1
|
Zambrzycki SC, Saberi S, Biggs R, Eskandari N, Delisi D, Taylor H, Mehta AS, Drake RR, Gentile S, Bradshaw AD, Ostrowski M, Angel PM. Profiling of collagen and extracellular matrix deposition from cell culture using in vitro ExtraCellular matrix mass spectrometry imaging (ivECM-MSI). Matrix Biol Plus 2024; 24:100161. [PMID: 39435160 PMCID: PMC11492733 DOI: 10.1016/j.mbplus.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
While numerous approaches have been reported towards understanding single cell regulation, there is limited understanding of single cell production of extracellular matrix phenotypes. Collagens are major proteins of the extracellular microenvironment extensively used in basic cell culture, tissue engineering, and biomedical applications. However, identifying compositional regulation of collagen remains challenging. Here, we report the development of In vitro ExtraCellular Matrix Mass Spectrometry Imaging (ivECM-MSI) as a tool to rapidly and simultaneously define collagen subtypes from coatings and basic cell culture applications. The tool uses the mass spectrometry imaging platform with reference libraries to produce visual and numerical data types. The method is highly integrated with basic in vitro strategies as it may be used with conventional cell chambers on minimal numbers of cells and with minimal changes to biological experiments. Applications tested include semi-quantitation of collagen composition in culture coatings, time course collagen deposition, deposition altered by gene knockout, and changes induced by drug treatment. This approach provides new access to proteomic information on how cell types respond to and change the extracellular microenvironment and provides a holistic understanding of both the cell and extracellular response.
Collapse
Affiliation(s)
| | | | - Rachel Biggs
- Department of Medicine, MUSC, Charleston, SC, USA
- The Ralph H. Johnson Department of Veteran’s Affairs Medical Center, Charleston, SC, USA
| | - Najmeh Eskandari
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
| | - Davide Delisi
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
| | - Harrison Taylor
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Saverio Gentile
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| | - Amy D. Bradshaw
- Department of Medicine, MUSC, Charleston, SC, USA
- The Ralph H. Johnson Department of Veteran’s Affairs Medical Center, Charleston, SC, USA
| | - Michael Ostrowski
- Hollings Cancer Center, Charleston, SC, USA
- Department of Biochemistry and Molecular Biology, MUSC, Charleston, SC, USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology, MUSC, Charleston, SC, USA
- Hollings Cancer Center, Charleston, SC, USA
| |
Collapse
|
2
|
Ghannam SF, Rutland CS, Allegrucci C, Mather ML, Alsaleem M, Bateman-Price TD, Patke R, Ball G, Mongan NP, Rakha E. Geometric characteristics of stromal collagen fibres in breast cancer using differential interference contrast microscopy. J Microsc 2024. [PMID: 39359124 DOI: 10.1111/jmi.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Breast cancer (BC) is characterised by a high level of heterogeneity, which is influenced by the interaction of neoplastic cells with the tumour microenvironment. The diagnostic and prognostic role of the tumour stroma in BC remains to be defined. Differential interference contrast (DIC) microscopy is a label-free imaging technique well suited to visualise weak optical phase objects such as cells and tissue. This study aims to compare stromal collagen fibre characteristics between in situ and invasive breast tumours using DIC microscopy and investigate the prognostic value of collagen parameters in BC. A tissue microarray was generated from 200 cases, comprising ductal carcinoma in situ (DCIS; n = 100) and invasive tumours (n = 100) with an extra 50 (25 invasive BC and 25 DCIS) cases for validation was utilised. Two sections per case were used: one stained with haematoxylin and eosin (H&E) stain for histological review and one unstained for examination using DIC microscopy. Collagen fibre parameters including orientation angle, fibre alignment, fibre density, fibre width, fibre length and fibre straightness were measured. Collagen fibre density was higher in the stroma of invasive BC (161.68 ± 11.2 fibre/µm2) compared to DCIS (p < 0.0001). The collagen fibres were thinner (13.78 ± 1.08 µm), straighter (0.96 ± 0.006, on a scale of 0-1), more disorganised (95.07° ± 11.39°) and less aligned (0.20 ± 0.09, on a 0-1 scale) in the invasive BC compared to DCIS (all p < 0.0001). A model considering these features was developed that could distinguish between DCIS and invasive tumours with 94% accuracy. There were strong correlations between fibre characteristics and clinicopathological parameters in both groups. A statistically significant association between fibre characteristics and patients' outcomes (breast cancer specific survival, and recurrence free survival) was observed in the invasive group but not in DCIS. Although invasive BC and DCIS were both associated with stromal reaction, the structural features of collagen fibres were significantly different in the two disease stages. Analysis of the stroma fibre characteristics in the preoperative core biopsy specimen may help to differentiate pure DCIS from those associated with invasion.
