1
|
Crepin DM, Chavignon M, Verhoeven PO, Laurent F, Josse J, Butin M. Staphylococcus capitis: insights into epidemiology, virulence, and antimicrobial resistance of a clinically relevant bacterial species. Clin Microbiol Rev 2024; 37:e0011823. [PMID: 38899876 PMCID: PMC11391707 DOI: 10.1128/cmr.00118-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYStaphylococcus capitis is divided into two subspecies, S. capitis subsp. ureolyticus (renamed urealyticus in 1992; ATCC 49326) and S. capitis subsp. capitis (ATCC 27840), and fits with the archetype of clinically relevant coagulase-negative staphylococci (CoNS). S. capitis is a commensal bacterium of the skin in humans, which must be considered an opportunistic pathogen of interest particularly as soon as it is identified in a clinically relevant specimen from an immunocompromised patient. Several studies have highlighted the potential determinants underlying S. capitis pathogenicity, resistance profiles, and virulence factors. In addition, mobile genetic element acquisitions and mutations contribute to S. capitis genome adaptation to its environment. Over the past decades, antibiotic resistance has been identified for S. capitis in almost all the families of the currently available antibiotics and is related to the emergence of multidrug-resistant clones of high clinical significance. The present review summarizes the current knowledge concerning the taxonomic position of S. capitis among staphylococci, the involvement of this species in human colonization and diseases, the virulence factors supporting its pathogenicity, and the phenotypic and genomic antimicrobial resistance profiles of this species.
Collapse
Affiliation(s)
- Deborah M Crepin
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marie Chavignon
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Paul O Verhoeven
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Faculté de Médecine, Université Jean Monnet, St-Etienne, France
- Service des agents infectieux et d'hygiène, Centre Hospitalier Universitaire de St-Etienne, St-Etienne, France
| | - Frédéric Laurent
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Josse
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marine Butin
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Service de Néonatologie et Réanimation Néonatale, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
2
|
Chandrika K, Sachan A. Biosynthesis of bacteriocin BacZY05-silver nanoconjugates and evaluation of their antibacterial properties. World J Microbiol Biotechnol 2024; 40:287. [PMID: 39090427 DOI: 10.1007/s11274-024-04093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Bacteriocins are antimicrobial peptides produced by bacteria to prevent the growth of pathogens. Combining bacteriocins with metal nanoparticles, like silver nanoparticles (AgNPs), has developed into a viable strategy to get over bacteriocin limitations. In this study, bacteriocin BacZY05 was extracted from Bacillus subtilis ZY05 and purified using various techniques. The resulting purified bacteriocin was then combined with silver nanoparticles to form bacteriocin silver nanoconjugates (BacZY05-AgNPs). The physicochemical properties of the BacZY05-AgNPs were characterized using various analytical techniques. The mean diameter of the synthesized AgNPs was approximately 20-60 nm with an oval or spherical shape. The antimicrobial activity of the BacZY05-AgNPs was evaluated against several indicator strains by their zone of inhibition (ZOI), using the agar well diffusion method. Compared to bacteriocin (ZOI- 13 to 20 mm) and AgNPs (ZOI- 10-22 mm) alone, the antibacterial activity data demonstrated a 1.3-1.5-fold increase in the activity of bacteriocin-nanoconjugates (ZOI- 22 to 26 mm). For Staphylococcus aureus MTCC3103 and Klebsiella pneumoniae MTCC109, BacZY05-capped AgNPs exhibited the lowest minimum inhibitory concentration (MIC), measuring 10.93 µg/mL. For Salmonella typhi NCIM2501, the MIC was 28.75 µg/mL. The highest MIC value was 57.5 µg/mL for Escherichia coli DH5α and Vibrio cholerae MTCC3909. With BacZY05-capped AgNPs, the lowest minimum bactericidal concentration (MBC) of 28.75 µg/mL was observed for Staphylococcus aureus MTCC31003. In the cases of Salmonella typhi NCIM2501 and Klebsiella pneumoniae MTCC109 concentration was 57.5 µg/mL. Vibrio cholerae MTCC3909 and Escherichia coli DH5α had the highest MBC values at 115 µg/mL.
Collapse
Affiliation(s)
- Kumari Chandrika
- Department of Life Sciences, Central University of Jharkhand, Jharkhand, Ranchi, 835 222, India
| | - Ashish Sachan
- Department of Life Sciences, Central University of Jharkhand, Jharkhand, Ranchi, 835 222, India.
| |
Collapse
|
3
|
Imam MW, Luqman S. Unveiling the mechanism of essential oil action against skin pathogens: from ancient wisdom to modern science. Arch Microbiol 2024; 206:347. [PMID: 38985339 DOI: 10.1007/s00203-024-03986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 07/11/2024]
Abstract
Essential oils are among the most well-known phyto-compounds, and since ancient times, they have been utilized in medicine. Over 100 essential oils have been identified and utilized as therapies for various skin infections and related ailments. While numerous commercial medicines are available in different dosage forms to treat skin diseases, the persisting issues include their side effects, toxicity, and low efficacy. As a result, researchers are seeking novel classes of compounds as substitutes for synthetic drugs, aiming for minimal side effects, no toxicity, and high efficacy. Essential oils have shown promising antimicrobial activity against skin-associated pathogens. This review presents essential knowledge and scientific information regarding essential oil's antimicrobial capabilities against microorganisms that cause skin infections. Essential oils mechanisms against different pathogens have also been explored. Many essential oils exhibit promising activity against various microbes, which has been qualitatively assessed using the agar disc diffusion experiment, followed by determining the minimum inhibitory concentration for quantitative evaluation. It has been observed that Staphylococcus aureus and Candida albicans have been extensively researched in the context of skin-related infections and their antimicrobial activity, including established modes of action. In contrast, other skin pathogens such as Staphylococcus epidermidis, Streptococcus pyogens, Propionibacterium acnes, and Malassezia furfur have received less attention or neglected. This review report provides an updated understanding of the mechanisms of action of various essential oils with antimicrobial properties. This review explores the anti-infectious activity and mode of action of essential against distinct skin pathogens. Such knowledge can be valuable in treating skin infections and related ailments.
Collapse
Affiliation(s)
- Md Waquar Imam
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, Uttar Pradesh, India.
| |
Collapse
|
4
|
Śmiałek-Bartyzel J, Bzowska M, Mak P. Pro-inflammatory properties of aureocin A53. Microbes Infect 2024; 26:105365. [PMID: 38777105 DOI: 10.1016/j.micinf.2024.105365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/06/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Aureocin A53 is a peptide bacteriocin produced by an opportunistic pathogen Staphylococcus aureus strain A53. The spatial structure of aureocin, unlike its amino acid sequence, is similar to the bacteriocin BacSp222, which was recently found to have the ability to induce the inflammatory response in the host cells. The presented research aimed to verify such properties also for aureocin A53. We demonstrated that the synthetic aureocin has slight cytotoxic activity towards murine monocytic-macrophage cells. This molecule was also able to activate murine P388.D1 and RAW 264.7 cells to IFN-γ-dependent production of nitric oxide and to activate production of the pro-inflammatory cytokine - TNF. We also proved that the observed pro-inflammatory activity of the studied bacteriocin is related to the stimulation of the TLR2/TLR6 heterodimer and, consequently, activation of the NF-κB transcription factor. To sum up, A53 is the second bacteriocin described in the literature, showing the pro-inflammatory activity against murine macrophage-like cells.
