1
|
Forman J, Hine B, Kaonis S, Ghosh S. Inhibition of chromatin condensation disrupts planar cell migration. Nucleus 2024; 15:2325961. [PMID: 38465796 PMCID: PMC10936625 DOI: 10.1080/19491034.2024.2325961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Cell migration involves the actin cytoskeleton, and recently recognized nuclear involvement. In this study, we explore the impact of chromatin remodeling on cell migration using NIH 3T3 cells and a scratch wound assay subjected to pharmacological interventions. We inhibit histone deacetylases (HDACs) with Trichostatin A (TSA) and methyltransferase EZH2 with GSK126 to modulate chromatin compaction. Our results indicate that chromatin modifications impair wound closure efficiency, reduce individual cell migration speed, and disrupt migration persistence. Live-cell imaging reveals dynamic intranuclear chromatin remodeling and nuclear shape parameters during migration, influenced by both small- and large-scale chromatin remodeling. The altered nuclear shape is associated with disrupted cell and nuclear mechanics, suggesting a crucial interplay between chromatin remodeling, nuclear mechanics and migration. These findings shed light on the intricate connection between intranuclear chromatin dynamics, nuclear mechanics, and cell migration, providing a basis for further investigations into the molecular mechanisms governing these processes.
Collapse
Affiliation(s)
- Jack Forman
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
- Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | - Briar Hine
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Samantha Kaonis
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | - Soham Ghosh
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Jiang H, Yang J, Fu Q, Li A, Qin H, Liu M. Induction of Endoplasmic Reticulum Stress and Aryl Hydrocarbon Receptor Pathway Expression by Blue LED Irradiation in Oral Squamous Cell Carcinoma. JOURNAL OF BIOPHOTONICS 2024; 17:e202400226. [PMID: 39209312 DOI: 10.1002/jbio.202400226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Photobiomodulation therapy, as an emerging treatment modality, has been widely used in dentistry. However, reports on blue light therapy for oral cancer are scarce. This study investigated the effects of 457 and 475 nm LED irradiation on SCC-25 cells and explored the potential mechanisms underlying the impact of blue light. Both wavelengths were found to inhibit cell viability, induce oxidative stress, and cause cell cycle arrest without leading to cell death. Notably, the inhibitory effect of 457 nm blue light on cell proliferation was more sustained. Transcriptome sequencing was performed to explore the underlying mechanisms, revealing that blue light induced endoplasmic reticulum stress in SCC-25 cells, with 457 nm light showing a more pronounced effect. Moreover, 457 nm blue light upregulated the expression of the aryl hydrocarbon receptor pathway, indicating potential therapeutic prospects for the combined use of blue light and pharmacological agents.
Collapse
Affiliation(s)
- Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Angze Li
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan DB-Light Technology Co., Ltd, Zhongshan City, Guangdong Province, China
| |
Collapse
|
3
|
Schlauch D, Ebbecke JP, Meyer J, Fleischhammer TM, Pirmahboub H, Kloke L, Kara S, Lavrentieva A, Pepelanova I. Development of a Human Recombinant Collagen for Vat Polymerization-Based Bioprinting. Biotechnol J 2024; 19:e202400393. [PMID: 39380502 DOI: 10.1002/biot.202400393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
In light-based 3D-bioprinting, gelatin methacrylate (GelMA) is one of the most widely used materials, as it supports cell attachment, and shows good biocompatibility and degradability in vivo. However, as an animal-derived material, it also causes safety concerns when used in medical applications. Gelatin is a partial hydrolysate of collagen, containing high amounts of hydroxyproline. This causes the material to form a thermally induced gel at ambient temperatures, a behavior also observed in GelMA. This temperature-dependent gelation requires precise temperature control during the bioprinting process to prevent the gelation of the material. To avoid safety concerns associated with animal-derived materials and reduce potential issues caused by thermal gelation, a recombinant human alpha-1 collagen I fragment was expressed in Komagataella phaffii without hydroxylation. The resulting protein was successfully modified with methacryloyl groups and underwent rapid photopolymerization upon ultraviolet light exposure. The developed material exhibited slightly slower polymerization and lower storage modulus compared to GelMA, while it showed higher stretchability. However, unlike the latter, the material did not undergo physical gelation at ambient temperatures, but only when cooled down to below 10°C, a characteristic that has not been described for comparable materials so far. This gelation was not caused by the formation of triple-helical structures, as shown by the absence of the characteristic peak at 220 nm in CD spectra. Moreover, the developed recombinant material facilitated cell adherence with high cell viability after crosslinking via light to a 3D structure. Furthermore, desired geometries could be easily printed on a stereolithographic bioprinter.
Collapse
Affiliation(s)
- Domenic Schlauch
- Cellbricks GmbH, Berlin, Germany
- Leibniz University Hannover, Hannover, Germany
| | - Jan Peter Ebbecke
- Cellbricks GmbH, Berlin, Germany
- Leibniz University Hannover, Hannover, Germany
| | | | | | | | | | - Selin Kara
- Leibniz University Hannover, Hannover, Germany
| | | | | |
Collapse
|
4
|
Rao X, Zhou K, Tu J, Lei Y, Li Q, Hong X, Wang C, Tan S, Shang W, Zhang Z, Zhou Y, Zhan J. Design and synthesis of large Stokes shift DNA dyes with reduced genotoxicity. Biochem Biophys Res Commun 2024; 724:150224. [PMID: 38851139 DOI: 10.1016/j.bbrc.2024.150224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Despite intensive search over the past decades, only a few small-molecule DNA fluorescent dyes were found with large Stokes shifts. These molecules, however, are often too toxic for widespread usage. Here, we designed DNA-specific fluorescent dyes rooted in benzimidazole architectures with a hitherto unexplored molecular framework based on thiazole-benzimidazole scaffolding. We further incorporated a pyrazole ring with an extended sidechain to prevent cell penetration. These novel benzimidazole derivatives were predicted by quantum calculations and subsequently validated to have large Stokes shifts ranging from 135 to 143 nm, with their emission colors changed from capri blue for the Hoechst reference compound to iguana green. These readily-synthesized compounds, which displayed improved DNA staining intensity and detection limits along with a complete loss of capability for cellular membrane permeation and negligible mutagenic effects as designed, offer a safer alternative to the existing high-performance small-molecule DNA fluorescent dyes.