Collapse
Affiliation(s)
- Suzan F Ghannam
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Faculty of Medicine, Department of Histology and Cell Biology, Suez Canal University, Ismailia, Egypt
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Catrin Sian Rutland
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Cinzia Allegrucci
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Melissa L Mather
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Mansour Alsaleem
- Department of Applied Medical Science, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Thomas D Bateman-Price
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Rodhan Patke
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
- Biodiscovery Institute, University of Nottingham, University Park, Nottingham, UK
| | - Graham Ball
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, UK
| | - Nigel P Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
| | - Emad Rakha
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Cellular Pathology Department, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Pathology Department, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
3
|
Sapudom J, Riedl P, Schricker M, Kroy K, Pompe T. Physical network regimes of 3D fibrillar collagen networks trigger invasive phenotypes of breast cancer cells. BIOMATERIALS ADVANCES 2024; 163:213961. [PMID: 39032434 DOI: 10.1016/j.bioadv.2024.213961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/18/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
The mechanical characteristics of the extracellular environment are known to significantly influence cancer cell behavior in vivo and in vitro. The structural complexity and viscoelastic dynamics of the extracellular matrix (ECM) pose significant challenges in understanding its impact on cancer cells. Herein, we report distinct regulatory signatures in the invasion of different breast cancer cell lines into three-dimensional (3D) fibrillar collagen networks, caused by systematic modifications of the physical network properties. By reconstituting collagen networks of thin fibrils, we demonstrate that such networks can display network strand flexibility akin to that of synthetic polymer networks, known to exhibit entropic rubber elasticity. This finding contrasts with the predominant description of the mechanics of fibrillar collagen networks by an enthalpic bending elasticity of rod-like fibrils. Mean-squared displacement analysis of free-standing fibrils confirmed a flexible fiber regime in networks of thin fibrils. Furthermore, collagen fibrils in both networks were softened by the adsorption of highly negatively charged sulfonated polymers and colloidal probe force measurements of network elastic modulus again proofed the occurrence of the two different physical network regimes. Our cell assays revealed that the cellular behavior (morphology, clustering, invasiveness, matrix metalloproteinase (MMP) activity) of the 'weakly invasive' MCF-7 and 'highly invasive' MDA-MB-231 breast cancer cell lines is distinctively affected by the physical (enthalpic/entropic) network regime, and cannot be explained by changes of the network elastic modulus, alone. These results highlight an essential pathway, albeit frequently overlooked, how the physical characteristics of fibrillar ECMs affect cellular behavior. Considering the coexistence of diverse physical network regimes of the ECM in vivo, our findings underscore their critical role of ECM's physical network regimes in tumor progression and other cell functions, and moreover emphasize the significance of 3D in vitro collagen network models for quantifying cell responses in both healthy and pathological states.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany; Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Philipp Riedl
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Maria Schricker
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Klaus Kroy
- Institute for Theoretical Physics, Leipzig University, Leipzig 04009, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany.
| |
Collapse
|
4
|
Ghosh B, Chatterjee J, Paul RR, Acuña S, Lahiri P, Pal M, Mitra P, Agarwal K. Molecular histopathology of matrix proteins through autofluorescence super-resolution microscopy. Sci Rep 2024; 14:10524. [PMID: 38719976 PMCID: PMC11078950 DOI: 10.1038/s41598-024-61178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Extracellular matrix diseases like fibrosis are elusive to diagnose early on, to avoid complete loss of organ function or even cancer progression, making early diagnosis crucial. Imaging the matrix densities of proteins like collagen in fixed tissue sections with suitable stains and labels is a standard for diagnosis and staging. However, fine changes in matrix density are difficult to realize by conventional histological staining and microscopy as the matrix fibrils are finer than the resolving capacity of these microscopes. The dyes further blur the outline of the matrix and add a background that bottlenecks high-precision early diagnosis of matrix diseases. Here we demonstrate the multiple signal classification method-MUSICAL-otherwise a computational super-resolution microscopy technique to precisely estimate matrix density in fixed tissue sections using fibril autofluorescence with image stacks acquired on a conventional epifluorescence microscope. We validated the diagnostic and staging performance of the method in extracted collagen fibrils, mouse skin during repair, and pre-cancers in human oral mucosa. The method enables early high-precision label-free diagnosis of matrix-associated fibrotic diseases without needing additional infrastructure or rigorous clinical training.