Collapse
Affiliation(s)
- Justyna Śmiałek-Bartyzel
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11 St., 30-348 Kraków, Poland; Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Kraków, Poland
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Kraków, Poland
| | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Kraków, Poland.
| |
Collapse
|
5
|
Wang C, Le MNT, Kawada-Matsuo M, Hisatsune J, Sugawara Y, Arai C, Nakanishi J, Takeda K, Shiba H, Sugai M, Komatsuzawa H. Ursoricin, a bacteriocin of Streptococcus ursoris, has potent activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. Appl Environ Microbiol 2024; 90:e0016224. [PMID: 38775468 PMCID: PMC11218630 DOI: 10.1128/aem.00162-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/19/2024] [Indexed: 06/19/2024] Open
Abstract
The emergence of drug-resistant bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE), has increased the need to discover novel antimicrobial agents that are effective against these species. Here, we describe the identification and purification of the mutacin BHT-B-like gene locus and bacteriocin peptide from Streptococcus ursoris, which is closely related to Streptococcus ratti; hence, we named this bacteriocin ursoricin. Ursoricin is a cationic, chromosome-encoded peptide that has potent antimicrobial effects against Gram-positive pathogens, including MRSA and VRE, with minimum inhibitory concentrations in the micromolar range. Ursoricin also inhibits the biofilm formation of high biofilm-forming S. aureus. Antibacterial activity was retained after treatment at 100°C for 60 min at a pH range of 3-9 and was partially reduced by treatment with proteinase K for 2 h (63% residual activity). The potent anti-MRSA, anti-VRE, and antibiofilm effects of ursoricin suggest that it is a possible candidate for the treatment of MRSA, VRE, and biofilm-associated infections. IMPORTANCE The emergence of multidrug-resistant bacteria worldwide has posed a significant public health threat and economic burdens that make the identification and development of novel antimicrobial agents urgent. Bacteriocins are promising new agents that exhibit antibacterial activity against a wide range of human pathogens. In this study, we report that the bacteriocin produced by Streptococcus ursoris showed good antibacterial activity against a wide range of Staphylococcus aureus and enterococcus strains, particularly methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and high biofilm-forming S. aureus. Interestingly, this bacteriocin had a stronger effect on S. aureus than on Staphylococcus epidermidis, which is a major commensal bacterium in human skin; this result is important when considering the disturbance of bacterial flora, especially on the skin, mediated by the application of antibacterial agents.
Collapse
Affiliation(s)
- Chutian Wang
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mi Nguyen-Tra Le
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Junzo Hisatsune
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yo Sugawara
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chika Arai
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jun Nakanishi
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsuhiro Takeda
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Motoyuki Sugai
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Guimarães LC, Garcia GD, Cavalcante FS, Dias GM, de Farias FM, Saintive S, Abad EDD, Ferreira DDC, dos Santos KRN. Methicillin-resistant Staphylococcus aureus and coagulase-negative Staphylococcus produce antimicrobial substances against members of the skin microbiota in children with atopic dermatitis. FEMS Microbiol Ecol 2024; 100:fiae070. [PMID: 38806244 PMCID: PMC11141783 DOI: 10.1093/femsec/fiae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/09/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024] Open
Abstract
Coagulase-negative Staphylococcus (CoNS) species inhibiting Staphylococcus aureus has been described in the skin of atopic dermatitis (AD) patients. This study evaluated whether Staphylococcus spp. from the skin and nares of AD and non-AD children produced antimicrobial substances (AMS). AMS production was screened by an overlay method and tested against NaOH, proteases and 30 indicator strains. Clonality was assessed by pulsed-field gel electrophoresis. Proteinaceous AMS-producers were investigated for autoimmunity by the overlay method and presence of bacteriocin genes by polymerase chain reaction. Two AMS-producers had their genome screened for AMS genes. A methicillin-resistant S. aureus (MRSA) produced proteinaceous AMS that inhibited 51.7% of the staphylococcal indicator strains, and it was active against 60% of the colonies selected from the AD child where it was isolated. On the other hand, 57 (8.8%) CoNS from the nares and skin of AD and non-AD children, most of them S. epidermidis (45.6%), reduced the growth of S. aureus and other CoNS species. Bacteriocin-related genes were detected in the genomes of AMS-producers. AMS production by CoNS inhibited S. aureus and other skin microbiota species from children with AD. Furthermore, an MRSA colonizing a child with AD produced AMS, reinforcing its contribution to dysbiosis and disease severity.
Collapse
Affiliation(s)
- Lorrayne Cardoso Guimarães
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gizele Duarte Garcia
- Departamento de Clínica Médica, Instituto de Ciências Médicas, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, Rio de Janeiro, Brazil
| | - Fernanda Sampaio Cavalcante
- Departamento de Clínica Médica, Instituto de Ciências Médicas, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, Rio de Janeiro, Brazil
| | - Graciela Maria Dias
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Simone Saintive
- Ambulatório de Dermatologia Pediátrica, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliane de Dios Abad
- Ambulatório de Dermatologia Pediátrica, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dennis de Carvalho Ferreira
- Faculdade de Odontologia, Universidade Estácio de Sá, Rio de Janeiro, Brazil
- Faculdade de Odontologia, Universidade Veiga de Almeida, Rio de Janeiro, Brazil
- Faculdade de Enfermagem, Departamento de Fundamentos de Enfermagem, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kátia Regina Netto dos Santos
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Elnar AG, Kim GB. In Vitro and In Silico Characterization of N-Formylated Two-Peptide Bacteriocin from Enterococcus faecalis CAUM157 with Anti-Listeria Activity. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10265-9. [PMID: 38743207 DOI: 10.1007/s12602-024-10265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Enterococcus faecalis CAUM157 (KACC 81148BP), a Gram-positive bacteria isolated from raw cow's milk, was studied for its bacteriocin production. The antimicrobial activity of CAUM157 was attributed to a two-peptide class IIb bacteriocin with potent activity against food-borne pathogen Listeria monocytogenes and periodontal disease-causing pathogens (Prevotella intermedia KCTC 15693 T and Fusobacterium nucleatum KCTC 2488 T). M157 bacteriocins exhibit high temperature and pH stability and resist hydrolytic enzyme degradation and detergent denaturation, potentially due to their structural conformation. Based on amino acid sequence, M157A and M157B were predicted to be 5.176 kDa and 5.182 kDa in size, respectively. However, purified bacteriocins and chemically synthesized N-formylated M157 peptides both showed 5.204 kDa (M157A) and 5.209 kDa (M157B) molecular mass, confirming the formylation of the N-terminal methionine of both peptides produced by strain CAUM157. Furthermore, the strain demonstrated favorable growth and fermentation with minimal bacteriocin production when cultured in whey-based media, whereas a 1.0% tryptone or soytone supplementation resulted in higher bacteriocin production. Although Ent. faecalis CAUM157 innately harbors genes for virulence factors and antimicrobial resistance (e.g., tetracycline and erythromycin), its bacteriocin production is valuable in circumventing the need for live microorganisms, particularly in food applications for pathogen control.
