression. These results underscore the potential of prenatal multispecies probiotic interventions to promote long-term neurodevelopmental outcomes, with implications for precision microbial reconstitution aimed at promoting healthy neurodevelopment and behavior.
Collapse
Affiliation(s)
- Tatiana Siegler Lathrop
- Technical University of Denmark, DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Denmark
| | - Sarah Perego
- Department of Neuroscience, Karolinska Institutet, Stockholm Sweden
| | | | - Saskia van Hemert
- Wageningen Bioveterinary Research, Wageningen University & Research, the Netherlands
| | - Ioannis S Chronakis
- Technical University of Denmark, DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Denmark
| | | |
Collapse
|
2
|
Sochacka K, Kotowska A, Lachowicz-Wiśniewska S. The Role of Gut Microbiota, Nutrition, and Physical Activity in Depression and Obesity-Interdependent Mechanisms/Co-Occurrence. Nutrients 2024; 16:1039. [PMID: 38613071 PMCID: PMC11013804 DOI: 10.3390/nu16071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity and depression are interdependent pathological disorders with strong inflammatory effects commonly found worldwide. They determine the health status of the population and cause key problems in terms of morbidity and mortality. The role of gut microbiota and its composition in the treatment of obesity and psychological factors is increasingly emphasized. Published research suggests that prebiotic, probiotic, or symbiotic preparations can effectively intervene in obesity treatment and mood-dysregulation alleviation. Thus, this literature review aims to highlight the role of intestinal microbiota in treating depression and obesity. An additional purpose is to indicate probiotics, including psychobiotics and prebiotics, potentially beneficial in supporting the treatment of these two diseases.
Collapse
Affiliation(s)
- Klaudia Sochacka
- Faculty of Medicine and Health Sciences, Calisia University, 62-800 Kalisz, Poland;
| | - Agata Kotowska
- Department of Social Policy, Institute of Sociological Sciences, College of Social Sciences, University of Rzeszow, 35-310 Rzeszow, Poland;
| | | |
Collapse
|
3
|
Lv JJ, Li XY, Wang JB, Yang XT, Yin MY, Yang CH. Association of dietary live microbe intake with various cognitive domains in US adults aged 60 years or older. Sci Rep 2024; 14:5714. [PMID: 38459061 PMCID: PMC10923796 DOI: 10.1038/s41598-024-51520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/06/2024] [Indexed: 03/10/2024] Open
Abstract
The purpose of this study was to explore whether dietary live microbe intake is associated with various cognitive domains using data from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014. And the specific relationship between low, medium and high dietary live microbe intake groups and cognitive ability of the elderly. Dietary live microbe intake was calculated from 24-h diet recall interviews. Cognitive function was assessed using the number symbol substitution test (DSST, which measures processing speed), the animal fluency test (AFT, which measures executive function), the Alzheimer's Registry sub-test (CERAD, which measures memory), and the Composite Z-score, which adds the Z-values of individual tests. Multiple linear regression models and restricted cubic bar graphs were used to investigate the relationship between live microbe intake and cognitive performance. A total of 2,450 participants aged 60 or older were included. Live microbe intake was positively correlated with cognitive ability on the whole. Specifically, when the intake of low, medium and high live microbe was > 2640 g, > 39 g and > 0 g respectively, the CERAD, DSST, AFT and compositive-Z score of the subjects increased with the increase of microbial intake (P < 0.05). In American adults age 60 or older, higher intakes of live microbes were associated with better cognitive performance, especially after a certain amount was reached.
Collapse
Affiliation(s)
- Jia-Jie Lv
- Department of Vascular Surgery, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, No.1291 Jiangning Road, Huangpu District, Shanghai, 200011, China
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China
| | - Xin-Yu Li
- Department of Vascular Surgery, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, No.1291 Jiangning Road, Huangpu District, Shanghai, 200011, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China
| | - Jing-Bing Wang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China
| | - Xi-Tao Yang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China
| | - Min-Yi Yin
- Department of Vascular Surgery, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, No.1291 Jiangning Road, Huangpu District, Shanghai, 200011, China
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China
| | - Cheng-Hao Yang
- Department of Vascular Surgery, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, No.1291 Jiangning Road, Huangpu District, Shanghai, 200011, China.