Collapse
Affiliation(s)
- Biswajoy Ghosh
- Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
- UiT - The Arctic University of Norway, 9019, Tromsø, Norway.
| | | | - Ranjan Rashmi Paul
- Guru Nanak Institute of Dental Sciences and Research, Kolkata, West Bengal, 700114, India
| | | | - Pooja Lahiri
- Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Mousumi Pal
- Guru Nanak Institute of Dental Sciences and Research, Kolkata, West Bengal, 700114, India
| | - Pabitra Mitra
- Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Krishna Agarwal
- UiT - The Arctic University of Norway, 9019, Tromsø, Norway.
| |
Collapse
|
5
|
Brussow J, Feng K, Thiam F, Phogat S, Osei ET. Epithelial-fibroblast interactions in IPF: Lessons from in vitro co-culture studies. Differentiation 2023; 134:11-19. [PMID: 37738701 DOI: 10.1016/j.diff.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/19/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial disease that is characterized by increased cellular proliferation and differentiation together with excessive extracellular matrix (ECM) deposition leading to buildup of scar tissue (fibrosis) and remodeling in the lungs. The activated and differentiated (myo)fibroblasts are one of the main sources of tissue remodeling in IPF and a crucial mechanism known to contribute to this feature is an aberrant crosstalk between pulmonary fibroblasts and the abnormal or injured pulmonary epithelium. This epithelial-fibroblast interaction mimics the temporal, spatial and cell-type specific crosstalk between the endoderm and mesoderm in the so-called epithelial-mesenchymal trophic unit (EMTU) during lung development that is proposed to be activated in healthy lung repair and dysregulated in various lung diseases including IPF. To study the dysregulated lung EMTU in IPF, various complex in vitro models have been established. Hence, in this review, we will provide a summary of studies that have used complex (3-dimensional) in vitro co-culture, and organoid models to assess how abnormal epithelial-fibroblast interactions in lung EMTU contribute to crucial features of the IPF including defective cellular differentiation, proliferation and migration as well as increased ECM deposition.
Collapse
Affiliation(s)
- J Brussow
- Department of Biology, Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - K Feng
- Department of Biology, Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - F Thiam
- Department of Biology, Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - S Phogat
- Department of Biology, Okanagan Campus, University of British Columbia, Kelowna, BC, Canada
| | - E T Osei
- Department of Biology, Okanagan Campus, University of British Columbia, Kelowna, BC, Canada; Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
6
|
Ghosh B, Agarwal K. Viewing life without labels under optical microscopes. Commun Biol 2023; 6:559. [PMID: 37231084 PMCID: PMC10212946 DOI: 10.1038/s42003-023-04934-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Optical microscopes today have pushed the limits of speed, quality, and observable space in biological specimens revolutionizing how we view life today. Further, specific labeling of samples for imaging has provided insight into how life functions. This enabled label-based microscopy to percolate and integrate into mainstream life science research. However, the use of labelfree microscopy has been mostly limited, resulting in testing for bio-application but not bio-integration. To enable bio-integration, such microscopes need to be evaluated for their timeliness to answer biological questions uniquely and establish a long-term growth prospect. The article presents key label-free optical microscopes and discusses their integrative potential in life science research for the unperturbed analysis of biological samples.
Collapse
|
7
|
Abstract
In this series of papers on light microscopy imaging, we have covered the fundamentals of microscopy, super-resolution microscopy, and lightsheet microscopy. This last review covers multi-photon microscopy with a brief reference to intravital imaging and Brainbow labeling. Multi-photon microscopy is often referred to as two-photon microscopy. Indeed, using two-photon microscopy is by far the most common way of imaging thick tissues; however, it is theoretically possible to use a higher number of photons, and three-photon microscopy is possible. Therefore, this review is titled "multi-photon microscopy." Another term for describing multi-photon microscopy is "non-linear" microscopy because fluorescence intensity at the focal spot depends upon the average squared intensity rather than the squared average intensity; hence, non-linear optics (NLO) is an alternative name for multi-photon microscopy. It is this non-linear relationship (or third exponential power in the case of three-photon excitation) that determines the axial optical sectioning capability of multi-photon imaging. In this paper, the necessity for two-photon or multi-photon imaging is explained, and the method of optical sectioning by multi-photon microscopy is described. Advice is also given on what fluorescent markers to use and other practical aspects of imaging thick tissues. The technique of Brainbow imaging is discussed. The review concludes with a description of intravital imaging of the mouse. © 2023 Wiley Periodicals LLC.