Collapse
Affiliation(s)
- Arxel G Elnar
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
8
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
9
|
Twomey E, O’Connor PM, Coffey A, Kiste M, Guinane CM, Hill C, Field D, Begley M. Inhibition of Clinical MRSA Isolates by Coagulase Negative Staphylococci of Human Origin. Antibiotics (Basel) 2024; 13:338. [PMID: 38667016 PMCID: PMC11047365 DOI: 10.3390/antibiotics13040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/29/2024] Open
Abstract
Staphylococcus aureus is frequently highlighted as a priority for novel drug research due to its pathogenicity and ability to develop antibiotic resistance. Coagulase-negative staphylococci (CoNS) are resident flora of the skin and nares. Previous studies have confirmed their ability to kill and prevent colonization by S. aureus through the production of bioactive substances. This study screened a bank of 37 CoNS for their ability to inhibit the growth of methicillin-resistant S. aureus (MRSA). Deferred antagonism assays, growth curves, and antibiofilm testing performed with the cell-free supernatant derived from overnight CoNS cultures indicated antimicrobial and antibiofilm effects against MRSA indicators. Whole genome sequencing and BAGEL4 analysis of 11 CoNS isolates shortlisted for the inhibitory effects they displayed against MRSA led to the identification of two strains possessing complete putative bacteriocin operons. The operons were predicted to encode a nukacin variant and a novel epilancin variant. From this point, strains Staphylococcus hominis C14 and Staphylococcus epidermidis C33 became the focus of the investigation. Through HPLC, a peptide identical to previously characterized nukacin KQU-131 and a novel epilancin variant were isolated from cultures of C14 and C33, respectively. Mass spectrometry confirmed the presence of each peptide in the active fractions. Spot-on-lawn assays demonstrated both bacteriocins could inhibit the growth of an MRSA indicator. The identification of natural products with clinically relevant activity is important in today's climate of escalating antimicrobial resistance and a depleting antibiotic pipeline. These findings also highlight the prospective role CoNS may play as a source of bioactive substances with activity against critical pathogens.
Collapse
Affiliation(s)
- Ellen Twomey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (E.T.); (A.C.); (C.M.G.)
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland;
| | | | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (E.T.); (A.C.); (C.M.G.)
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland;
| | - Maija Kiste
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (E.T.); (A.C.); (C.M.G.)
| | - Caitriona M. Guinane
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (E.T.); (A.C.); (C.M.G.)
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland;
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - Des Field
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland;
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (E.T.); (A.C.); (C.M.G.)
| |
Collapse
|
10
|
Wei M, Knight SAB, Fazelinia H, Spruce L, Roof J, Chu E, Kim DY, Bhanap P, Walsh J, Flowers L, Zhu J, Grice EA. An exploration of mechanisms underlying Desemzia incerta colonization resistance to methicillin-resistant Staphylococcus aureus on the skin. mSphere 2024; 9:e0063623. [PMID: 38415632 PMCID: PMC10964421 DOI: 10.1128/msphere.00636-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Colonization of human skin and nares by methicillin-resistant Staphylococcus aureus (MRSA) leads to the community spread of MRSA. This spread is exacerbated by the transfer of MRSA between humans and livestock, particularly swine. Here, we capitalized on the shared features between human and porcine skin, including shared MRSA colonization, to study novel bacterial mediators of MRSA colonization resistance. We focused on the poorly studied bacterial species Desemzia incerta, which we found to exert antimicrobial activity through a secreted product and exhibited colonization resistance against MRSA in an in vivo murine skin model. Using parallel genomic and biochemical investigation, we discovered that D. incerta secretes an antimicrobial protein. Sequential protein purification and proteomics analysis identified 24 candidate inhibitory proteins, including a promising peptidoglycan hydrolase candidate. Aided by transcriptional analysis of D. incerta and MRSA cocultures, we found that exposure to D. incerta leads to decreased MRSA biofilm production. These results emphasize the value of exploring microbial communities across a spectrum of hosts, which can lead to novel therapeutic agents as well as an increased understanding of microbial competition.IMPORTANCEMethicillin-resistant Staphylococcus aureus (MRSA) causes a significant healthcare burden and can be spread to the human population via livestock transmission. Members of the skin microbiome can prevent MRSA colonization via a poorly understood phenomenon known as colonization resistance. Here, we studied the colonization resistance of S. aureus by bacterial inhibitors previously identified from a porcine skin model. We identify a pig skin commensal, Desemzia incerta, that reduced MRSA colonization in a murine model. We employ a combination of genomic, proteomic, and transcriptomic analyses to explore the mechanisms of inhibition between D. incerta and S. aureus. We identify 24 candidate antimicrobial proteins secreted by D. incerta that could be responsible for its antimicrobial activity. We also find that exposure to D. incerta leads to decreased S. aureus biofilm formation. These findings show that the livestock transmission of MRSA can be exploited to uncover novel mechanisms of MRSA colonization resistance.
Collapse
Affiliation(s)
- Monica Wei
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Simon A. B. Knight
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hossein Fazelinia
- Children’s Hospital of Philadelphia, Proteomics Core Facility, Philadelphia, Pennsylvania, USA
| | - Lynn Spruce
- Children’s Hospital of Philadelphia, Proteomics Core Facility, Philadelphia, Pennsylvania, USA
| | - Jennifer Roof
- Children’s Hospital of Philadelphia, Proteomics Core Facility, Philadelphia, Pennsylvania, USA
| | - Emily Chu
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Daniel Y. Kim
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Preeti Bhanap
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jasmine Walsh
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laurice Flowers
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jun Zhu
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. Grice
- Department of Dermatology and Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Glatthardt T, Lima RD, de Mattos RM, Ferreira RBR. Microbe Interactions within the Skin Microbiome. Antibiotics (Basel) 2024; 13:49. [PMID: 38247608 PMCID: PMC10812674 DOI: 10.3390/antibiotics13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The skin is the largest human organ and is responsible for many important functions, such as temperature regulation, water transport, and protection from external insults. It is colonized by several microorganisms that interact with each other and with the host, shaping the microbial structure and community dynamics. Through these interactions, the skin microbiota can inhibit pathogens through several mechanisms such as the production of bacteriocins, proteases, phenol soluble modulins (PSMs), and fermentation. Furthermore, these commensals can produce molecules with antivirulence activity, reducing the potential of these pathogens to adhere to and invade human tissues. Microorganisms of the skin microbiota are also able to sense molecules from the environment and shape their behavior in response to these signals through the modulation of gene expression. Additionally, microbiota-derived compounds can affect pathogen gene expression, including the expression of virulence determinants. Although most studies related to microbial interactions in the skin have been directed towards elucidating competition mechanisms, microorganisms can also use the products of other species to their benefit. In this review, we will discuss several mechanisms through which microorganisms interact in the skin and the biotechnological applications of products originating from the skin microbiota that have already been reported in the literature.