Collapse
Affiliation(s)
- Xiaofeng Rao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518038, China
| | - Kai Zhou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518038, China
| | - Jingyu Tu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518038, China
| | - Yingshou Lei
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518038, China
| | - Qilin Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518038, China
| | - Xu Hong
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518038, China
| | - Chang Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518038, China
| | - Songtao Tan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518038, China
| | - Wanli Shang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518038, China
| | - Zhe Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518038, China
| | - Yaoqi Zhou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518038, China.
| | - Jian Zhan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518038, China.
| |
Collapse
|
5
|
Venrooij KR, de Bondt L, Bonger KM. Mutually Orthogonal Bioorthogonal Reactions: Selective Chemistries for Labeling Multiple Biomolecules Simultaneously. Top Curr Chem (Cham) 2024; 382:24. [PMID: 38971884 PMCID: PMC11227474 DOI: 10.1007/s41061-024-00467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/13/2024] [Indexed: 07/08/2024]
Abstract
Bioorthogonal click chemistry has played a transformative role in many research fields, including chemistry, biology, and medicine. Click reactions are crucial to produce increasingly complex bioconjugates, to visualize and manipulate biomolecules in living systems and for various applications in bioengineering and drug delivery. As biological (model) systems grow more complex, researchers have an increasing need for using multiple orthogonal click reactions simultaneously. In this review, we will introduce the most common bioorthogonal reactions and discuss their orthogonal use on the basis of their mechanism and electronic or steric tuning. We provide an overview of strategies to create reaction orthogonality and show recent examples of mutual orthogonal chemistry used for simultaneous biomolecule labeling. We end by discussing some considerations for the type of chemistry needed for labeling biomolecules in a system of choice.
Collapse
Affiliation(s)
- Kevin R Venrooij
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Lucienne de Bondt
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Kimberly M Bonger
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Huang Y, Zhang Q, Lam CYK, Li C, Yang C, Zhong Z, Zhang R, Yan J, Chen J, Yin B, Wong SHD, Yang M. An Aggregation-Induced Emission-Based Dual Emitting Nanoprobe for Detecting Intracellular pH and Unravelling Metabolic Variations in Differentiating Lymphocytes. ACS NANO 2024; 18:15935-15949. [PMID: 38833531 DOI: 10.1021/acsnano.4c03796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Monitoring T lymphocyte differentiation is essential for understanding T cell fate regulation and advancing adoptive T cell immunotherapy. However, current biomarker analysis methods necessitate cell lysis, leading to source depletion. Intracellular pH (pHi) can be affected by the presence of lactic acid (LA), a metabolic mediator of T cell activity such as glycolysis during T cell activation; therefore, it is a potentially a good biomarker of T cell state. In this work, a dual emitting enhancement-based nanoprobe, namely, AIEgen@F127-AptCD8, was developed to accurately detect the pHi of T cells to "read" the T cell differentiation process. The nanocore of this probe comprises a pair of AIE dyes, TPE-AMC (pH-sensitive moiety) and TPE-TCF, that form a donor-acceptor pair for sensitive detection of pHi by dual emitting enhancement analysis. The nanoprobe exhibits a distinctly sensitive narrow range of pHi values (from 6.0 to 7.4) that can precisely distinguish the differentiated lymphocytes from naïve ones based on their distinct pHi profiles. Activated CD8+ T cells demonstrate lower pHi (6.49 ± 0.09) than the naïve cells (7.26 ± 0.11); Jurkat cells exhibit lower pHi (6.43 ± 0.06) compared to that of nonactivated ones (7.29 ± 0.09) on 7 days post-activation. The glycolytic product profiles in T cells strongly correlate with their pHi profiles, ascertaining the reliability of probing pHi for predicting T cell states. The specificity and dynamic detection capabilities of this nanoprobe make it a promising tool for indirectly and noninvasively monitoring T cell activation and differentiation states.
Collapse
Affiliation(s)
- Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Ching Ying Katherine Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chuanqi Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chen Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Zhiming Zhong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Ruolin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Bohan Yin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Siu Hong Dexter Wong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
7
|
Klak M, Rachalewski M, Filip A, Dobrzański T, Berman A, Wszoła M. Bioprinting of Perfusable, Biocompatible Vessel-like Channels with dECM-Based Bioinks and Living Cells. Bioengineering (Basel) 2024; 11:439. [PMID: 38790306 PMCID: PMC11117567 DOI: 10.3390/bioengineering11050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
There is a growing interest in the production of bioinks that on the one hand, are biocompatible and, on the other hand, have mechanical properties that allow for the production of stable constructs that can survive for a long time after transplantation. While the selection of the right material is crucial for bioprinting, there is another equally important issue that is currently being extensively researched-the incorporation of the vascular system into the fabricated scaffolds. Therefore, in the following manuscript, we present the results of research on bioink with unique physico-chemical and biological properties. In this article, two methods of seeding cells were tested using bioink B and seeding after bioprinting the whole model. After 2, 5, 8, or 24 h of incubation, the flow medium was used in the tested systems. At the end of the experimental trial, for each time variant, the canals were stored in formaldehyde, and immunohistochemical staining was performed to examine the presence of cells on the canal walls and roof. Cells adhered to both ways of fiber arrangement; however, a parallel bioprint with the 5 h incubation and the intermediate plating of cells resulted in better adhesion efficiency. For this test variant, the percentage of cells that adhered was at least 20% higher than in the other analyzed variants. In addition, it was for this variant that the lowest percentage of viable cells was found that were washed out of the tested model. Importantly, hematoxylin and eosin staining showed that after 8 days of culture, the cells were evenly distributed throughout the canal roof. Our study clearly shows that neovascularization-promoting cells effectively adhere to ECM-based pancreatic bioink. Summarizing the presented results, it was demonstrated that the proposed bioink compositions can be used for bioprinting bionic organs with a vascular system formed by endothelial cells and fibroblasts.