Collapse
|
8
|
López-Márquez A, Morín M, Fernández-Peñalver S, Badosa C, Hernández-Delgado A, Natera-de Benito D, Ortez C, Nascimento A, Grinberg D, Balcells S, Roldán M, Moreno-Pelayo MÁ, Jiménez-Mallebrera C. CRISPR/Cas9-Mediated Allele-Specific Disruption of a Dominant COL6A1 Pathogenic Variant Improves Collagen VI Network in Patient Fibroblasts. Int J Mol Sci 2022; 23:ijms23084410. [PMID: 35457228 PMCID: PMC9025481 DOI: 10.3390/ijms23084410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Collagen VI-related disorders are the second most common congenital muscular dystrophies for which no treatments are presently available. They are mostly caused by dominant-negative pathogenic variants in the genes encoding α chains of collagen VI, a heteromeric network forming collagen; for example, the c.877G>A; p.Gly293Arg COL6A1 variant, which alters the proper association of the tetramers to form microfibrils. We tested the potential of CRISPR/Cas9-based genome editing to silence or correct (using a donor template) a mutant allele in the dermal fibroblasts of four individuals bearing the c.877G>A pathogenic variant. Evaluation of gene-edited cells by next-generation sequencing revealed that correction of the mutant allele by homologous-directed repair occurred at a frequency lower than 1%. However, the presence of frameshift variants and others that provoked the silencing of the mutant allele were found in >40% of reads, with no effects on the wild-type allele. This was confirmed by droplet digital PCR with allele-specific probes, which revealed a reduction in the expression of the mutant allele. Finally, immunofluorescence analyses revealed a recovery in the collagen VI extracellular matrix. In summary, we demonstrate that CRISPR/Cas9 gene-edition can specifically reverse the pathogenic effects of a dominant negative variant in COL6A1.
Collapse
Affiliation(s)
- Arístides López-Márquez
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain; (C.B.); (A.H.-D.); (D.N.-d.B.); (C.O.); (A.N.); (C.J.-M.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; (M.M.); (D.G.); (S.B.); (M.Á.M.-P.)
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
- Correspondence:
| | - Matías Morín
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; (M.M.); (D.G.); (S.B.); (M.Á.M.-P.)
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Ctra. de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain;
| | - Sergio Fernández-Peñalver
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Ctra. de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain;
| | - Carmen Badosa
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain; (C.B.); (A.H.-D.); (D.N.-d.B.); (C.O.); (A.N.); (C.J.-M.)
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
| | - Alejandro Hernández-Delgado
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain; (C.B.); (A.H.-D.); (D.N.-d.B.); (C.O.); (A.N.); (C.J.-M.)
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
| | - Daniel Natera-de Benito
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain; (C.B.); (A.H.-D.); (D.N.-d.B.); (C.O.); (A.N.); (C.J.-M.)
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
| | - Carlos Ortez
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain; (C.B.); (A.H.-D.); (D.N.-d.B.); (C.O.); (A.N.); (C.J.-M.)
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
| | - Andrés Nascimento
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain; (C.B.); (A.H.-D.); (D.N.-d.B.); (C.O.); (A.N.); (C.J.-M.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; (M.M.); (D.G.); (S.B.); (M.Á.M.-P.)
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
| | - Daniel Grinberg
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; (M.M.); (D.G.); (S.B.); (M.Á.M.-P.)
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
- Departamento de Genética, Microbiología y Estadística, Facultad de Biología, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Susanna Balcells
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; (M.M.); (D.G.); (S.B.); (M.Á.M.-P.)
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
- Departamento de Genética, Microbiología y Estadística, Facultad de Biología, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Mónica Roldán
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
- Unidad de Microscopia Confocal e Imagen Celular, Servicio de Medicina Genética y Molecular, Institut Pediàtric de Malalties Rares (IPER), Hospital Sant Joan de Déu, Passeig Sant Joan de Deu, 2, 08950 Esplugues de Llobregat, Spain
| | - Miguel Ángel Moreno-Pelayo
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; (M.M.); (D.G.); (S.B.); (M.Á.M.-P.)