Collapse
Affiliation(s)
- Thaís Glatthardt
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.G.); (R.D.L.); (R.M.d.M.)
- Department of Physiology and Pharmacology, Health Research Innovation Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pediatrics, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rayssa Durães Lima
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.G.); (R.D.L.); (R.M.d.M.)
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Raquel Monteiro de Mattos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.G.); (R.D.L.); (R.M.d.M.)
| | - Rosana Barreto Rocha Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.G.); (R.D.L.); (R.M.d.M.)
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
12
|
Szekat C, Josten M, Rickmeyer J, Crüsemann M, Bierbaum G. A Staphylococcus capitis strain with unusual bacteriocin production. Microb Biotechnol 2023; 16:2181-2193. [PMID: 37850940 PMCID: PMC10616647 DOI: 10.1111/1751-7915.14356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Staphylococcus capitis is a member of the human and mammal skin microbiomes and is considered less harmful than Staphylococcus aureus. S. capitis subsp. urealyticus BN2 was isolated from a cat and expressed strong antibacterial activity against a range of Gram-positive species, most notably including S. aureus strains with resistance to methicillin (MRSA) and strains with intermediate resistance to vancomycin (VISA). These latter strains are normally relatively resistant to bacteriocins, due to cell wall and cell membrane modifications. Genomic sequencing showed that the strain harboured at least two complete gene clusters for biosynthesis of antagonistic substances. The complete biosynthetic gene cluster of the well-known lantibiotic gallidermin was encoded on a large plasmid and the mature peptide was present in isopropanol cell extracts. In addition, a chromosomal island contained a novel non-ribosomal peptide synthetase (NRPS) gene cluster. Accidental deletion of two NRPS modules and partial purification of the anti-VISA activity showed that this novel bacteriocin represents a complex of differently decorated, non-ribosomal peptides. Additionally, a number of phenol-soluble modulins (PSMs) was detected by mass spectrometry of whole cells. Producing these compounds, the strain was able to outcompete several S. aureus strains, including MRSA and VISA, in tube cultures.
Collapse
Affiliation(s)
- Christiane Szekat
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Michaele Josten
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Jasmin Rickmeyer
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| | - Max Crüsemann
- Institute of Pharmaceutical BiologyUniversity of BonnBonnGermany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and ParasitologyUniversity Hospital BonnBonnGermany
| |
Collapse
|
13
|
Wei M, Knight SA, Fazelinia H, Spruce L, Roof J, Chu E, Walsh J, Flowers L, Kim DY, Zhu J, Grice EA. An exploration of mechanisms underlying Desemzia incerta colonization resistance to methicillin-resistant Staphylococcus aureus on the skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561853. [PMID: 37873232 PMCID: PMC10592716 DOI: 10.1101/2023.10.11.561853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Colonization of human skin and nares by methicillin-resistant Staphylococcus aureus (MRSA) leads to community spread of MRSA. This spread is exacerbated by transfer of MRSA between humans and livestock, particularly swine. Here we capitalized on the shared features between human and porcine skin, including shared MRSA colonization, to study novel bacterial mediators of MRSA colonization resistance. We focused on the poorly studied bacterial species Desemzia incerta, which we found to exert antimicrobial activity through a secreted product and exhibited colonization resistance against MRSA in an in vivo murine skin model. Using parallel genomic and biochemical investigation, we discovered that D. incerta secretes an antimicrobial protein. Sequential protein purification and proteomics analysis identified 24 candidate inhibitory proteins, including a promising peptidoglycan hydrolase candidate. Aided by transcriptional analysis of D. incerta and MRSA cocultures, we found that exposure to D. incerta leads to decreased MRSA biofilm production. These results emphasize the value in exploring microbial communities across a spectrum of hosts, which can lead to novel therapeutic agents as well as increased understanding of microbial competition.
Collapse
Affiliation(s)
- Monica Wei
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology and Microbiology, Philadelphia, Pennsylvania, USA
| | - Simon Ab Knight
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology and Microbiology, Philadelphia, Pennsylvania, USA
| | - Hossein Fazelinia
- Children's Hospital of Philadelphia, Proteomics Core Facility, Philadelphia, Pennsylvania, USA
| | - Lynn Spruce
- Children's Hospital of Philadelphia, Proteomics Core Facility, Philadelphia, Pennsylvania, USA
| | - Jennifer Roof
- Children's Hospital of Philadelphia, Proteomics Core Facility, Philadelphia, Pennsylvania, USA
| | - Emily Chu
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology and Microbiology, Philadelphia, Pennsylvania, USA
| | - Jasmine Walsh
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology and Microbiology, Philadelphia, Pennsylvania, USA
| | - Laurice Flowers
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology and Microbiology, Philadelphia, Pennsylvania, USA
| | - Daniel Y Kim
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology and Microbiology, Philadelphia, Pennsylvania, USA
| | - Jun Zhu
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology and Microbiology, Philadelphia, Pennsylvania, USA
| | - Elizabeth A Grice
- University of Pennsylvania, Perelman School of Medicine, Department of Dermatology and Microbiology, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Ladjouzi R, Dussert E, Teiar R, Belguesmia Y, Drider D. A Review on Enterocin DD14, the Leaderless Two-Peptide Bacteriocin with Multiple Biological Functions and Unusual Transport Pathway. Antibiotics (Basel) 2023; 12:1188. [PMID: 37508284 PMCID: PMC10376788 DOI: 10.3390/antibiotics12071188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Enterocin DD14 (EntDD14) is a two-peptide leaderless bacteriocin (LLB) produced by Enterococcus faecalis 14, a human strain isolated from meconium. Studies performed on EntDD14 enabled it to show its activity against Gram-positive bacteria such as Listeria monocytogenes, Clostridium perfringens, Enterococcus faecalis, and Staphylococcus aureus. EntDD14 was also shown to potentiate the activity of different antibiotics such as erythromycin, kanamycin, and methicillin when assessed against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and in vivo in the NMRI-F holoxenic mouse model. Additionally, EntDD14 has an antiviral activity and decreased the secretion of pro-inflammatory IL-6 and IL-8 in inflamed human intestinal Caco-2 cells. The genome of E. faecalis 14 was sequenced and annotated. Molecular tools such as Bagel4 software enabled us to locate a 6.7kb-EntDD14 cluster. Transport of EntDD14 outside of the cytoplasm was shown to be performed synergistically by a channel composed of two pleckstrin-homology-domain-containing proteins, namely DdE/DdF and the ABC transporter DdGHIJ. This latter could also protect the bacteriocinogenic strain against extracellular EntDD14. Here, we focus on academic data and potential therapeutic issues of EntDD14, as a model of two-peptide LLB.
