1
|
Yang C, Lu X, Du D, Liang Z, Li C, Hu K, Wang H, Cheng Y, Lian T, Nian H, Ma Q. GsMYB10 encoding a MYB-CC transcription factor enhances the tolerance to acidic aluminum stress in soybean. BMC PLANT BIOLOGY 2024; 24:1251. [PMID: 39725892 DOI: 10.1186/s12870-024-06004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND MYB transcription factors (TFs) play crucial roles in the response to diverse abiotic and biotic stress factors in plants. In this study, the GsMYB10 gene encoding a MYB-CC transcription factor was cloned from wild soybean BW69 line. However, there is less report on the aluminum (Al)-tolerant gene in this subfamily. RESULTS The GsMYB10 gene was up-regulated by acidic aluminum stress and rich in the roots with a constitutive expression pattern in soybean. It was found that GsMYB10 protein contains the MYB and coiled-coil (CC) domains, localizes in the nucleus and holds transcriptional activity. The analysis of the transgenic phenotype revealed that the taproot length and root fresh weights of the GsMYB10-OE plants were greater than those of the wild type when subjected to AlCl3 treatments. While the accumulation of Al3+ in root tip of GsMYB10 transgenic plants (59.37 ± 3.59 µg/g) significantly reduced compared with that of wild type (80.40 ± 3.16 µg/g) which were shallowly stained by hematoxylin under the treatments of AlCl3. Physiological indexes showed that the proline content significantly increased 39-45% and the malondialdehyde content significantly reduced 37-42% in GsMYB10-OE plants compared with that of wild type. Transcriptomic analysis showed that overexpression of GsMYB10 induced a large number of differentially expressed genes (DEGs) with Al-treatment, which were related to wall modification related genes included PGs (such as Glyma.19g006200, Glyma.05g005800), XTHs (such as Glyma.12g080100, Glyma.12g101800, Glyma.08g093900 and Glyma.13g322500), NRAMPs and ABCs. CONCLUSIONS In summary, the data presented in this paper indicate that GsMYB10, as a new soybean MYB-CC TF, is a positive regulator and increases the adaptability of soybeans to acidic aluminum stress. The findings will contribute to the understanding of soybean response to acidic aluminum stress.
Collapse
Affiliation(s)
- Ce Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiang Lu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Dan Du
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zhongyi Liang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Cheng Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Kang Hu
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hongjie Wang
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yanbo Cheng
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Tengxiang Lian
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Qibin Ma
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
2
|
Subbulakshmi K, Karthikeyan A, Murukarthick J, Dhasarathan M, Naveen R, Sathya M, Lavanya B, Iyanar K, Sivakumar S, Ravikesavan R, Sumathi P, Senthil N. Consensus genetic linkage map and QTL mapping allow to capture the genomic regions associated with agronomic traits in pearl millet. PLANTA 2024; 260:57. [PMID: 39039303 DOI: 10.1007/s00425-024-04487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
MAIN CONCLUSION A genetic linkage map representing the pearl millet genome was constructed with SNP markers. Major and stable QTL associated with flowering, number of productive tillers, ear head length, and test weight were mapped on chromosomes 1 and 3. Pearl millet (Pennisetum glaucum) is a major cereal and fodder crop in arid and semi-arid regions of Asia and Africa. Agronomic traits are important traits in pearl millet breeding and genetic and environmental factors highly influence them. In the present study, an F9 recombinant inbred line (RIL) population derived from a cross between PT6029 and PT6129 was evaluated for agronomic traits in three environments. Utilizing a genotyping by sequencing approach, a dense genetic map with 993 single nucleotide polymorphism markers covering a total genetic distance of 1035.4 cM was constructed. The average interval between the markers was 1.04 cM, and the seven chromosomes varied from 115.39 to 206.72 cM. Quantitative trait loci (QTL) mapping revealed 35 QTL for seven agronomic traits, and they were distributed on all pearl millet chromosomes. These QTL individually explained 11.35 to 26.71% of the phenotypic variation, with LOD values ranging from 2.74 to 5.80. Notably, four QTL (qDFF1.1, qNPT3.1, qEHL3.1, and qTW1.1) associated with days to fifty percent flowering, the number of productive tillers, ear head length, and test weight were found to be major and stable QTL located on chromosomes 1 and 3. Collectively, our results provide an important base for understanding the genetic architecture of agronomic traits in pearl millet, which is useful for accelerating the genetic gain toward crop improvement.