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Ctra. de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain;
| | - Cecilia Jiménez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain; (C.B.); (A.H.-D.); (D.N.-d.B.); (C.O.); (A.N.); (C.J.-M.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; (M.M.); (D.G.); (S.B.); (M.Á.M.-P.)
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain;
| |
Collapse
|
9
|
Chen D, Chen H, Chi L, Fu M, Wang G, Wu Z, Xu S, Sun C, Xu X, Lin L, Cheng J, Jiang W, Dong X, Lu J, Zheng J, Chen G, Li G, Zhuo S, Yan J. Association of Tumor-Associated Collagen Signature With Prognosis and Adjuvant Chemotherapy Benefits in Patients With Gastric Cancer. JAMA Netw Open 2021; 4:e2136388. [PMID: 34846524 PMCID: PMC8634059 DOI: 10.1001/jamanetworkopen.2021.36388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
IMPORTANCE The current TNM staging system provides limited information for prognosis prediction and adjuvant chemotherapy benefits for patients with gastric cancer (GC). OBJECTIVE To develop a tumor-associated collagen signature of GC (TACSGC) in the tumor microenvironment to predict prognosis and adjuvant chemotherapy benefits in patients with GC. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study included a training cohort of 294 consecutive patients treated between January 1, 2012, and December 31, 2013, from Nanfang Hospital, Southern Medical University, People's Republic of China, and a validation cohort of 225 consecutive patients treated between October 1, 2010, and December 31, 2012, from Fujian Provincial Cancer Hospital, Fujian Medical University, People's Republic of China. In total, 146 collagen features in the tumor microenvironment were extracted with multiphoton imaging. A TACSGC was then constructed using the least absolute shrinkage and selection operator Cox proportional hazards regression model in the training cohort. Data analysis was conducted from October 1, 2020, to April 30, 2021. MAIN OUTCOMES AND MEASURES The association of TACSGC with disease-free survival (DFS) and overall survival (OS) was assessed. An independent external cohort was included to validate the results. Interactions between TACSGC and adjuvant chemotherapy were calculated. RESULTS This study included 519 patients (median age, 57 years [IQR, 49-65 years]; 360 [69.4%] male). A 9 feature-based TACSGC was built. A higher TACSGC level was significantly associated with worse DFS and OS in both the training (DFS: hazard ratio [HR], 3.57 [95% CI, 2.45-5.20]; OS: HR, 3.54 [95% CI, 2.41-5.20]) and validation (DFS: HR, 3.10 [95% CI, 2.26-4.27]; OS: HR, 3.24 [95% CI, 2.33-4.50]) cohorts (continuous variable, P < .001 for all comparisons). Multivariable analyses found that carbohydrate antigen 19-9, depth of invasion, lymph node metastasis, distant metastasis, and TACSGC were independent prognostic predictors of GC, and 2 integrated nomograms that included the 5 predictors were established for predicting DFS and OS. Compared with clinicopathological models that included only the 4 clinicopathological predictors, the integrated nomograms yielded an improved discrimination for prognosis prediction in a C index comparison (training cohort: DFS, 0.80 [95% CI, 0.73-0.88] vs 0.78 [95% CI, 0.71-0.85], P = .03; OS, 0.81 [95% CI, 0.75-0.88] vs 0.80 [95% CI, 0.73-0.86], P = .03; validation cohort: DFS, 0.78 [95% CI, 0.70-0.87] vs 0.76 [95% CI, 0.67-0.84], P = .006; OS, 0.78 [95% CI, 0.69-0.86] vs 0.75 [95% CI, 0.67-0.84], P = .002). Patients with stage II and III GC and low TACSGC levels rather than high TACSGC levels had a favorable response to adjuvant chemotherapy (DFS: HR, 0.65 [95% CI, 0.43-0.96]; P = .03; OS: HR, 0.55 [95% CI, 0.36-0.82]; P = .004; dichotomized variable, P < .001 for interaction for both comparisons). CONCLUSIONS AND RELEVANCE The findings suggest that TACSGC provides additional prognostic information for patients with GC and may distinguish patients with stage II and III disease who are more likely to derive benefits from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Dexin Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- School of Science, Jimei University, Xiamen, People’s Republic of China
| | - Hao Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Liangjie Chi
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Meiting Fu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Guangxing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, People’s Republic of China
| | - Zhida Wu
- Department of Pathology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Shuoyu Xu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Caihong Sun
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, People’s Republic of China
| | - Xueqin Xu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, People’s Republic of China
| | - Liyan Lin