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China.
| |
Collapse
|
4
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Cerdó T, Nieto-Ruíz A, García-Santos JA, Rodríguez-Pöhnlein A, García-Ricobaraza M, Suárez A, Bermúdez MG, Campoy C. Current Knowledge About the Impact of Maternal and Infant Nutrition on the Development of the Microbiota-Gut-Brain Axis. Annu Rev Nutr 2023; 43:251-278. [PMID: 37603431 DOI: 10.1146/annurev-nutr-061021-025355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The prenatal and early postnatal periods are stages during which dynamic changes and the development of the brain and gut microbiota occur, and nutrition is one of the most important modifiable factors that influences this process. Given the bidirectional cross talk between the gut microbiota and the brain through the microbiota-gut-brain axis (MGBA), there is growing interest in evaluating the potential effects of nutritional interventions administered during these critical developmental windows on gut microbiota composition and function and their association with neurodevelopmental outcomes. We review recent preclinical and clinical evidence from animal studies and infant/child populations. Although further research is needed, growing evidence suggests that different functional nutrients affect the establishment and development of the microbiota-gut-brain axis and could have preventive and therapeutic use in the treatment of neuropsychiatric disorders. Therefore, more in-depth knowledge regarding the effect of nutrition on the MGBA during critical developmental windows may enable the prevention of later neurocognitive and behavioral disorders and allow the establishment of individualized nutrition-based programs that can be used from the prenatal to the early and middle stages of life.
Collapse
Affiliation(s)
- Tomás Cerdó
- Maimonides Institute for Research in Biomedicine of Córdoba, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Ana Nieto-Ruíz
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - José Antonio García-Santos
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - Anna Rodríguez-Pöhnlein
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - María García-Ricobaraza
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - Antonio Suárez
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Nutrición y Tecnología de los Alimentos, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Mercedes G Bermúdez
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - Cristina Campoy
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
- Spanish Network of Biomedical Research in Epidemiology and Public Health, Granada Node, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
6
|
Sarikhani A, Vosoughi Zadeh S, Tahmasebi S, Farahani BK, Heydari Nik M, Mohajerani HR. Maternal and postweaning probiotic administration alleviated footshock-induced anxiety in both sexes of adolescent Balb/c mice. Nutr Neurosci 2023; 26:357-368. [PMID: 36308308 DOI: 10.1080/1028415x.2022.2051124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Aim: Effects of maternal probiotics administered during pregnancy as well as consumption by offspring in the post-weaning period on anxiety behavior were examined.Methods: In addition to anxiety levels measured by EPM and OFT, the expression level of the hippocampal genes, and serum sex hormones in male and female mice that received foot shock stress were assayed in the pubertal period.Results: The results of this study showed that consumption of probiotics in the foot shock-stressed offspring in both sexes could significantly increase the length of stay in the EPM open arm compared to the control group, however, the offspring of the probiotic-treated dam did not. Consumption of probiotics by the pro-off group caused remarkable high expression of the 5HT2AC receptor gene. In the pro-off group, consumption of probiotics led to a significant decrease in 5HT1 receptor expression. Expression of GABRA2 was increased in probiotics-treated groups, thus the pro-off and the pro-dam group had a significant difference from the control group. Feeding offspring with probiotics by significantly increased progesterone concentrations compared to the control group, and maternal consumption of probiotics during pregnancy and lactation had no reducing effect on progesterone concentrations. This is due to electric shock stress. The consumption of probiotics by mice during infancy was shown to compensate for the decrease in progesterone concentration in them. Maternal use of probiotics during pregnancy and lactation did not affect this concentration.Conclusions: It is concluded that probiotics can protect against foot shock stress-induced anxiety, progesterone disturbance, and dysregulation of expression of some anxiety-related genes.