Collapse
Affiliation(s)
- Marta Klak
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
- Polbionica sp. z o.o., 01-242 Warsaw, Poland
| | - Michał Rachalewski
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
| | - Anna Filip
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
| | | | | | - Michał Wszoła
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
- Polbionica sp. z o.o., 01-242 Warsaw, Poland
| |
Collapse
|
8
|
Stolarov P, de Vries J, Stapleton S, Morris L, Martyniak K, Kean TJ. Suitability of Gelatin Methacrylate and Hydroxyapatite Hydrogels for 3D-Bioprinted Bone Tissue. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1218. [PMID: 38473692 DOI: 10.3390/ma17051218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Complex bone defects are challenging to treat. Autografting is the gold standard for regenerating bone defects; however, its limitations include donor-site morbidity and increased surgical complexity. Advancements in 3D bioprinting (3DBP) offer a promising alternative for viable bone grafts. In this experiment, gels composed of varying levels of gelatin methacrylate (GelMA) and hydroxyapatite (HA) and gelatin concentrations are explored. The objective was to increase the hydroxyapatite content and find the upper limit before the printability was compromised and determine its effect on the mechanical properties and cell viability. METHODS Design of Experiments (DoE) was used to design 13 hydrogel bioinks of various GelMA/HA concentrations. These bioinks were assessed in terms of their pipettability and equilibrium modulus. An optimal bioink was designed using the DoE data to produce the greatest stiffness while still being pipettable. Three bioinks, one with the DoE-designed maximal stiffness, one with the experimentally defined maximal stiffness, and a literature-based control, were then printed using a 3D bioprinter and assessed for print fidelity. The resulting hydrogels were combined with human bone-marrow-derived mesenchymal stromal cells (hMSCs) and evaluated for cell viability. RESULTS The DoE ANOVA analysis indicated that the augmented three-level factorial design model used was a good fit (p < 0.0001). Using the model, DoE correctly predicted that a composite hydrogel consisting of 12.3% GelMA, 15.7% HA, and 2% gelatin would produce the maximum equilibrium modulus while still being pipettable. The hydrogel with the most optimal print fidelity was 10% GelMA, 2% HA, and 5% gelatin. There were no significant differences in the cell viability within the hydrogels from day 2 to day 7 (p > 0.05). There was, however, a significantly lower cell viability in the gel composed of 12.3% GelMA, 15.7% HA, and 2% gelatin compared to the other gels with a lower HA concentration (p < 0.05), showing that a higher HA content or print pressure may be cytotoxic within hydrogels. CONCLUSIONS Extrusion-based 3DBP offers significant advantages for bone-tissue implants due to its high customizability. This study demonstrates that it is possible to create printable bone-like grafts from GelMA and HA with an increased HA content, favorable mechanical properties (145 kPa), and a greater than 80% cell viability.
Collapse
Affiliation(s)
- Paul Stolarov
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Jonathan de Vries
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sean Stapleton
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Lauren Morris
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Kari Martyniak
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Thomas J Kean
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
9
|
Liu M, Huang S, Park S. Inhibitory effects of bioactive compounds on UVB-induced photodamage in human keratinocytes: modulation of MMP1 and Wnt signaling pathways. Photochem Photobiol Sci 2024; 23:463-478. [PMID: 38326693 DOI: 10.1007/s43630-023-00531-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024]
Abstract
UVB radiation significantly threatens skin health, contributing to wrinkle formation and an elevated risk of skin cancer. This study aimed to explore bioactive compounds with potential UVB-protective properties. Using in silico analysis, we chose compounds to reduce binding energy with matrix metalloproteinase-1 (MMP1). Piperitoside, procyanidin C1, and mulberrofuran E emerged as promising candidates through this computational screening process. We investigated the UVB-protective efficacy of the selected compounds and underlying mechanisms in human immortalized keratinocytes (HaCaT). We also investigated the molecular pathways implicated in their action, focusing on the transforming growth factor (TGF)-β and wingless-related integration site (Wnt)/β-catenin signaling pathways. In UVB-exposed HaCaT cells (100 mJ/cm2 for 30 min), piperitoside, procyanidin C1, and mulberrofuran E significantly reduced reactive oxygen species (ROS) and lipid peroxides, coupled with an augmentation of collagen expression. These compounds suppressed MMP1, tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) expression, while they concurrently enhanced collagen-1 (COL1A1), β-catenin (CTNNB1), and superoxide dismutase type-1 (SOD1) expression. Furthermore, Wnt/β-catenin inhibitors, when administered subsequently, partially counteracted the reduction in MMP1 expression and alleviated inflammatory and oxidative stress markers induced by the bioactive compounds. In conclusion, piperitoside, procyanidin C1, and mulberrofuran E protected against UVB-induced damage in HaCaT cells by inhibiting MMP1 expression and elevating β-catenin expression. Consequently, these bioactive compounds emerge as promising preventive agents for UVB-induced skin damage, promoting skin health.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Chemical Engineering, Shanxi Institute of Science and Technology, Jincheng, 048011, China
| | - Shaokai Huang
- Department of Bioconvergence, Hoseo University, Asan, 31499, Korea
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do, 336-795, South Korea.