- Department of Pathology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Jiaxin Cheng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Wei Jiang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xiaoyu Dong
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jianping Lu
- Department of Pathology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Jixiang Zheng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Gang Chen
- Department of Pathology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, People’s Republic of China
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shuangmu Zhuo
- School of Science, Jimei University, Xiamen, People’s Republic of China
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
10
|
Poole JJA, Mostaço-Guidolin LB. Optical Microscopy and the Extracellular Matrix Structure: A Review. Cells 2021; 10:1760. [PMID: 34359929 PMCID: PMC8308089 DOI: 10.3390/cells10071760] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Biological tissues are not uniquely composed of cells. A substantial part of their volume is extracellular space, which is primarily filled by an intricate network of macromolecules constituting the extracellular matrix (ECM). The ECM serves as the scaffolding for tissues and organs throughout the body, playing an essential role in their structural and functional integrity. Understanding the intimate interaction between the cells and their structural microenvironment is central to our understanding of the factors driving the formation of normal versus remodelled tissue, including the processes involved in chronic fibrotic diseases. The visualization of the ECM is a key factor to track such changes successfully. This review is focused on presenting several optical imaging microscopy modalities used to characterize different ECM components. In this review, we describe and provide examples of applications of a vast gamut of microscopy techniques, such as widefield fluorescence, total internal reflection fluorescence, laser scanning confocal microscopy, multipoint/slit confocal microscopy, two-photon excited fluorescence (TPEF), second and third harmonic generation (SHG, THG), coherent anti-Stokes Raman scattering (CARS), fluorescence lifetime imaging microscopy (FLIM), structured illumination microscopy (SIM), stimulated emission depletion microscopy (STED), ground-state depletion microscopy (GSD), and photoactivated localization microscopy (PALM/fPALM), as well as their main advantages, limitations.
Collapse
Affiliation(s)
| | - Leila B. Mostaço-Guidolin
- Department of Systems and Computer Engineering, Faculty of Engineering and Design, Carleton University 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
11
|
Mostaco-Guidolin LB, Loube J, Barlow A, Osei ET, Vasilescu DM, Hsieh A, Fouadi M, Young C, Scott AL, Mitzner W, Hackett TL. Second harmonic generation imaging of collagen scaffolds within the alveolar ducts of healthy and emphysematous mouse lungs. Histochem Cell Biol 2021; 155:279-289. [PMID: 33515079 DOI: 10.1007/s00418-020-01959-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 01/21/2023]
Abstract
The alveolar ducts are connected to peripheral septal fibers which extend from the visceral pleura into interlobular septa, and are anchored to axial fibers in the small airways. Together these axial and septal fibers constitute a fiber continuum that provides tension and integrity throughout the lung. Building on the observations that alveolar ducts associated with sub-pleural alveoli are orientated perpendicular to the visceral pleura, and in parallel to each other, the goal of the present study was to investigate the nature of the collagen fiber organization within sub-pleural alveolar ducts in healthy control and elastase-induced emphysema murine lungs. Employing three-dimensional second harmonic generation imaging, the structural arrangement of fibrilar collagen fibers could be visualized in cleared murine lungs. In healthy control lungs, fibrilar collagen fibers within alveolar mouths formed the coiled collagen structure within the alveolar duct. In the elastase-treated emphysema lungs, there was loss of fibrilar collagen fibers (p < 0.01) and disruption of collagens structural organization as measured by the fibrillar collagen length (p < 0.01) and entropy (p < 0.01). Compared to the alveolar ducts from healthy controls, there was a significant increase in the area of cells (nm2, p < 0.001), and area of cells with cytoplasmic granules (nm2, p < 0.001) compared to emphysematous lungs. These results are consistent with the idea that one of the major contributors to the progressive loss of alveolar surfaces and elastic recoil in the emphysematous lung is loss of the structural integrity of the collagen scaffold that maintains the spatial relationships important for cell survival and lung function.