Collapse
Affiliation(s)
- Rabia Ladjouzi
- UMR Transfrontalière BioEcoAgro, INRAe 1158, ICV-Institut Charles Viollette, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d'Opale, F-59000 Lille, France
| | - Elodie Dussert
- UMR Transfrontalière BioEcoAgro, INRAe 1158, ICV-Institut Charles Viollette, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d'Opale, F-59000 Lille, France
| | - Radja Teiar
- UMR Transfrontalière BioEcoAgro, INRAe 1158, ICV-Institut Charles Viollette, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d'Opale, F-59000 Lille, France
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro, INRAe 1158, ICV-Institut Charles Viollette, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d'Opale, F-59000 Lille, France
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro, INRAe 1158, ICV-Institut Charles Viollette, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d'Opale, F-59000 Lille, France
| |
Collapse
|
15
|
Fernández-Fernández R, Lozano C, Reuben RC, Ruiz-Ripa L, Zarazaga M, Torres C. Comprehensive Approaches for the Search and Characterization of Staphylococcins. Microorganisms 2023; 11:1329. [PMID: 37317303 PMCID: PMC10221470 DOI: 10.3390/microorganisms11051329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Novel and sustainable approaches are required to curb the increasing threat of antimicrobial resistance (AMR). Within the last decades, antimicrobial peptides, especially bacteriocins, have received increased attention and are being explored as suitable alternatives to antibiotics. Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria as a self-preservation method against competitors. Bacteriocins produced by Staphylococcus, also referred to as staphylococcins, have steadily shown great antimicrobial potential and are currently being considered promising candidates to mitigate the AMR menace. Moreover, several bacteriocin-producing Staphylococcus isolates of different species, especially coagulase-negative staphylococci (CoNS), have been described and are being targeted as a good alternative. This revision aims to help researchers in the search and characterization of staphylococcins, so we provide an up-to-date list of bacteriocin produced by Staphylococcus. Moreover, a universal nucleotide and amino acid-based phylogeny system of the well-characterized staphylococcins is proposed that could be of interest in the classification and search for these promising antimicrobials. Finally, we discuss the state of art of the staphylococcin applications and an overview of the emerging concerns.
Collapse
Affiliation(s)
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain
| | | | | | | | | |
Collapse
|
16
|
Complete Genome Sequence of Staphylococcus capitis CCSM0123, Isolated from Healthy Facial Skin. Microbiol Resour Announc 2023; 12:e0013223. [PMID: 36916991 PMCID: PMC10112226 DOI: 10.1128/mra.00132-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Staphylococcus capitis strain CCSM0123 was isolated from healthy facial skin. The complete genome of CCSM0123 was sequenced using a combination of Pacific Biosciences (PacBio) RS II single-molecule real-time (SMRT) and Illumina sequencing. The assembled 2.5-Mbp genome consisted of one chromosome and four plasmids.
Collapse
|
17
|
The dynamic balance of the skin microbiome across the lifespan. Biochem Soc Trans 2023; 51:71-86. [PMID: 36606709 PMCID: PMC9988004 DOI: 10.1042/bst20220216] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
For decades research has centered on identifying the ideal balanced skin microbiome that prevents disease and on developing therapeutics to foster this balance. However, this single idealized balance may not exist. The skin microbiome changes across the lifespan. This is reflected in the dynamic shifts of the skin microbiome's diverse, inter-connected community of microorganisms with age. While there are core skin microbial taxa, the precise community composition for any individual person is determined by local skin physiology, genetics, microbe-host interactions, and microbe-microbe interactions. As a key interface with the environment, the skin surface and its appendages are also constantly exchanging microbes with close personal contacts and the environment. Hormone fluctuations and immune system maturation also drive age-dependent changes in skin physiology that support different microbial community structures over time. Here, we review recent insights into the factors that shape the skin microbiome throughout life. Collectively, the works summarized within this review highlight how, depending on where we are in lifespan, our skin supports robust microbial communities, while still maintaining microbial features unique to us. This review will also highlight how disruptions to this dynamic microbial balance can influence risk for dermatological diseases as well as impact lifelong health.
Collapse
|
18
|
Joshi AA, Vocanson M, Nicolas JF, Wolf P, Patra V. Microbial derived antimicrobial peptides as potential therapeutics in atopic dermatitis. Front Immunol 2023; 14:1125635. [PMID: 36761743 PMCID: PMC9907850 DOI: 10.3389/fimmu.2023.1125635] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease that significantly affects the patient's quality of life. A disrupted skin barrier, type 2 cytokine-dominated inflammation, and microbial dysbiosis with increased Staphylococcus aureus colonization are critical components of AD pathogenesis. Patients with AD exhibit decreased expression of antimicrobial peptides (AMPs) which is linked to increased colonization by Staphylococcus aureus. The skin microbiome itself is a source of several AMPs. These host- and microbiome-derived AMPs define the microbial landscape of the skin based on their differential antimicrobial activity against a range of skin microbes or their quorum sensing inhibitory properties. These are particularly important in preventing and limiting dysbiotic colonization with Staphylococcus aureus. In addition, AMPs are critical for immune homeostasis. In this article, we share our perspectives about the implications of microbial derived AMPs in AD patients and their potential effects on overlapping factors involved in AD. We argue and discuss the potential of bacterial AMPs as therapeutics in AD.
Collapse
Affiliation(s)
- Aaroh Anand Joshi
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Marc Vocanson
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR 5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Jean-Francois Nicolas
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR 5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France,Department of Allergology & Clinical Immunology, Lyon-Sud University Hospital, Lyon, France
| | - Peter Wolf
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria,BioTechMed Graz, Graz, Austria
| | - Vijaykumar Patra
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria,Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR 5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France,*Correspondence: Vijaykumar Patra,
| |
Collapse
|
19
|
Microbial Interplay in Skin and Chronic Wounds. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022. [DOI: 10.1007/s40588-022-00180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Purpose of Review
Microbial infections in chronic wounds can often lead to lower-limb amputation, decrease in quality of life, and increase in mortality rate, and there is an unmet need to distinguish between pathogens and colonisers in these chronic wounds. Hence, identifying the composition of healthy skin microbiota, microbes associated with chronic wound and healing processes, and microbial interactions and host response in healing wounds vs. non-healing wounds can help us in formulating innovative individual-centric treatment protocols.