| |
Collapse
|
10
|
Kumari S, Mondal P, Tyeb S, Chatterjee K. Visible light-based 3D bioprinted composite scaffolds of κ-carrageenan for bone tissue engineering applications. J Mater Chem B 2024; 12:1926-1936. [PMID: 38314524 DOI: 10.1039/d3tb02179c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Three-dimensional (3D) printing of bone scaffolds using digital light processing (DLP) bioprinting technology empowers the treatment of patients suffering from bone disorders and defects through the fabrication of cell-laden patient-specific scaffolds. Here, we demonstrate the visible-light-induced photo-crosslinking of methacrylate-κ-carrageenan (MA-κ-CA) mixed with bioactive silica nanoparticles (BSNPs) to fabricate 3D composite hydrogels using digital light processing (DLP) printing. The 3D printing of complex bone structures, such as the gyroid, was demonstrated with high precision and resolution. DLP-printed 3D composite hydrogels of MA-κ-CA-BSNP were prepared and systematically assessed for their macroporous structure, swelling, and degradation characteristics. The viscosity, rheological, and mechanical properties were also investigated for the influence of nanoparticle incorporation in the MA-κ-CA hydrogels. The in vitro study performed with MC3T3-E1 pre-osteoblast-laden scaffolds of MA-κ-CA-BSNP revealed high cell viability, no cytotoxicity, and proliferation over 21 days with markedly enhanced osteogenic differentiation compared to neat polymeric scaffolds. Furthermore, no inflammation was observed in the 21-day study involving the in vivo examination of DLP-printed 3D composite scaffolds in a Wistar rat model. Overall, the observed results for the DLP-printed 3D composite scaffolds of MA-κ-CA and BSNP demonstrate their biocompatibility and suitability for bone tissue engineering.
Collapse
Affiliation(s)
- Sushma Kumari
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| | - Pritiranjan Mondal
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| | - Suhela Tyeb
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
11
|
Ozulumba T, Zatorski JM, Arneja A, Hammel JH, Braciale TJ, Luckey CJ, Munson JM, Pompano RR. Mitigating reactive oxygen species production and increasing gel porosity improves lymphocyte motility and fibroblast spreading in photocrosslinked gelatin-thiol hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.574282. [PMID: 38293038 PMCID: PMC10827049 DOI: 10.1101/2024.01.14.574282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
On-chip 3D culture systems that incorporate immune cells such as lymphocytes and stromal cells are needed to model immune organs in engineered systems such as organs-on-chip. Photocrosslinking is a useful tool for creating such immune-competent hydrogel cultures with spatial cell organization. However, loss of viability and motility in photocrosslinked gels can limit its utility, especially when working with fragile primary cells. We hypothesized that optimizing photoexposure-induced ROS production, hydrogel porosity or a combination of both factors was necessary to sustain cell viability and motility during culture in photocrosslinked gelatin-thiol (GelSH) hydrogels. Jurkat T cells, primary human CD4+ T cells and human lymphatic fibroblasts were selected as representative lymphoid immune cells to test this hypothesis. Direct exposure of these cells to 385 nm light and LAP photoinitiator dramatically increased ROS levels. Pretreatment with an antioxidant, ascorbic acid (AA), protected the cells from light + LAP-induced ROS and was non-toxic at optimized doses. Furthermore, scanning electron microscopy showed that native GelSH hydrogels had limited porosity, and that adding collagen to GelSH precursor before crosslinking markedly increased gel porosity. Next, we tested the impact of AA pretreatment and increasing gel porosity, alone or in combination, on cell viability and function in 3D GelSH hydrogel cultures. Increasing gel porosity, rather than AA pretreatment, was more critical for rescuing viability of Jurkat T cells and spreading of human lymphatic fibroblasts in GelSH-based gels, but both factors improved the motility of primary human CD4+ T cells. Increased porosity enabled formation of spatially organized co-cultures of primary human CD4+ T cells and human lymphatic fibroblasts in photo-crosslinked gels in a multi-lane microfluidic chip, towards modeling the lymphoid organ microenvironment. Some optimization is still needed to improve homogeneity between regions on the chip. These findings will enable researchers utilizing photocrosslinking methods to develop immunocompetent 3D culture models that support viability and function of sensitive lymphoid cells.
Collapse
|
12
|
Cheng MH, Chang CW, Wang J, Bupphathong S, Huang W, Lin CH. 3D-Bioprinted GelMA Scaffold with ASCs and HUVECs for Engineering Vascularized Adipose Tissue. ACS APPLIED BIO MATERIALS 2024; 7:406-415. [PMID: 38148527 DOI: 10.1021/acsabm.3c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The purpose of tissue engineering is to reconstruct parts of injured tissues and to resolve the shortage of organ donations. However, the main concern is the limited size of engineered tissue due to insufficient oxygen and nutrition distribution in large three-dimensional (3D) tissue constructs. To provide better support for cells inside the scaffolds, the vascularization of blood vessels within the scaffold could be a solution. This study compared the effects of different culturing systems using human adipose tissue-derived stem/stromal cells (ASCs), human umbilical vein endothelial cells (HUVECs), and coculture of ASCs and HUVECs in 3D-bioprinted gelatin methacrylate (GelMA) hydrogel constructs. The in vitro results showed that the number of live cells was highest in the coculture of ASCs and HUVECs in the GelMA hydrogel after culturing for 21 days. Additionally, the tubular structure was the most abundant in the GelMA hydrogel, containing both ASCs and HUVECs. In the in vivo test, blood vessels were present in both the HUVECs and the coculture of ASCs and HUVECs hydrogels implanted in mice. However, the blood vessel density was the highest in the HUVEC and ASC coculture groups. These findings indicate that the 3D-bioprinted GelMA hydrogel coculture system could be a promising biomaterial for large tissue engineering applications.