Collapse
Affiliation(s)
- Leila B Mostaco-Guidolin
- Department of Systems and Computer Engineering, Faculty of Engineering and Design, Carleton University, Ottawa, ON, Canada
| | - Jeffrey Loube
- Department of Environmental Health and Engineering, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Aaron Barlow
- Centre for Heart Lung Innovation, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Emmanuel T Osei
- Centre for Heart Lung Innovation, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Dragoș M Vasilescu
- Centre for Heart Lung Innovation, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Aileen Hsieh
- Centre for Heart Lung Innovation, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - May Fouadi
- Centre for Heart Lung Innovation, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Christine Young
- Biomedical Visualization Graduate Program, Biomedical and Health Information Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Alan L Scott
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tillie L Hackett
- Centre for Heart Lung Innovation, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Wang W, Wu B, Zhang B, Zhang Z, Li X, Zheng S, Fan Z, Tan J. Second harmonic generation microscopy using pixel reassignment. J Microsc 2020; 281:97-105. [PMID: 32844429 DOI: 10.1111/jmi.12956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/01/2020] [Accepted: 08/24/2020] [Indexed: 12/01/2022]
Abstract
Second harmonic generation (SHG) microscopy is expected to be a powerful tool for observing the cellular-level functionality and morphology information of thick tissue owe to its unique imaging properties. However, the maximum attainable resolution obtainable by SHG microscopy is limited by the use of long-wavelength, near-infrared excitation. In this paper, we report the use of pixel reassignment to improve the spatial resolution of SHG microscopy. The SHG signal is imaged onto a position-sensitive camera, instead of a point detector typically used in conventional SHG microscope. The data processing is performed through pixel reassignment and subsequent deblurring operation. We present the basic principle and a rigorous theoretical model for SHG microscopy using pixel reassignment (SHG-PR). And for the first time, the optimal reassignment factor for SHG-PR is derived based on the coherent characteristics and the dependence of wavelength in SHG microscopy. To evaluate the spatial resolution improvement, images of nano-beads separated by different distances and of a microtubule array have been simulated. We gain about a 1.5-fold spatial resolution enhancement compared to conventional SHG microscopy. When a further deblurring operation is implemented, this method allows for a total spatial resolution enhancement of about 1.87. Additionally, we demonstrate the validity of SHG-PR for raw data with noise. LAY DESCRIPTION: Second harmonic generation (SHG) microscopy has emerged as a powerful imaging technique in clinical diagnostics and biological research. SHG microscopy is label-free and provides intrinsic optical sectioning for three-dimensional (3D) imaging. However, a near-infrared excitation wavelength results a restriction in the maximum attainable spatial resolution of SHG microscopy. In this paper, we present a simple resolution-enhanced SHG imaging method, SHG microscopy using pixel reassignment (SHG-PR). We demonstrate a rigorous theoretical model for SHG-PR and derive the optimal reassignment factor. The simulation result shows the clear improvement of the image resolution and contrast in the SHG-PR after deblurring operation. The FWHM value of single microtubule shows that SHG-PR enables a spatial resolution enhancement by a factor of 1.5, compared to conventional SHG microscopy. After a proper deblurring operation, this method allows for a total spatial resolution enhancement of about 1.87. The improvements of spatial resolution and contrast are still valid for raw data with noise. It is expected that this method can contribute towards new insights in unstained tissue morphology, interaction of cells, and diseases diagnosis.