Collapse
Affiliation(s)
- Kali Subbulakshmi
- Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, South Korea
- Department of Biotechnology, Centre of Innovation, Agriculture College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu, India
| | - Jayakodi Murukarthick
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466, Stadt Seeland, Germany
| | - Manickam Dhasarathan
- Agro Climate Research Centre, Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore, India
| | - Ranganathan Naveen
- Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Murughiah Sathya
- Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Balasundaram Lavanya
- Department of Plant Molecular Biology and Bioinformatics, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Krishnamoorthy Iyanar
- Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Subbarayan Sivakumar
- Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Rajasekaran Ravikesavan
- Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Pichaikannu Sumathi
- Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Natesan Senthil
- Department of Plant Molecular Biology and Bioinformatics, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
- School of Post Graduate Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
3
|
Wang H, Li C, Wang L, Zhong H, Xu X, Cheng Y, Nian H, Liu W, Chen P, Zhang A, Ma Q. GmABR1 encoding an ERF transcription factor enhances the tolerance to aluminum stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1125245. [PMID: 37035040 PMCID: PMC10076715 DOI: 10.3389/fpls.2023.1125245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The ethylene response factor (ERF) transcription factors, which is one of the largest transcription factor families in plants, are involved in biological and abiotic stress response and play an important role in plant growth and development. In this study, the GmABR1 gene from the soybean inbred line Zhonghuang24 (ZH24)×Huaxia 3 (HX3) was investigated its aluminum (Al) tolerance. GmABR1 protein has a conserved domain AP2, which is located in the nucleus and has transcriptional activation ability. The results of real-time quantitative PCR (qRT-PCR) showed that the GmABR1 gene presented a constitutive expression pattern rich in the root tip, stem and leaf tissues of HX3. After Al stress, the GmABR1 transcript was significantly increased in the roots. The transcripts of GmABR1 in the roots of HX3 treated with 50 µM AlCl3 was 51 times than that of the control. The GmABR1 was spatiotemporally specific with the highest expression levels when Al concentration was 50 µM, which was about 36 times than that of the control. The results of hematoxylin staining showed that the root tips of GmABR1-overexpression lines were stained the lightest, followed by the control, and the root tips of GmABR1 RNAi lines were stained the darkest. The concentrations of Al3+ in root tips were 207.40 µg/g, 147.74 µg/g and 330.65 µg/g in wild type (WT), overexpressed lines and RNAi lines, respectively. When AlCl3 (pH4.5) concentration was 100 µM, all the roots of Arabidopsis were significantly inhibited. The taproot elongation of WT, GmABR1 transgenic lines was 69.6%, 85.6%, respectively. When treated with Al, the content of malondialdehyde (MDA) in leaves of WT increased to 3.03 µg/g, while that of transgenic Arabidopsis increased from 1.66-2.21 µg/g, which was lower than that of WT. Under the Al stress, the Al stress responsive genes such as AtALMT1 and AtMATE, and the genes related to ABA pathway such as AtABI1, AtRD22 and AtRD29A were up-regulated. The results indicated that GmABR1 may jointly regulate plant resistance to Al stress through genes related to Al stress response and ABA response pathways.