Collapse
Affiliation(s)
- Ming-Huei Cheng
- Center of Lymphedema Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jerry Wang
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Sasinan Bupphathong
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Wei Huang
- Department of Orthodontics, Rutgers School of Dental Medicine, Newark, New Jersey 07103, United States
| | - Chih-Hsin Lin
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
13
|
Rahikainen R, Vester SK, Turkki P, Janosko CP, Deiters A, Hytönen VP, Howarth M. Visible Light-Induced Specific Protein Reaction Delineates Early Stages of Cell Adhesion. J Am Chem Soc 2023; 145:24459-24465. [PMID: 38104267 PMCID: PMC10655181 DOI: 10.1021/jacs.3c07827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/19/2023]
Abstract
Light is well-established for control of bond breakage but not for control of specific bond formation in complex environments. We previously engineered the diffusion-limited reactivity of the SpyTag003 peptide with its protein partner SpyCatcher003 through spontaneous isopeptide bond formation. This system enables precise and irreversible assembly of biological building blocks with applications from biomaterials to vaccines. Here we establish a system for the rapid control of this amide bond formation with visible light. We have generated a caged SpyCatcher003, which allows light triggering of covalent bond formation to SpyTag003 in mammalian cells. Photocaging is achieved through site-specific incorporation of an unnatural coumarin-lysine at the reactive site of SpyCatcher003. We showed a uniform specific reaction in cell lysate upon light activation. We then used the spatiotemporal precision of a 405 nm confocal laser for uncaging in seconds, probing the earliest events in mechanotransduction by talin, the key force sensor between the cytoskeleton and the extracellular matrix. Reconstituting talin induced rapid biphasic extension of lamellipodia, revealing the kinetics of talin-regulated cell spreading and polarization. Thereafter we determined the hierarchy of the recruitment of key components for cell adhesion. Precise control over site-specific protein reaction with visible light creates diverse opportunities for cell biology and nanoassembly.
Collapse
Affiliation(s)
- Rolle Rahikainen
- Faculty
of Medicine and Health Technology, Tampere
University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Fimlab
Laboratories, Biokatu 4, 33520 Tampere, Finland
| | - Susan K. Vester
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Paula Turkki
- Faculty
of Medicine and Health Technology, Tampere
University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Fimlab
Laboratories, Biokatu 4, 33520 Tampere, Finland
| | - Chasity P. Janosko
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Vesa P. Hytönen
- Faculty
of Medicine and Health Technology, Tampere
University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Fimlab
Laboratories, Biokatu 4, 33520 Tampere, Finland
| | - Mark Howarth
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| |
Collapse
|
14
|
Al-Atawi S. Three-dimensional bioprinting in ophthalmic care. Int J Ophthalmol 2023; 16:1702-1711. [PMID: 37854366 PMCID: PMC10559024 DOI: 10.18240/ijo.2023.10.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/04/2023] [Indexed: 10/20/2023] Open
Abstract
Three-dimensional (3D) bioprinting is widely used in ophthalmic clinic, including in diagnosis, surgery, prosthetics, medications, drug development and delivery, and medical education. Articles published in 2011-2022 into bioinks, printing technologies, and bioprinting applications in ophthalmology were reviewed and the strengths and limitations of bioprinting in ophthalmology highlighted. The review highlighted the trade-offs of printing technologies and bioinks in respect to, among others, material type cost, throughput, gelation technique, cell density, cell viability, resolution, and printing speed. There is already widespread ophthalmological application of bioprinting outside clinical settings, including in educational modelling, retinal imaging/visualization techniques and drug design/testing. In clinical settings, bioprinting has already found application in pre-operatory planning. Even so, the findings showed that even with its immense promise, actual translation to clinical applications remains distant, but relatively closer for the corneal (except stromal) tissues, epithelium, endothelium, and conjunctiva, than it was for the retina. This review similarly reflected on the critical on the technical, practical, ethical, and cost barrier to rapid progress of bioprinting in ophthalmology, including accessibility to the most sophisticated bioprinting technologies, choice, and suitability of bioinks, tissue viability and storage conditions. The extant research is encouraging, but more work is clearly required for the push towards clinical translation of research.
Collapse
Affiliation(s)
- Saleha Al-Atawi
- Al-baha University, Applied Medical Science, Al-Aqiaq, AlBaha 4781, Saudi Arabia
| |
Collapse
|
15
|
Wang H, Xia Y, Zhang Z, Xie Z. 3D gradient printing based on digital light processing. J Mater Chem B 2023; 11:8883-8896. [PMID: 37694441 DOI: 10.1039/d3tb00763d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
3D gradient printing is a type of fabrication technique that builds three-dimensional objects with gradually changing properties. Gradient digital light processing based 3D printing has garnered considerable attention in recent years. This function-oriented technology precisely manipulates the performance of different positions of materials and prints them as a monolithic structure to realize specific functions. This review presents a conceptual understanding of gradient properties, covering an overview of current techniques and materials that can produce gradient structures, as well as their limitations and challenges. The principle of digital light processing (DLP) technology and feasible strategies for 3D gradient printing to overcome any barriers are also presented. Additionally, this review discusses the promising future of 4D bioprinting systems based on DLP printing.
Collapse
Affiliation(s)
- Han Wang
- Chien-Shiung Wu College, Southeast University, Nanjing, 211102, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, China
| | - Yu Xia
- Chien-Shiung Wu College, Southeast University, Nanjing, 211102, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, China
- School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Zixuan Zhang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, China
| | - Zhuoying Xie
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, China
| |
Collapse
|
16
|
Rahikainen R, Vester SK, Turkki P, Janosko CP, Deiters A, Hytönen VP, Howarth M. Visible light-induced specific protein reaction delineates early stages of cell adhesion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.549850. [PMID: 37503248 PMCID: PMC10370186 DOI: 10.1101/2023.07.21.549850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Light is well established for control of bond breakage, but not for control of specific bond formation in complex environments. We previously engineered diffusion-limited reactivity of SpyTag003 peptide with its protein partner SpyCatcher003 through spontaneous transamidation. This system enables precise and irreversible assembly of biological building blocks, with applications from biomaterials to vaccines. Here, we establish a system for rapid control of this amide bond formation with visible light. We have generated a caged SpyCatcher003, which allows light triggering of covalent bond formation to SpyTag003 in mammalian cells. Photocaging is achieved through site-specific incorporation of an unnatural coumarin-lysine at the reactive site of SpyCatcher003. We showed uniform specific reaction in cell lysate upon light activation. We then used the spatiotemporal precision of a 405 nm confocal laser for uncaging in seconds, probing the earliest events in mechanotransduction by talin, the key force sensor between the cytoskeleton and extracellular matrix. Reconstituting talin induced rapid biphasic extension of lamellipodia, revealing the kinetics of talin-regulated cell spreading and polarization. Thereafter we determined the hierarchy of recruitment of key components for cell adhesion. Precise control over site-specific protein reaction with visible light creates diverse opportunities for cell biology and nanoassembly.