Collapse
Affiliation(s)
- Ahmad Sarikhani
- Applied Neuroscience Research Center, Islamic Azad University, Arak, Iran
| | | | - Saeed Tahmasebi
- Applied Neuroscience Research Center, Islamic Azad University, Arak, Iran.,Department of Microbiology, Faculty of Science, Islamic Azad University, Arak, Iran
| | | | - Maryam Heydari Nik
- Department of Microbiology, Faculty of Science, Islamic Azad University, Arak, Iran
| | - Hamid Reza Mohajerani
- Applied Neuroscience Research Center, Islamic Azad University, Arak, Iran.,Department of Microbiology, Faculty of Science, Islamic Azad University, Arak, Iran
| |
Collapse
|
7
|
Mu C, Nikpoor N, Tompkins TA, Choudhary A, Wang M, Marks WN, Rho JM, Scantlebury MH, Shearer J. Targeted gut microbiota manipulation attenuates seizures in a model of infantile spasms syndrome. JCI Insight 2022; 7:158521. [PMID: 35730569 PMCID: PMC9309045 DOI: 10.1172/jci.insight.158521] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/13/2022] [Indexed: 12/22/2022] Open
Abstract
Infantile spasms syndrome (IS) is a devastating early-onset epileptic encephalopathy associated with poor neurodevelopmental outcomes. When first-line treatment options, including adrenocorticotropic hormone and vigabatrin, are ineffective, the ketogenic diet (KD) is often employed to control seizures. Since the therapeutic impact of the KD is influenced by the gut microbiota, we examined whether targeted microbiota manipulation, mimicking changes induced by the KD, would be valuable in mitigating seizures. Employing a rodent model of symptomatic IS, we show that both the KD and antibiotic administration reduce spasm frequency and are associated with improved developmental outcomes. Spasm reductions were accompanied by specific gut microbial alterations, including increases in Streptococcus thermophilus and Lactococcus lactis. Mimicking the fecal microbial alterations in a targeted probiotic, we administered these species in a 5:1 ratio. Targeted probiotic administration reduced seizures and improved locomotor activities in control diet–fed animals, similar to KD-fed animals, while a negative control (Ligilactobacillus salivarius) had no impact. Probiotic administration also increased antioxidant status and decreased proinflammatory cytokines. Results suggest that a targeted probiotic reduces seizure frequency, improves locomotor activity in a rodent model of IS, and provides insights into microbiota manipulation as a potential therapeutic avenue for pediatric epileptic encephalopathies.
Collapse
Affiliation(s)
- Chunlong Mu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Naghmeh Nikpoor
- Lallemand Bio Ingredients, Lallemand Inc., Montreal, Quebec, Canada
| | | | - Anamika Choudhary
- Department of Paediatrics.,Department of Clinical Neurosciences, Cumming School of Medicine, and
| | - Melinda Wang
- Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Wendie N Marks
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Paediatrics.,Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jong M Rho
- Departments of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, California, USA
| | - Morris H Scantlebury
- Department of Clinical Neurosciences, Cumming School of Medicine, and.,Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Long-term administration of Tetragenococcus halophilus No. 1 over generations affects the immune system of mice. PLoS One 2022; 17:e0267473. [PMID: 35472068 PMCID: PMC9041805 DOI: 10.1371/journal.pone.0267473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
Japanese people have been consuming miso soup over generations; it is beneficial for health and longevity. In this study, Tetragenococcus halophilus No. 1 in miso was found to possess salient immunomodulatory functions. Recently, we also demonstrated its effect on boosting immunological robustness. Although the consumption of miso is suggested to affect health over generations, such a long-term experiment has not been conducted until now. Thus, we evaluated the effects of miso-derived T. halophilus No. 1 over generations on the immune system of mice. As the generations increase, the proportion of germinal center B cells tends to increase. Furthermore, we found that CD4+ T cells expressing CD69, an activation marker, were increased in the third generation of mice. In addition, the proportion of follicular helper T cells and regulatory T cells tended to increase. Among the subsets of CD4+ T cells in the fourth generation, effector T cells and effector memory T cells tended to increase. In contrast, central memory T cells and naive T cells decreased. Moreover, autoimmunity was suppressed by long-term administration of T. halophilus No. 1. Based on these findings, we believe that the long-term administration of T. halophilus No. 1 over generations promotes immune activation and tolerance and enhances immunological robustness.