Collapse
Affiliation(s)
- Hongjie Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Cheng Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lidan Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hongying Zhong
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xin Xu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenhua Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Pei Chen
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Aixia Zhang
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Ali A, Altaf MT, Nadeem MA, Karaköy T, Shah AN, Azeem H, Baloch FS, Baran N, Hussain T, Duangpan S, Aasim M, Boo KH, Abdelsalam NR, Hasan ME, Chung YS. Recent advancement in OMICS approaches to enhance abiotic stress tolerance in legumes. FRONTIERS IN PLANT SCIENCE 2022; 13:952759. [PMID: 36247536 PMCID: PMC9554552 DOI: 10.3389/fpls.2022.952759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
The world is facing rapid climate change and a fast-growing global population. It is believed that the world population will be 9.7 billion in 2050. However, recent agriculture production is not enough to feed the current population of 7.9 billion people, which is causing a huge hunger problem. Therefore, feeding the 9.7 billion population in 2050 will be a huge target. Climate change is becoming a huge threat to global agricultural production, and it is expected to become the worst threat to it in the upcoming years. Keeping this in view, it is very important to breed climate-resilient plants. Legumes are considered an important pillar of the agriculture production system and a great source of high-quality protein, minerals, and vitamins. During the last two decades, advancements in OMICs technology revolutionized plant breeding and emerged as a crop-saving tool in wake of the climate change. Various OMICs approaches like Next-Generation sequencing (NGS), Transcriptomics, Proteomics, and Metabolomics have been used in legumes under abiotic stresses. The scientific community successfully utilized these platforms and investigated the Quantitative Trait Loci (QTL), linked markers through genome-wide association studies, and developed KASP markers that can be helpful for the marker-assisted breeding of legumes. Gene-editing techniques have been successfully proven for soybean, cowpea, chickpea, and model legumes such as Medicago truncatula and Lotus japonicus. A number of efforts have been made to perform gene editing in legumes. Moreover, the scientific community did a great job of identifying various genes involved in the metabolic pathways and utilizing the resulted information in the development of climate-resilient legume cultivars at a rapid pace. Keeping in view, this review highlights the contribution of OMICs approaches to abiotic stresses in legumes. We envisage that the presented information will be helpful for the scientific community to develop climate-resilient legume cultivars.
Collapse
Affiliation(s)
- Amjad Ali
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Muhammad Tanveer Altaf
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Tolga Karaköy
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hajra Azeem
- Department of Plant Pathology, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Nurettin Baran
- Bitkisel Uretim ve Teknolojileri Bolumu, Uygulamali Bilimler Faku Itesi, Mus Alparslan Universitesi, Mus, Turkey
| | - Tajamul Hussain
- Laboratory of Plant Breeding and Climate Resilient Agriculture, Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Thailand
| | - Saowapa Duangpan
- Laboratory of Plant Breeding and Climate Resilient Agriculture, Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Thailand
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Kyung-Hwan Boo
- Subtropical/Tropical Organism Gene Bank, Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju, South Korea
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed E. Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, South Korea
| |
Collapse
|
5
|
Han Z, Wang J, Wang X, Zhang X, Cheng Y, Cai Z, Nian H, Ma Q. GmWRKY21, a Soybean WRKY Transcription Factor Gene, Enhances the Tolerance to Aluminum Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:833326. [PMID: 35958220 PMCID: PMC9359102 DOI: 10.3389/fpls.2022.833326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The WRKY transcription factors (TFs) are one of the largest families of TFs in plants and play multiple roles in plant growth and development and stress response. In this study, GmWRKY21 encoding a WRKY transcription factor was functionally characterized in Arabidopsis and soybean. The GmWRKY21 protein containing a highly conserved WRKY domain and a C2H2 zinc-finger structure is located in the nucleus and has the characteristics of transcriptional activation ability. The GmWRKY21 gene presented a constitutive expression pattern rich in the roots, leaves, and flowers of soybean with over 6-fold of relative expression levels and could be substantially induced by aluminum stress. As compared to the control, overexpression of GmWRKY21 in Arabidopsis increased the root growth of seedlings in transgenic lines under the AlCl3 concentrations of 25, 50, and 100 μM with higher proline and lower MDA accumulation. The results of quantitative real-time polymerase chain reaction (qRT-PCR) showed that the marker genes relative to aluminum stress including ALMT, ALS3, MATE, and STOP1 were induced in GmWRKY21 transgenic plants under AlCl3 treatment. The stress-related genes, such as KIN1, COR15A, COR15B, COR47, GLOS3, and RD29A, were also upregulated in GmWRKY21 transgenic Arabidopsis under aluminum stress. Similarly, stress-related genes, such as GmCOR47, GmDREB2A, GmMYB84, GmKIN1, GmGST1, and GmLEA, were upregulated in hair roots of GmWRKY21 transgenic plants. In summary, these results suggested that the GmWRKY21 transcription factor may promote the tolerance to aluminum stress mediated by the pathways regulating the expression of the acidic aluminum stress-responsive genes and abiotic stress-responsive genes.