Recent Findings
This review highlights various metabolites and biomarkers produced by microbes that have been identified to modulate these interactions, particularly those involved in host–microbe and microbe–microbe communication. Further, considering that many skin commensals demonstrate contextual pathogenicity, we provide insights into promising initiatives in the wound microbiome research.
Summary
The skin microbiome is highly diverse and variable, and considering its importance remains to be a hotspot of medical investigations and research to enable us to prevent and treat skin disorders and chronic wound infections. This is especially relevant now considering that non-healing and chronic wounds are highly prevalent, generally affecting lower extremities as seen in diabetic foot ulcers, venous leg ulcers, and pressure ulcers. Pathogenic bacteria are purported to have a key role in deferring healing of wounds. However, the role of skin microflora in wound progression has been a subject of debate. In this review, we discuss biomarkers associated with chronic wound microenvironment along with the relevance of skin microflora and their metabolites in determining the chronicity of wounds.
Collapse
|
20
|
Fernández-Fernández R, Lozano C, Eguizábal P, Ruiz-Ripa L, Martínez-Álvarez S, Abdullahi IN, Zarazaga M, Torres C. Bacteriocin-Like Inhibitory Substances in Staphylococci of Different Origins and Species With Activity Against Relevant Pathogens. Front Microbiol 2022; 13:870510. [PMID: 35558130 PMCID: PMC9087342 DOI: 10.3389/fmicb.2022.870510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
Bacteriocins are antimicrobial peptides with relevance in the modulation of human and animal microbiota that have gained interest in biomedical and biotechnological applications. In this study, the production of bacteriocin-like inhibitory substances (BLIS) was tested among a collection of 890 staphylococci of different origins (humans, animals, food, and the environment) and species, both coagulase-positive (CoPS, 238 isolates of 3 species) and coagulase-negative staphylococci (CoNS, 652 isolates of 26 species). Of the 890 staphylococci, 60 (6.7%) showed antimicrobial activity by the spot-on-lawn method against at least one of the 25 indicator bacteria tested. BLIS-producer (BLIS+) isolates were detected in 8.8% of CoPS and 6.0% of CoNS. The staphylococcal species with the highest percentages of BLIS+ isolates were S. chromogenes (38.5%), S. pseudintermedius (26.7%), and S. warneri (23.1%). The production of BLIS was more frequently detected among isolates of pets, wild animals, and food. Moreover, 13 BLIS+ isolates showed wide antimicrobial activiy spectrum, and 7 of these isolates (of species S. aureus, S. pseudintermedius, S. sciuri, and S. hominis) demonstrated antimicrobial activity against more than 70% of the indicator bacteria tested. The genetic characterization (by PCR and sequencing) of the 60 BLIS+ isolates revealed the detection of (a) 11 CoNS and CoPS isolates carrying putative lantibiotic-like genes; (b) 3 S. pseudintermedius isolates harboring the genes of BacSp222 bacteriocin; and (c) 2 S. chromogenes isolates that presented the gene of a putative cyclic bacteriocin (uberolysin-like), being the first report in this CoNS species. Antimicrobial susceptibility testing was performed in BLIS+ isolates and one-third of the CoNS isolates showed susceptibility to all antibiotics tested, which also lacked the virulence genes studied. These BLIS+ CoNS are good candidates for further characterization studies.
Collapse
Affiliation(s)
- Rosa Fernández-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Paula Eguizábal
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Laura Ruiz-Ripa
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Sandra Martínez-Álvarez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| |
Collapse
|
21
|
Ahsan A, Mazhar B, Khan MK, Mustafa M, Hammad M, Ali NM. Bacteriocin-mediated inhibition of some common pathogens by wild and mutant Lactobacillus species and in vitro amplification of bacteriocin encoding genes. ADMET AND DMPK 2022; 10:75-87. [PMID: 35360671 PMCID: PMC8963578 DOI: 10.5599/admet.1053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/14/2021] [Indexed: 12/20/2022] Open
Abstract
Lactobacilli are the most common probiotics used in food and other industries because of their capability of producing bacteriocins. Bacteriocins are compounds that are used to kill pathogenic microorganisms. As most bacteria have become resistant to synthetic antibacterial tools, the importance of using probiotics as antibacterial agents has increased. This work was done to check the bacteriocin effect on some common pathogens and the influence of mutation on the bacteriocin activity of Lactobacilli was also investigated. Four strains were isolated, identified from meat and pickles samples via culturing methods, staining, biochemical tests, and ribotyping. Preliminary tests, including Gram staining and catalase test, were done for the confirmation of Lactobacillus species. All strains were gram-positive and catalase-negative. Antibacterial activity was checked against Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus thuringiensis, Escherichia coli, and Salmonella enteritis via agar well diffusion method. The mutations were done using ethidium bromide and the influence of wild and mutants were also checked. Interestingly, mutants developed more virulence than wild ones. It was also observed that they all were sensitive to pepsin. Protein estimation was done via Bradford method. Ribotyping of GCU-W-PS1 revealed 99 % homology with Lactobacillus plantarum and GCU-W-MS1 to Lactobacillus curvatus (99 % homology). Curvacin A, sakacin P, and plantaricin A genes were also amplified using specific primers. Gene sequence showed the presence of curvacin A gene in GCU-W-MS1. It was concluded that lactic acid bacteria could be used as antibacterial tools against common pathogens.
Collapse
|
22
|
Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol 2021; 19:726-739. [PMID: 34075213 DOI: 10.1038/s41579-021-00569-w] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 02/05/2023]
Abstract
The microbiomes on human body surfaces affect health in multiple ways. They include not only commensal or mutualistic bacteria but also potentially pathogenic bacteria, which can enter sterile tissues to cause invasive infection. Many commensal bacteria produce small antibacterial molecules termed bacteriocins that have the capacity to eliminate specific colonizing pathogens; as such, bacteriocins have attracted increased attention as potential microbiome-editing tools. Metagenome-based and activity-based screening approaches have strongly expanded our knowledge of the abundance and diversity of bacteriocin biosynthetic gene clusters and the properties of a continuously growing list of bacteriocin classes. The dynamic acquisition, diversification or loss of bacteriocin genes can shape the fitness of a bacterial strain that is in competition with bacteriocin-susceptible bacteria. However, a bacteriocin can only provide a competitive advantage if its fitness benefit exceeds the metabolic cost of production, if it spares crucial mutualistic partner strains and if major competitors cannot develop resistance. In contrast to most currently available antibiotics, many bacteriocins have only narrow activity ranges and could be attractive agents for precision therapy and prevention of infections. A common scientific strategy involving multiple disciplines is needed to uncover the immense potential of microbiome-shaping bacteriocins.