Collapse
Affiliation(s)
- Rolle Rahikainen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland and Fimlab Laboratories, Biokatu 4, 33520, Tampere, Finland
| | - Susan K. Vester
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Current address: Randall Centre for Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London, SE1 1UL, UK
| | - Paula Turkki
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland and Fimlab Laboratories, Biokatu 4, 33520, Tampere, Finland
| | - Chasity P. Janosko
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland and Fimlab Laboratories, Biokatu 4, 33520, Tampere, Finland
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
17
|
Klak M, Wszoła M, Berman A, Filip A, Kosowska A, Olkowska-Truchanowicz J, Rachalewski M, Tymicki G, Bryniarski T, Kołodziejska M, Dobrzański T, Ujazdowska D, Wejman J, Uhrynowska-Tyszkiewicz I, Kamiński A. Bioprinted 3D Bionic Scaffolds with Pancreatic Islets as a New Therapy for Type 1 Diabetes-Analysis of the Results of Preclinical Studies on a Mouse Model. J Funct Biomater 2023; 14:371. [PMID: 37504866 PMCID: PMC10381593 DOI: 10.3390/jfb14070371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
Recently, tissue engineering, including 3D bioprinting of the pancreas, has acquired clinical significance and has become an outstanding potential method of customized treatment for type 1 diabetes mellitus. The study aimed to evaluate the function of 3D-bioprinted pancreatic petals with pancreatic islets in the murine model. A total of 60 NOD-SCID (Nonobese diabetic/severe combined immunodeficiency) mice were used in the study and divided into three groups: control group; IsletTx (porcine islets transplanted under the renal capsule); and 3D bioprint (3D-bioprinted pancreatic petals with islets transplanted under the skin, on dorsal muscles). Glucose, C-peptide concentrations, and histological analyses were performed. In the obtained results, significantly lower mean fasting glucose levels (mg/dL) were observed both in a 3D-bioprint group and in a group with islets transplanted under the renal capsule when compared with untreated animals. Differences were observed in all control points: 7th, 14th, and 28th days post-transplantation (129, 119, 118 vs. 140, 139, 140; p < 0.001). Glucose levels were lower on the 14th and 28th days in a group with bioprinted petals compared to the group with islets transplanted under the renal capsule. Immunohistochemical staining indicated the presence of secreted insulin-living pancreatic islets and neovascularization within 3D-bioprinted pancreatic petals after transplantation. In conclusion, bioprinted bionic petals significantly lowered plasma glucose concentration in studied model species.
Collapse
Affiliation(s)
- Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Andrzej Berman
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Anna Filip
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
| | - Anna Kosowska
- Chair and Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | | | | | - Grzegorz Tymicki
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
| | - Tomasz Bryniarski
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
| | | | | | | | - Jarosław Wejman
- Center for Pathomorphological Diagnostics Sp. z o.o., 01-496 Warsaw, Poland
| | | | - Artur Kamiński
- Department of Transplantology and Central Tissue Bank, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
18
|
Abstract
Emerging four-dimensional (4D) printing strategies offer improved alternatives to conventional three-dimensional (3D)-bioprinted structures for better compliance and simplicity of application for tissue engineering. Little is reported on simple 3D-bioprinted structures prepared by digital light processing (DLP) that can change shape-to-complex constructs (4D bioprinting) in response to cell-friendly stimuli, such as hydration. In the current research work, a bioink consisting of a blend of gelatin methacryloyl (GelMA) and poly(ethylene glycol) dimethacrylate (PEGDM) with a photoinitiator and a photoabsorber was developed and printed by DLP-based 3D bioprinting operated with visible light (405 nm). The 3D-bioprinted constructs combined with differential cross-linking due to photoabsorber-induced light attenuation were leveraged to realize structural anisotropy, which led to rapid shape deformation (as low as ≈30 min) upon hydration. The sheet thickness influenced the degree of curvature, whereas the incorporation of angled strands provided control of the deformation of the 3D-printed structure. The 4D-bioprinted gels supported the viability and proliferation of cells. Overall, this study introduces a cytocompatible bioink formulation for 4D bioprinting to yield shape-morphing, cell-laden hydrogels for tissue engineering.
Collapse
Affiliation(s)
- Sriram Bharath Gugulothu
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012 India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012 India
| |
Collapse
|
19
|
O'Connor CE, Neufeld A, Fortin CL, Johansson F, Mene J, Saxton SH, Simmonds SP, Kopyeva I, Gregorio NE, DeForest CA, Witten DM, Stevens KR. Highly Parallel Tissue Grafting for Combinatorial In Vivo Screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533029. [PMID: 36993278 PMCID: PMC10055160 DOI: 10.1101/2023.03.16.533029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Material- and cell-based technologies such as engineered tissues hold great promise as human therapies. Yet, the development of many of these technologies becomes stalled at the stage of pre-clinical animal studies due to the tedious and low-throughput nature of in vivo implantation experiments. We introduce a 'plug and play' in vivo screening array platform called Highly Parallel Tissue Grafting (HPTG). HPTG enables parallelized in vivo screening of 43 three-dimensional microtissues within a single 3D printed device. Using HPTG, we screen microtissue formations with varying cellular and material components and identify formulations that support vascular self-assembly, integration and tissue function. Our studies highlight the importance of combinatorial studies that vary cellular and material formulation variables concomitantly, by revealing that inclusion of stromal cells can "rescue" vascular self-assembly in manner that is material-dependent. HPTG provides a route for accelerating pre-clinical progress for diverse medical applications including tissue therapy, cancer biomedicine, and regenerative medicine.