Collapse
Affiliation(s)
- W Wang
- Institute of Ultra-Precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin, China.,Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, China.,Postdoctoral Research Station of Optical Engineering, Harbin Institute of Technology, Harbin, China
| | - B Wu
- Institute of Ultra-Precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin, China.,Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, China
| | - B Zhang
- Institute of Ultra-Precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin, China.,Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, China
| | - Z Zhang
- Institute of Ultra-Precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin, China.,Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, China
| | - X Li
- Institute of Ultra-Precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin, China.,Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, China
| | - S Zheng
- Institute of Ultra-Precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin, China.,Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, China
| | - Z Fan
- Postdoctoral Research Station of Optical Engineering, Harbin Institute of Technology, Harbin, China
| | - J Tan
- Institute of Ultra-Precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin, China.,Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, China
| |
Collapse
|
13
|
Abstract
The light (or optical) microscope is the icon of science. The aphorism "seeing is believing" is often quoted in scientific papers involving microscopy. Unlike many scientific instruments, the light microscope will deliver an image however badly it is set up. Fluorescence microscopy is a widely used research tool across all disciplines of biological and biomedical science. Most universities and research institutions have microscopes, including confocal microscopes. This introductory paper in a series detailing advanced light microscopy techniques explains the foundations of both electron and light microscopy for biologists and life scientists working with the mouse. An explanation is given of how an image is formed. A description is given of how to set up a light microscope, whether it be a brightfield light microscope on the laboratory bench, a widefield fluorescence microscope, or a confocal microscope. These explanations are accompanied by operational protocols. A full explanation on how to set up and adjust a microscope according to the principles of Köhler illumination is given. The importance of Nyquist sampling is discussed. Guidelines are given on how to choose the best microscope to image the particular sample or slide preparation that you are working with. These are the basic principles of microscopy that a researcher must have an understanding of when operating core bioimaging facility instruments, in order to collect high-quality images. © 2020 The Authors. Basic Protocol 1: Setting up Köhler illumination for a brightfield microscope Basic Protocol 2: Aligning the fluorescence bulb and setting up Köhler illumination for a widefield fluorescence microscope Basic Protocol 3: Generic protocol for operating a confocal microscope.
Collapse
Affiliation(s)
- Jeremy Sanderson
- Bioimaging Facility Manager, MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
14
|
Epithelial-interleukin-1 inhibits collagen formation by airway fibroblasts: Implications for asthma. Sci Rep 2020; 10:8721. [PMID: 32457454 PMCID: PMC7250866 DOI: 10.1038/s41598-020-65567-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/06/2020] [Indexed: 11/10/2022] Open
Abstract
In asthma, the airway epithelium has an impaired capacity to differentiate and plays a key role in the development of airway inflammation and remodeling through mediator release. The study objective was to investigate the release of (IL)-1 family members from primary airway epithelial-cells during differentiation, and how they affect primary airway fibroblast (PAF)-induced inflammation, extracellular matrix (ECM) production, and collagen I remodeling. The release of IL-1α/β and IL-33 during airway epithelial differentiation was assessed over 20-days using air-liquid interface cultures. The effect of IL-1 family cytokines on airway fibroblasts grown on collagen-coated well-plates and 3-dimensional collagen gels was assessed by measurement of inflammatory mediators and ECM proteins by ELISA and western blot, as well as collagen fiber formation using non-linear optical microscopy after 24-hours. The production of IL-1α is elevated in undifferentiated asthmatic-PAECs compared to controls. IL-1α/β induced fibroblast pro-inflammatory responses (CXCL8/IL-8, IL-6, TSLP, GM-CSF) and suppressed ECM-production (collagen, fibronectin, periostin) and the cell’s ability to repair and remodel fibrillar collagen I via LOX, LOXL1 and LOXL2 activity, as confirmed by inhibition with β-aminopropionitrile. These data support a role for epithelial-derived-IL-1 in the dysregulated repair of the asthmatic-EMTU and provides new insights into the contribution of airway fibroblasts in inflammation and airway remodeling in asthma.
Collapse
|
15
|
Bailey MHJ, Ormrod Morley D, Wilson M. Simplified computational model for generating biological networks. RSC Adv 2020; 10:38275-38280. [PMID: 35517566 PMCID: PMC9057274 DOI: 10.1039/d0ra06205g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/12/2020] [Indexed: 11/21/2022] Open
Abstract
A method to generate and simulate biological networks is discussed. An expanded Wooten–Winer–Weaire bond switching methods is proposed which allows for a distribution of node degrees in the network while conserving the mean average node degree. The networks are characterised in terms of their polygon structure and assortativities (a measure of local ordering). A wide range of experimental images are analysed and the underlying networks quantified in an analogous manner. Limitations in obtaining the network structure are discussed. A “network landscape” of the experimentally observed and simulated networks is constructed from the underlying metrics. The enhanced bond switching algorithm is able to generate networks spanning the full range of experimental observations. We discuss a Monte Carlo method to simulate biological networks and compare to the underlying networks in experimental images.![]()
Collapse
Affiliation(s)
- Matthew H. J. Bailey
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- University of Oxford
- Oxford OX1 3QZ
- UK
| | - David Ormrod Morley
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- University of Oxford
- Oxford OX1 3QZ
- UK
| | - Mark Wilson
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- University of Oxford
- Oxford OX1 3QZ
- UK
| |
Collapse
|