Collapse
|
9
|
Cuinat C, Stinson SE, Ward WE, Comelli EM. Maternal Intake of Probiotics to Program Offspring Health. Curr Nutr Rep 2022; 11:537-562. [PMID: 35986890 PMCID: PMC9750916 DOI: 10.1007/s13668-022-00429-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Probiotics intake may be considered beneficial by prospective and pregnant mothers, but their effects on offspring development are incompletely understood. The purpose of this review was to examine recent pre-clinical and clinical studies to understand how maternal probiotics exposure affects offspring health outcomes. RECENT FINDINGS Effects were investigated in the context of supporting offspring growth, intestinal health, and gut microbiota, preventing allergic diseases, supporting neurodevelopment, and preventing metabolic disorders in pre-clinical and clinical studies. Most human studies focused on infancy outcomes, whereas pre-clinical studies also examined outcomes at adolescence and young adulthood. While still understudied, both pre-clinical and clinical studies propose epigenetic modifications as an underlying mechanism. Optimal timing of intervention remains unclear. Administration of selected probiotics to mothers has programming potential for sustaining life-long health of offspring. Administration protocols, specific windows of susceptibility, and individual-specific responses need to be further studied.
Collapse
Affiliation(s)
- Céline Cuinat
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Sara E. Stinson
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Wendy E. Ward
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,grid.411793.90000 0004 1936 9318Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON Canada
| | - Elena M. Comelli
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,grid.411793.90000 0004 1936 9318Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON Canada ,grid.17063.330000 0001 2157 2938Joannah and Brian Lawson Centre for Child Nutrition, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| |
Collapse
|
10
|
Probiotics for Alzheimer's Disease: A Systematic Review. Nutrients 2021; 14:nu14010020. [PMID: 35010895 PMCID: PMC8746506 DOI: 10.3390/nu14010020] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of neurodegenerative disorders affecting mostly the elderly. It is characterized by the presence of Aβ and neurofibrillary tangles (NFT), resulting in cognitive and memory impairment. Research shows that alteration in gut microbial diversity and defects in gut brain axis are linked to AD. Probiotics are known to be one of the best preventative measures against cognitive decline in AD. Numerous in vivo trials and recent clinical trials have proven the effectiveness of selected bacterial strains in slowing down the progression of AD. It is proven that probiotics modulate the inflammatory process, counteract with oxidative stress, and modify gut microbiota. Thus, this review summarizes the current evidence, diversity of bacterial strains, defects of gut brain axis in AD, harmful bacterial for AD, and the mechanism of action of probiotics in preventing AD. A literature search on selected databases such as PubMed, Semantic Scholar, Nature, and Springer link have identified potentially relevant articles to this topic. However, upon consideration of inclusion criteria and the limitation of publication year, only 22 articles have been selected to be further reviewed. The search query includes few sets of keywords as follows. (1) Probiotics OR gut microbiome OR microbes AND (2) Alzheimer OR cognitive OR aging OR dementia AND (3) clinical trial OR in vivo OR animal study. The results evidenced in this study help to clearly illustrate the relationship between probiotic supplementation and AD. Thus, this systematic review will help identify novel therapeutic strategies in the future as probiotics are free from triggering any adverse effects in human body.
Collapse
|
11
|
Kim J, Kim DW, Lee A, Mason M, Jouroukhin Y, Woo H, Yolken RH, Pletnikov MV. Homeostatic regulation of neuronal excitability by probiotics in male germ-free mice. J Neurosci Res 2021; 100:444-460. [PMID: 34935171 DOI: 10.1002/jnr.24999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/10/2021] [Accepted: 11/27/2021] [Indexed: 11/08/2022]
Abstract
Emerging evidence indicates that probiotics can influence the gut-brain axis to ameliorate somatic and behavioral symptoms associated with brain disorders. However, whether probiotics have effects on the electrophysiological activities of individual neurons in the brain has not been evaluated at a single-neuron resolution, and whether the neuronal effects of probiotics depend on the gut microbiome status have yet to be tested. Thus, we conducted whole-cell patch-clamp recording-assisted electrophysiological characterizations of the neuronal effects of probiotics in male germ-free (GF) mice with and without gut microbiome colonization. Two weeks of treatment with probiotics (Lactobacillus rhamnosus and Bifidobacterium animalis) significantly and selectively increased the intrinsic excitability of hippocampal CA1 pyramidal neurons, whereas reconstituting gut microbiota in GF mice reversed the effects of the probiotics leading to a decreased intrinsic excitability in hippocampal neurons. This bidirectional modulation of neuronal excitability by probiotics was observed in hippocampal neurons with corresponding basal membrane property and action potential waveform changes. However, unlike the hippocampus, the amygdala excitatory neurons did not show any electrophysiological changes to the probiotic treatment in either GF or conventionalized GF mice. Our findings demonstrate for the first time how probiotic treatment can have a significant influence on the electrophysiological properties of neurons, bidirectionally modulating their intrinsic excitability in a gut microbiota and brain area-specific manner.