Collapse
|
20
|
Sztankovics D, Moldvai D, Petővári G, Gelencsér R, Krencz I, Raffay R, Dankó T, Sebestyén A. 3D bioprinting and the revolution in experimental cancer model systems-A review of developing new models and experiences with in vitro 3D bioprinted breast cancer tissue-mimetic structures. Pathol Oncol Res 2023; 29:1610996. [PMID: 36843955 PMCID: PMC9946983 DOI: 10.3389/pore.2023.1610996] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023]
Abstract
Growing evidence propagates those alternative technologies (relevant human cell-based-e.g., organ-on-chips or biofabricated models-or artificial intelligence-combined technologies) that could help in vitro test and predict human response and toxicity in medical research more accurately. In vitro disease model developments have great efforts to create and serve the need of reducing and replacing animal experiments and establishing human cell-based in vitro test systems for research use, innovations, and drug tests. We need human cell-based test systems for disease models and experimental cancer research; therefore, in vitro three-dimensional (3D) models have a renaissance, and the rediscovery and development of these technologies are growing ever faster. This recent paper summarises the early history of cell biology/cellular pathology, cell-, tissue culturing, and cancer research models. In addition, we highlight the results of the increasing use of 3D model systems and the 3D bioprinted/biofabricated model developments. Moreover, we present our newly established 3D bioprinted luminal B type breast cancer model system, and the advantages of in vitro 3D models, especially the bioprinted ones. Based on our results and the reviewed developments of in vitro breast cancer models, the heterogeneity and the real in vivo situation of cancer tissues can be represented better by using 3D bioprinted, biofabricated models. However, standardising the 3D bioprinting methods is necessary for future applications in different high-throughput drug tests and patient-derived tumour models. Applying these standardised new models can lead to the point that cancer drug developments will be more successful, efficient, and consequently cost-effective in the near future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
21
|
Díaz‐Payno PJ, Kalogeropoulou M, Muntz I, Kingma E, Kops N, D'Este M, Koenderink GH, Fratila‐Apachitei LE, van Osch GJVM, Zadpoor AA. Swelling-Dependent Shape-Based Transformation of a Human Mesenchymal Stromal Cells-Laden 4D Bioprinted Construct for Cartilage Tissue Engineering. Adv Healthc Mater 2023; 12:e2201891. [PMID: 36308047 PMCID: PMC11468569 DOI: 10.1002/adhm.202201891] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/10/2022] [Indexed: 01/18/2023]
Abstract
3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time-dependent stimuli-induced transformation, enables the fabrication of shape-changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi-material system made from two hydrogel-based materials: hyaluronan and alginate. Two ink formulations are used: tyramine-functionalized hyaluronan (HAT, high-swelling) and alginate with HAT (AHAT, low-swelling). Both inks have similar elastic, shear-thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape-change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self-bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage-like matrix production is visible on histology. A proof-of-concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated.
Collapse
Affiliation(s)
- Pedro J. Díaz‐Payno
- Department of Biomechanical EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyDelft2628CDNetherlands
- Department of Orthopedics and Sports MedicineErasmus MC University Medical CenterRotterdam3015GDNetherlands
| | - Maria Kalogeropoulou
- Department of Biomechanical EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyDelft2628CDNetherlands
| | - Iain Muntz
- Department of BionanoscienceKavli Institute of Nanoscience DelftDelft University of TechnologyDelft2628CDNetherlands
| | - Esther Kingma
- Department of Biomechanical EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyDelft2628CDNetherlands
| | - Nicole Kops
- Department of Orthopedics and Sports MedicineErasmus MC University Medical CenterRotterdam3015GDNetherlands
| | | | - Gijsje H. Koenderink
- Department of BionanoscienceKavli Institute of Nanoscience DelftDelft University of TechnologyDelft2628CDNetherlands
| | - Lidy E. Fratila‐Apachitei
- Department of Biomechanical EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyDelft2628CDNetherlands
| | - Gerjo J. V. M. van Osch
- Department of Biomechanical EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyDelft2628CDNetherlands
- Department of Orthopedics and Sports MedicineErasmus MC University Medical CenterRotterdam3015GDNetherlands
- Department of OtorhinolaryngologyErasmus MC University Medical CenterRotterdam3015GDNetherlands
| | - Amir A. Zadpoor
- Department of Biomechanical EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyDelft2628CDNetherlands
| |
Collapse
|
22
|
Montheil T, Simon M, Noël D, Mehdi A, Subra G, Echalier C. Silylated biomolecules: Versatile components for bioinks. Front Bioeng Biotechnol 2022; 10:888437. [PMID: 36304899 PMCID: PMC9592925 DOI: 10.3389/fbioe.2022.888437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Physical hydrogels prepared from natural biopolymers are the most popular components for bioinks. However, to improve the mechanical properties of the network, in particular its durability for long-lasting tissue engineering applications or its stiffness for bone/cartilage applications, covalent chemical hydrogels have to be considered. For that purpose, biorthogonal reactions are required to allow the inclusion of living cells within the bioink reservoir before the 3D printing procedure. Interestingly, such reactions also unlock the possibility to further multifunctionalize the network, adding bioactive moieties to tune the biological properties of the resulting printed biomaterial. Surprisingly, compared to the huge number of studies disclosing novel bioink compositions, no extensive efforts have been made by the scientific community to develop new chemical reactions meeting the requirements of both cell encapsulation, chemical orthogonality and versatile enough to be applied to a wide range of molecular components, including fragile biomolecules. That could be explained by the domination of acrylate photocrosslinking in the bioprinting field. On the other hand, proceeding chemoselectively and allowing the polymerization of any type of silylated molecules, the sol-gel inorganic polymerization was used as a crosslinking reaction to prepare hydrogels. Recent development of this strategy includes the optimization of biocompatible catalytic conditions and the silylation of highly attractive biomolecules such as amino acids, bioactive peptides, proteins and oligosaccharides. When one combines the simplicity and the versatility of the process, with the ease of functionalization of any type of relevant silylated molecules that can be combined in an infinite manner, it was obvious that a family of bioinks could emerge quickly. This review presents the sol-gel process in biocompatible conditions and the various classes of relevant silylated molecules that can be used as bioink components. The preparation of hydrogels and the kinetic considerations of the sol-gel chemistry which at least allowed cell encapsulation and extrusion-based bioprinting are discussed.