Collapse
Affiliation(s)
- Zhenzhen Han
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Jinyu Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Xinxin Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Xijia Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Gojon A, Nussaume L, Luu DT, Murchie EH, Baekelandt A, Rodrigues Saltenis VL, Cohan J, Desnos T, Inzé D, Ferguson JN, Guiderdonni E, Krapp A, Klein Lankhorst R, Maurel C, Rouached H, Parry MAJ, Pribil M, Scharff LB, Nacry P. Approaches and determinants to sustainably improve crop production. Food Energy Secur 2022. [DOI: 10.1002/fes3.369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Alain Gojon
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| | - Laurent Nussaume
- UMR7265 Laboratoire de Biologie du Développement des Plantes Service de Biologie Végétale et de Microbiologie Environnementales Institut de Biologie Environnementale et Biotechnologie CNRS‐CEA‐Université Aix‐Marseille Saint‐Paul‐lez‐Durance France
| | - Doan T. Luu
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| | - Erik H. Murchie
- School of Biosciences University of Nottingham Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | | | | | - Thierry Desnos
- UMR7265 Laboratoire de Biologie du Développement des Plantes Service de Biologie Végétale et de Microbiologie Environnementales Institut de Biologie Environnementale et Biotechnologie CNRS‐CEA‐Université Aix‐Marseille Saint‐Paul‐lez‐Durance France
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - John N. Ferguson
- School of Biosciences University of Nottingham Loughborough UK
- Department of Plant Sciences University of Cambridge Cambridge UK
| | | | - Anne Krapp
- Institut Jean‐Pierre Bourgin INRAE AgroParisTech Université Paris‐Saclay Versailles France
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Hatem Rouached
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
- Department of Plant, Soil, and Microbial Sciences Michigan State University East Lansing Michigan USA
| | | | - Mathias Pribil
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Lars B. Scharff
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Philippe Nacry
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| |
Collapse
|
7
|
Singh D, Chaudhary P, Taunk J, Singh CK, Singh D, Tomar RSS, Aski M, Konjengbam NS, Raje RS, Singh S, Sengar RS, Yadav RK, Pal M. Fab Advances in Fabaceae for Abiotic Stress Resilience: From 'Omics' to Artificial Intelligence. Int J Mol Sci 2021; 22:10535. [PMID: 34638885 PMCID: PMC8509049 DOI: 10.3390/ijms221910535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Legumes are a better source of proteins and are richer in diverse micronutrients over the nutritional profile of widely consumed cereals. However, when exposed to a diverse range of abiotic stresses, their overall productivity and quality are hugely impacted. Our limited understanding of genetic determinants and novel variants associated with the abiotic stress response in food legume crops restricts its amelioration. Therefore, it is imperative to understand different molecular approaches in food legume crops that can be utilized in crop improvement programs to minimize the economic loss. 'Omics'-based molecular breeding provides better opportunities over conventional breeding for diversifying the natural germplasm together with improving yield and quality parameters. Due to molecular advancements, the technique is now equipped with novel 'omics' approaches such as ionomics, epigenomics, fluxomics, RNomics, glycomics, glycoproteomics, phosphoproteomics, lipidomics, regulomics, and secretomics. Pan-omics-which utilizes the molecular bases of the stress response to identify genes (genomics), mRNAs (transcriptomics), proteins (proteomics), and biomolecules (metabolomics) associated with stress regulation-has been widely used for abiotic stress amelioration in food legume crops. Integration of pan-omics with novel omics approaches will fast-track legume breeding programs. Moreover, artificial intelligence (AI)-based algorithms can be utilized for simulating crop yield under changing environments, which can help in predicting the genetic gain beforehand. Application of machine learning (ML) in quantitative trait loci (QTL) mining will further help in determining the genetic determinants of abiotic stress tolerance in pulses.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Priya Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Deepti Singh
- Department of Botany, Meerut College, Meerut 250001, India