Collapse
Affiliation(s)
- Juhyun Kim
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian Lee
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madisen Mason
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Yan Jouroukhin
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hyewon Woo
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Robert H Yolken
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Physiology and Biophysics, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
12
|
Abstract
The maternal microbiome has emerged as an important area of investigation. While birth is a critical timepoint for initial colonization of the newborn, the fetus resides in the womb surrounded by multiple unique colonized niches. The maternal microbiome has recently been shown to be associated with several morbidities in offspring. Understanding the multiple bacterial niches within the pregnant woman and how they interact with the fetus in-utero can lead to novel therapies to improve the health of offspring. In this review, we provide an overview of the available literature on normal bacterial colonization within the individual niches of the pregnant woman and the known associations with outcomes in offspring, including a discussion of the controversy of in-utero colonization.
Collapse
Affiliation(s)
- Julie Mirpuri
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Josef Neu
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Chakraborti A, Graham C, Chehade S, Vashi B, Umfress A, Kurup P, Vickers B, Chen HA, Telange R, Berryhill T, Van Der Pol W, Powell M, Barnes S, Morrow C, Smith DL, Mukhtar MS, Watts S, Kennedy G, Bibb J. High Fructose Corn Syrup-Moderate Fat Diet Potentiates Anxio-Depressive Behavior and Alters Ventral Striatal Neuronal Signaling. Front Neurosci 2021; 15:669410. [PMID: 34121997 PMCID: PMC8187874 DOI: 10.3389/fnins.2021.669410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
The neurobiological mechanisms that mediate psychiatric comorbidities associated with metabolic disorders such as obesity, metabolic syndrome and diabetes remain obscure. High fructose corn syrup (HFCS) is widely used in beverages and is often included in food products with moderate or high fat content that have been linked to many serious health issues including diabetes and obesity. However, the impact of such foods on the brain has not been fully characterized. Here, we evaluated the effects of long-term consumption of a HFCS-Moderate Fat diet (HFCS-MFD) on behavior, neuronal signal transduction, gut microbiota, and serum metabolomic profile in mice to better understand how its consumption and resulting obesity and metabolic alterations relate to behavioral dysfunction. Mice fed HFCS-MFD for 16 weeks displayed enhanced anxiogenesis, increased behavioral despair, and impaired social interactions. Furthermore, the HFCS-MFD induced gut microbiota dysbiosis and lowered serum levels of serotonin and its tryptophan-based precursors. Importantly, the HFCS-MFD altered neuronal signaling in the ventral striatum including reduced inhibitory phosphorylation of glycogen synthase kinase 3β (GSK3β), increased expression of ΔFosB, increased Cdk5-dependent phosphorylation of DARPP-32, and reduced PKA-dependent phosphorylation of the GluR1 subunit of the AMPA receptor. These findings suggest that HFCS-MFD-induced changes in the gut microbiota and neuroactive metabolites may contribute to maladaptive alterations in ventral striatal function that underlie neurobehavioral impairment. While future studies are essential to further evaluate the interplay between these factors in obesity and metabolic syndrome-associated behavioral comorbidities, these data underscore the important role of peripheral-CNS interactions in diet-induced behavioral and brain function. This study also highlights the clinical need to address neurobehavioral comorbidities associated with obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Ayanabha Chakraborti
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christopher Graham
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sophie Chehade
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bijal Vashi
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alan Umfress
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Pradeep Kurup
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Benjamin Vickers
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - H. Alexander Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rahul Telange
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Taylor Berryhill
- Department of Pharmacology, University of Alabama at Birmingham Medical Center, Birmingham, AL, United States
| | - William Van Der Pol
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mickie Powell
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen Barnes
- Department of Pharmacology, University of Alabama at Birmingham Medical Center, Birmingham, AL, United States
| | - Casey Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen Watts
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gregory Kennedy
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James Bibb
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|