Collapse
Affiliation(s)
- Titouan Montheil
- IBMM, University Montpellier, CNRS, ENSCM, Montpellier, France
- ICGM, University Montpellier, CNRS, ENSCM, Montpellier, France
| | - Matthieu Simon
- IBMM, University Montpellier, CNRS, ENSCM, Montpellier, France
- IRMB, University Montpellier, INSERM, CHU, Montpellier, France
| | - Danièle Noël
- IRMB, University Montpellier, INSERM, CHU, Montpellier, France
| | - Ahmad Mehdi
- ICGM, University Montpellier, CNRS, ENSCM, Montpellier, France
| | - Gilles Subra
- IBMM, University Montpellier, CNRS, ENSCM, Montpellier, France
| | - Cécile Echalier
- IBMM, University Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
23
|
Hasturk O, Smiley JA, Arnett M, Sahoo JK, Staii C, Kaplan DL. Cytoprotection of Human Progenitor and Stem Cells through Encapsulation in Alginate Templated, Dual Crosslinked Silk and Silk-Gelatin Composite Hydrogel Microbeads. Adv Healthc Mater 2022; 11:e2200293. [PMID: 35686928 PMCID: PMC9463115 DOI: 10.1002/adhm.202200293] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/28/2022] [Indexed: 01/27/2023]
Abstract
Susceptibility of mammalian cells against harsh processing conditions limit their use in cell transplantation and tissue engineering applications. Besides modulation of the cell microenvironment, encapsulation of mammalian cells within hydrogel microbeads attract attention for cytoprotection through physical isolation of the encapsulated cells. The hydrogel formulations used for cell microencapsulation are largely dominated by ionically crosslinked alginate (Alg), which suffer from low structural stability under physiological culture conditions and poor cell-matrix interactions. Here the fabrication of Alg templated silk and silk/gelatin composite hydrogel microspheres with permanent or on-demand cleavable enzymatic crosslinks using simple and cost-effective centrifugation-based droplet processing are demonstrated. The composite microbeads display structural stability under ion exchange conditions with improved mechanical properties compared to ionically crosslinked Alg microspheres. Human mesenchymal stem and neural progenitor cells are successfully encapsulated in the composite beads and protected against environmental factors, including exposure to polycations, extracellular acidosis, apoptotic cytokines, ultraviolet (UV) irradiation, anoikis, immune recognition, and particularly mechanical stress. The microbeads preserve viability, growth, and differentiation of encapsulated stem and progenitor cells after extrusion in viscous polyethylene oxide solution through a 27-gauge fine needle, suggesting potential applications in injection-based delivery and three-dimensional bioprinting of mammalian cells with higher success rates.
Collapse
Affiliation(s)
- Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jordan A. Smiley
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Miles Arnett
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
24
|
Mark C, Callander NS, Chng K, Miyamoto S, Warrick J. Timelapse viability assay to detect division and death of primary multiple myeloma cells in response to drug treatments with single cell resolution. Integr Biol (Camb) 2022; 14:49-61. [PMID: 35653717 PMCID: PMC9175638 DOI: 10.1093/intbio/zyac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/15/2022] [Accepted: 04/12/2022] [Indexed: 11/12/2022]
Abstract
Heterogeneity among cancer cells and in the tumor microenvironment (TME) is thought to be a significant contributor to the heterogeneity of clinical therapy response observed between patients and can evolve over time. A primary example of this is multiple myeloma (MM), a generally incurable cancer where such heterogeneity contributes to the persistent evolution of drug resistance. However, there is a paucity of functional assays for studying this heterogeneity in patient samples or for assessing the influence of the patient TME on therapy response. Indeed, the population-averaged data provided by traditional drug response assays and the large number of cells required for screening remain significant hurdles to advancement. To address these hurdles, we developed a suite of accessible technologies for quantifying functional drug response to a panel of therapies in ex vivo three-dimensional culture using small quantities of a patient's own cancer and TME components. This suite includes tools for label-free single-cell identification and quantification of both cell division and death events with a standard brightfield microscope, an open-source software package for objective image analysis and feasible data management of multi-day timelapse experiments, and a new approach to fluorescent detection of cell death that is compatible with long-term imaging of primary cells. These new tools and capabilities are used to enable sensitive, objective, functional characterization of primary MM cell therapy response in the presence of TME components, laying the foundation for future studies and efforts to enable predictive assessment drug efficacy for individual patients.
Collapse
Affiliation(s)
- Christina Mark
- Cancer Biology Graduate Program, University of Wisconsin, Madison, WI 53705, USA
| | - Natalie S Callander
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Kenny Chng
- McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI 53705, USA
| | - Shigeki Miyamoto
- Cancer Biology Graduate Program, University of Wisconsin, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
- McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI 53705, USA
- Department of Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Jay Warrick
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53705, USA
- Salus Discovery, LLC, 110 E. Main St. Suite 815, Madison, WI 53703, USA
| |
Collapse
|
25
|
Jiang Z, Zhu D, Yu K, Xi Y, Wang X, Yang G. Recent advances in light-induced cell sheet technology. Acta Biomater 2021; 119:30-41. [PMID: 33144232 DOI: 10.1016/j.actbio.2020.10.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Various stimuli have been applied to harvest complete cell sheets, including temperature, magnetic, pH, and electrical stimuli. Cell sheet technology is a convenient and efficient approach with beneficial effects for tissue regeneration and cell therapy. Lights of different wavelengths, such as ultraviolet (UV), visible light, and near infrared ray (NIR) light, were confirmed to aid in fabricating a cell sheet. Changes in the wettability, potential, or water content of the culturing surfaces that occur under light illumination induce conformational changes in the adhesive proteins or collagens, which then leads to cell sheet detachment. However, the current approaches face several limitations, as few standards for safe light illumination have been proposed to date, and require a careful control of the wavelength, power, and irradiation time. Future studies should aim at generating new materials for culturing and releasing cell sheets rapidly and effectively.
Collapse
|