| | - Ram Sewak Singh Tomar
- College of Horticulture and Forestry, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, India
| | - Muraleedhar Aski
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Noren Singh Konjengbam
- College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University, Imphal 793103, India
| | - Ranjeet Sharan Raje
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sanjay Singh
- ICAR- National Institute of Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Rakesh Singh Sengar
- College of Biotechnology, Sardar Vallabh Bhai Patel Agricultural University, Meerut 250001, India
| | - Rajendra Kumar Yadav
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur 208002, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
8
|
Singh CK, Singh D, Sharma S, Chandra S, Tomar RSS, Kumar A, Upadhyaya KC, Pal M. Mechanistic Association of Quantitative Trait Locus with Malate Secretion in Lentil ( Lens culinaris Medikus) Seedlings under Aluminium Stress. PLANTS 2021; 10:plants10081541. [PMID: 34451586 PMCID: PMC8400473 DOI: 10.3390/plants10081541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/04/2022]
Abstract
Aluminium (Al) toxicity acts as a major delimiting factor in the productivity of many crops including lentil. To alleviate its effect, plants have evolved with Al exclusion and inclusion mechanisms. The former involves the exudation of organic acid to restrict the entry of Al3+ to the root cells while latter involves detoxification of entered Al3+ by organic acids. Al-induced secretion of organic acids from roots is a well-documented mechanism that chelates and neutralizes Al3+ toxicity. In this study, F6 recombinant inbred lines (RILs) derived from a cross between L-7903 (Al-resistant) and BM-4 (Al-sensitive) were phenotyped to assess variation in secretion levels of malate and was combined with genotypic data obtained from 10 Al-resistance linked simple sequence repeat (SSRs) markers. A major quantitative trait loci (QTL) was mapped for malate (qAlt_ma) secretion with a logarithm of odd (LOD) value of 7.7 and phenotypic variation of 60.2%.Validated SSRs associated with this major QTL will be useful in marker assisted selection programmes for improving Al resistance in lentil.
Collapse
Affiliation(s)
- Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (C.K.S.); (S.S.)
- Amity Institute of Biotechnology, Amity University, Noida 201313, India;
| | - Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (C.K.S.); (S.S.)
- Correspondence: (D.S.); (M.P.); Tel.: +91-7011180774 (D.S.); +91-9868783354 (M.P.)
| | - Shristi Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (C.K.S.); (S.S.)
| | - Shivani Chandra
- Amity Institute of Biotechnology, Amity University, Noida 201313, India;
| | - Ram Sewak Singh Tomar
- ICAR-National Institute of Plant Biotechnology, Pusa Campus, New Delhi 110012, India;
| | - Arun Kumar
- National Phytotron Facility, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - K. C. Upadhyaya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India
- Correspondence: (D.S.); (M.P.); Tel.: +91-7011180774 (D.S.); +91-9868783354 (M.P.)
| |
Collapse
|
9
|
Genetic Mapping by Sequencing More Precisely Detects Loci Responsible for Anaerobic Germination Tolerance in Rice. PLANTS 2021; 10:plants10040705. [PMID: 33917499 PMCID: PMC8067528 DOI: 10.3390/plants10040705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/16/2022]
Abstract
Direct seeded rice (DSR) is a mainstay for planting rice in the Americas, and it is rapidly becoming more popular in Asia. It is essential to develop rice varieties that are suitable for this type of production system. ASD1, a landrace from India, possesses several traits desirable for direct-seeded fields, including tolerance to anaerobic germination (AG). To map the genetic basis of its tolerance, we examined a population of 200 F2:3 families derived from a cross between IR64 and ASD1 using the restriction site-associated DNA sequencing (RAD-seq) technology. This genotyping platform enabled the identification of 1921 single nucleotide polymorphism (SNP) markers to construct a high-resolution genetic linkage map with an average interval of 0.9 cM. Two significant quantitative trait loci (QTLs) were detected on chromosomes 7 and 9, qAG7 and qAG9, with LOD scores of 7.1 and 15.0 and R2 values of 15.1 and 29.4, respectively. Here, we obtained more precise locations of the QTLs than traditional simple sequence repeat and low-density SNP genotyping methods and may help further dissect the genetic factors of these QTLs.
Collapse
|