Collapse
Affiliation(s)
- Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
23
|
Kassem MA, Saafan AE, Bayomy F, El-Gendy AO. Exploring clinically isolated Staphylococcus sp. bacteriocins revealed the production of amonabactin, micrococcin, and α-circulocin. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:212-224. [PMID: 34540157 PMCID: PMC8408034 DOI: 10.18502/ijm.v13i2.5983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives: Bacteriocins are considered alternative non-conventional antimicrobials produced by certain bacteria with activity against closely related species. The present study focuses on screening, characterization, and partial purification of bacteriocins produced by Staphylococcus sp. isolated from different clinical sources such as pus and blood. Materials and Methods: A total of 100 Staphylococcus isolates were screened for bacteriocin production using spot on lawn assay and agar diffusion method against five indicator bacteria. Bacteriocins from five selected highly active isolates were subjected to proteinase-K enzyme, different pH, and heating at different temperatures, and investigated the stabilities of their antimicrobials. Two selected isolates, MK65 and MK88, were molecularly identified by 16S rRNA gene sequencing, explored for the presence of 18 bacteriocin genes, and liquid chromatography-high resolution electrospray ionization mass spectrometry (LC-HRESIMS) was used to identify their different metabolites. Results: Twenty isolates exhibited inhibitory effect against at least one indicator bacteria. Micrococcus luteus ATCC 4698 showed the highest sensitivity to such bacteriocins. Proteinase K, acidic pH, and heating at 100°C triggered marked activity inhibition. However, amylase enzyme, alkaline pH, and heating at 80°C caused trivial effects. Four out of eighteen bacteriocin genes were detected using PCR. Fermentation, partial purification, and LC-HRESIMS of total protein extracts of two selected isolates, MK65 and MK88, revealed the production of different antimicrobial peptides. Conclusion: To the best of our knowledge, this is the first study to report the production of micrococcin and α-circulocin from Staphylococcus aureus MK65 and the production of amonabactin from Staphylococcus epidermidis MK88.
Collapse
Affiliation(s)
- Mohamed Ali Kassem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Amal Eissa Saafan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Menoufeia University, Shebin El Kom, Egypt
| | - Faten Bayomy
- Department of Immunogenetics, National Research Center, Cairo, Egypt
| | - Ahmed Osama El-Gendy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
24
|
Twomey E, Hill C, Field D, Begley M. Recipe for Success: Suggestions and Recommendations for the Isolation and Characterisation of Bacteriocins. Int J Microbiol 2021; 2021:9990635. [PMID: 34257667 PMCID: PMC8249226 DOI: 10.1155/2021/9990635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022] Open
Abstract
Bacteriocins are bacterially produced antimicrobial peptides. Although only two peptides have been approved for use as natural preservatives foods, current research is focusing on expanding their application as potential therapeutics against clinical pathogens. Our laboratory group has been working on bacteriocins for over 25 years, and during that time, we have isolated bacteriocin-producing microorganisms from a variety of sources including human skin, human faeces, and various foods. These bacteriocins were purified and characterised, and their potential applications were examined. We have also identified bioengineered derivatives of the prototype lantibiotic nisin which possess more desirable properties than the wild-type, such as enhanced antimicrobial activity. In the current communication, we discuss the main methods that were employed to identify such peptides. Furthermore, we provide a step-by-step guide to carrying out these methods that include accompanying diagrams. We hope that our recommendations and advice will be of use to others in their search for, and subsequent analysis of, novel bacteriocins, and derivatives thereof.
Collapse
Affiliation(s)
- Ellen Twomey
- Department of Biological Sciences, Munster Technological University, Cork T12 P928, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork T12YT20, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland
| | - Des Field
- School of Microbiology, University College Cork, Cork T12YT20, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, Cork T12 P928, Ireland
| |
Collapse
|
25
|
Benítez-Chao DF, León-Buitimea A, Lerma-Escalera JA, Morones-Ramírez JR. Bacteriocins: An Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models. Front Microbiol 2021; 12:630695. [PMID: 33935991 PMCID: PMC8083986 DOI: 10.3389/fmicb.2021.630695] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The world is facing a significant increase in infections caused by drug-resistant infectious agents. In response, various strategies have been recently explored to treat them, including the development of bacteriocins. Bacteriocins are a group of antimicrobial peptides produced by bacteria, capable of controlling clinically relevant susceptible and drug-resistant bacteria. Bacteriocins have been studied to be able to modify and improve their physicochemical properties, pharmacological effects, and biosafety. This manuscript focuses on the research being developed on the biosafety of bacteriocins, which is a topic that has not been addressed extensively in previous reviews. This work discusses the studies that have tested the effect of bacteriocins against pathogens and assess their toxicity using in vivo models, including murine and other alternative animal models. Thus, this work concludes the urgency to increase and advance the in vivo models that both assess the efficacy of bacteriocins as antimicrobial agents and evaluate possible toxicity and side effects, which are key factors to determine their success as potential therapeutic agents in the fight against infections caused by multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- Diego Francisco Benítez-Chao
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Jordy Alexis Lerma-Escalera
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| |
Collapse
|
26
|
Abstract
Human skin functions as a physical, chemical, and immune barrier against the external environment while also providing a protective niche for its resident microbiota, known as the skin microbiome. Cooperation between the microbiota, host skin cells, and the immune system is responsible for maintenance of skin health, and a disruption to this delicate balance, such as by pathogen invasion or a breach in the skin barrier, may lead to impaired skin function. Human skin functions as a physical, chemical, and immune barrier against the external environment while also providing a protective niche for its resident microbiota, known as the skin microbiome. Cooperation between the microbiota, host skin cells, and the immune system is responsible for maintenance of skin health, and a disruption to this delicate balance, such as by pathogen invasion or a breach in the skin barrier, may lead to impaired skin function. In this minireview, we describe the role of the microbiome in microbe, host, and immune interactions under distinct skin states, including homeostasis, tissue repair, and wound infection. Furthermore, we highlight the growing number of diverse microbial metabolites and products that have been identified to mediate these interactions, particularly those involved in host-microbe communication and defensive symbiosis. We also address the contextual pathogenicity exhibited by many skin commensals and provide insight into future directions in the skin microbiome field.
Collapse
|
27
|
França A, Gaio V, Lopes N, Melo LDR. Virulence Factors in Coagulase-Negative Staphylococci. Pathogens 2021; 10:170. [PMID: 33557202 PMCID: PMC7913919 DOI: 10.3390/pathogens10020170] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) have emerged as major pathogens in healthcare-associated facilities, being S. epidermidis, S. haemolyticus and, more recently, S. lugdunensis, the most clinically relevant species. Despite being less virulent than the well-studied pathogen S. aureus, the number of CoNS strains sequenced is constantly increasing and, with that, the number of virulence factors identified in those strains. In this regard, biofilm formation is considered the most important. Besides virulence factors, the presence of several antibiotic-resistance genes identified in CoNS is worrisome and makes treatment very challenging. In this review, we analyzed the different aspects involved in CoNS virulence and their impact on health and food.
Collapse
Affiliation(s)
- Angela França
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (V.G.); (N.L.)
| | | | | | - Luís D. R. Melo
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (V.G.); (N.L.)
| |
Collapse
|
28
|
de Freire Bastos MDC, Miceli de Farias F, Carlin Fagundes P, Varella Coelho ML. Staphylococcins: an update on antimicrobial peptides produced by staphylococci and their diverse potential applications. Appl Microbiol Biotechnol 2020; 104:10339-10368. [PMID: 33128614 DOI: 10.1007/s00253-020-10946-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022]
Abstract
Staphylococcins are antimicrobial peptides or proteins produced by staphylococci. They can be separated into different classes, depending on their amino acid composition, structural complexity, and steps involved in their production. In this review, an overview of the current knowledge on staphylococcins will be presented with emphasis on the information collected in the last decade, including a brief description of new peptides. Most staphylococcins characterized to date are either lantibiotics or linear class II bacteriocins. Recently, gene clusters coding for production of circular bacteriocins, sactipeptides, and thiopeptides have been mined from the genome of staphylococcal isolates. In contrast to class II bacteriocins, lantibiotics, sactipeptides, and thiopeptides undergo post-translational modifications that can be quite extensive, depending on the peptide. Few staphylococcins inhibit only some staphylococcal species, but most of them have proven to target pathogens belonging to different genera and involved in a variety of infectious diseases of clinical or agronomic importance. Therefore, these peptides exhibit potential application as anti-infective drugs in different areas. This review will also cover this diverse and remarkable potential. To be commercialized, however, staphylococcin production should be cost-effective and result in high bacteriocin yields, which are not generally achieved from the culture supernatant of their native producers. Such low yields make their production quite costly and not suitable at large industrial scale. Efforts already made to overcome this limitation, minimizing costs and time of production of some staphylococcins and employing either chemical synthesis or in vivo biosynthesis, will be addressed in this review as well. KEY POINTS: • Staphylococci produce a variety of antimicrobial peptides known as staphylococcins. • Most staphylococcins are post-translationally modified peptides. • Staphylococcins exhibit potential biotechnological applications. Graphical abstract.
Collapse
Affiliation(s)
- Maria do Carmo de Freire Bastos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Felipe Miceli de Farias
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Patrícia Carlin Fagundes
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Marcus Lívio Varella Coelho
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.,Instituto Nacional da Propriedade Industrial, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
29
|
Cui Y, Luo L, Wang X, Lu Y, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Compr Rev Food Sci Food Saf 2020; 20:863-899. [PMID: 33443793 DOI: 10.1111/1541-4337.12658] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Bacteriocins are generally considered as low-molecular-weight ribosomal peptides or proteins synthesized by G+ and G- bacteria that inhibit or kill other related or unrelated microorganisms. However, low yield is an important factor restricting the application of bacteriocins. This paper reviews mining methods, heterologous expression in different systems, the purification technologies applied to bacteriocins, and identification methods, as well as the antibacterial mechanism and applications in three different food systems. Bioinformatics improves the efficiency of bacteriocins mining. Bacteriocins can be heterologously expressed in different expression systems (e.g., Escherichia coli, Lactobacillus, and yeast). Ammonium sulfate precipitation, dialysis membrane, pH-mediated cell adsorption/desorption, solvent extraction, macroporous resin column, and chromatography are always used as purification methods for bacteriocins. The bacteriocins are identified through electrophoresis and mass spectrum. Cell envelope (e.g., cell permeabilization and pore formation) and inhibition of gene expression are common antibacterial mechanisms of bacteriocins. Bacteriocins can be added to protect meat products (e.g., beef and sausages), dairy products (e.g., cheese, milk, and yogurt), and vegetables and fruits (e.g., salad, apple juice, and soybean sprouts). The future research directions are also prospected.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingli Luo
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Lu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
Lynch D, Hill C, Field D, Begley M. Inhibition of Listeria monocytogenes by the Staphylococcus capitis - derived bacteriocin capidermicin. Food Microbiol 2020; 94:103661. [PMID: 33279086 DOI: 10.1016/j.fm.2020.103661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/17/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
Natural methods to control food pathogens are required and bacteriocins have received much interest in this regard. The aim of this study was to investigate the ability of the novel bacteriocin capidermicin to inhibit Listeria monocytogenes. Agar-based deferred antagonism assays were carried out with the capidermicin producer against 17 L. monocytogenes strains and large zones of inhibition were observed for 12 strains. Minimal inhibitory concentration assays performed with purified capidermicin peptide revealed MIC values between 680 nM and 11 μM. Biofilm assays were performed with five L. monocytogenes strains. Addition of capidermicin prevented biofilm formation by one strain and could remove pre-established biofilms of all five strains. Broth based growth experiments demonstrated that addition of capidermicin resulted in an extended lag phase of both L. monocytogenes strains tested. Kill-curve experiments showed that capidermicin was able to potentiate the anti-Listeria effects of the lantibiotic nisin. This enhanced killing by the combination of both peptides was also observed in model food systems (cottage cheese and chocolate milk). In summary, we show that capidermicin can inhibit L. monocytogenes and warrants further investigation as a potential natural agent for the control of this pathogen.
Collapse
Affiliation(s)
- David Lynch
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Des Field
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| | - Máire Begley
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
31
|
Newstead LL, Varjonen K, Nuttall T, Paterson GK. Staphylococcal-Produced Bacteriocins and Antimicrobial Peptides: Their Potential as Alternative Treatments for Staphylococcus aureus Infections. Antibiotics (Basel) 2020; 9:antibiotics9020040. [PMID: 31973108 PMCID: PMC7168290 DOI: 10.3390/antibiotics9020040] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/05/2022] Open
Abstract
Staphylococcus aureus is an important pathogen of both humans and animals, implicated in a wide range of infections. The emergence of antibiotic resistance has resulted in S. aureus strains that are resistant to almost all available antibiotics, making treatment a clinical challenge. Development of novel antimicrobial approaches is now a priority worldwide. Bacteria produce a range of antimicrobial peptides; the most diverse of these being bacteriocins. Bacteriocins are ribosomally synthesised peptides, displaying potent antimicrobial activity usually against bacteria phylogenetically related to the producer strain. Several bacteriocins have been isolated from commensal coagulase-negative staphylococci, many of which display inhibitory activity against S. aureus in vitro and in vivo. The ability of these bacteriocins to target biofilm formation and their novel mechanisms of action with efficacy against antibiotic-resistant bacteria make them strong candidates as novel therapeutic antimicrobials. The use of genome-mining tools will help to advance identification and classification of bacteriocins. This review discusses the staphylococcal-derived antimicrobial peptides displaying promise as novel treatments for S. aureus infections.
Collapse
Affiliation(s)
- Logan L. Newstead
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.L.N.); (T.N.)
| | - Katarina Varjonen
- AniCura Djursjukhuset Albano, Rinkebyvägen 21A, 182 36 Danderyd, Sweden;
| | - Tim Nuttall
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.L.N.); (T.N.)
| | - Gavin K. Paterson
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.L.N.); (T.N.)
- Correspondence:
| |
Collapse
|