1
|
Whalin M, Roque-Jiménez JA, Oviedo-Ojeda MF, Lee-Rangel HA, Relling AE. Effect of supplementation to offspring during early gestation and the growing phase with different sources of fatty acids on learning and memory ability of postweaning lambs. Transl Anim Sci 2024; 8:txae149. [PMID: 39606551 PMCID: PMC11600440 DOI: 10.1093/tas/txae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
The objective of the current experiment was to evaluate the effects of supplementation with different dietary fatty acid profiles on the dam during the first third of gestation and on the offspring during growth on the offspring's cognitive behavior. Seventy-nine postweaning lambs were blocked by body weight and sex using a 2 × 2 factorial arrangement of treatments. The first factor (maternal supplementation; MS) was supplementation to the ewes in the first third of gestation with 1.61% Ca salts of palm fatty acid distillate (PFAD) or Ca salts enriched with eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) to early pregnant ewes. The second factor (offspring supplementation; OS) was to supplement the offspring during their growing phase with diets that contained 1.48% of PFAD or Ca salts of PFAD or EPA and DHA. Ewes were housed in groups, 3 ewes per pen and 12 pens per treatment, with different treatments until day 50 of gestation. From day 51 of gestation until weaning, all the animals (ewes and lambs) were housed in a common pen. After weaning, lambs were housed in group pens (5 pens per treatment, 3 to 5 per pen). The lambs ran maze tests on weeks 5 and 7 after weaning to evaluate cognitive ability. The maze contained 2 trap zones and had the pen conspecific lambs at the end of the maze. The measurements were the times to solve the traps and the total time to complete the maze. Data were analyzed using a mixed procedure considering the 2×2 factorial arrangement of treatments. There was an MS × OS × time interaction for the time to complete the maze (P = 0.02). Lambs receiving a different type of fatty acid supplementation during gestation than postweaning took less time to complete the maze on the second relative to the first day compared with the lambs fed the same type of fatty acids during gestation and growing. In conclusion, combining different fatty acids during different life stages may improve lambs' cognitive abilities.
Collapse
Affiliation(s)
- Megan Whalin
- Department of Animal Sciences, The Ohio State University, College of Food, Agricultural, and Environmental Sciences, Wooster, OH 44691, USA
| | - José A Roque-Jiménez
- Department of Animal Sciences, The Ohio State University, College of Food, Agricultural, and Environmental Sciences, Wooster, OH 44691, USA
- Universidad Autónoma de Baja California, Instituto de Ciencias Agricolas, Mexicali, Baja California, Mexico
| | - Mario F Oviedo-Ojeda
- Department of Animal Sciences, The Ohio State University, College of Food, Agricultural, and Environmental Sciences, Wooster, OH 44691, USA
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí, Mexico
| | - Héctor A Lee-Rangel
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí, Mexico
| | - Alejandro E Relling
- Department of Animal Sciences, The Ohio State University, College of Food, Agricultural, and Environmental Sciences, Wooster, OH 44691, USA
| |
Collapse
|
2
|
Dos Santos Silva P, Kra G, Butenko Y, Daddam JR, Levin Y, Zachut M. Maternal supplementation with n-3 fatty acids affects placental lipid metabolism, inflammation, oxidative stress, the endocannabinoid system, and the neonate cytokine concentrations in dairy cows. J Anim Sci Biotechnol 2024; 15:74. [PMID: 38769527 PMCID: PMC11106909 DOI: 10.1186/s40104-024-01033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/06/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The placenta plays a crucial role in supporting and influencing fetal development. We compared the effects of prepartum supplementation with omega-3 (n-3) fatty acid (FA) sources, flaxseed oil (FLX) and fish oil (FO), on the expression of genes and proteins related to lipid metabolism, inflammation, oxidative stress, and the endocannabinoid system (ECS) in the expelled placenta, as well as on FA profile and inflammatory response of neonates. Late-pregnant Holstein dairy cows were supplemented with saturated fat (CTL), FLX, or FO. Placental cotyledons (n = 5) were collected immediately after expulsion, and extracted RNA and proteins were analyzed by RT-PCR and proteomic analysis. Neonatal blood was assessed for FA composition and concentrations of inflammatory markers. RESULTS FO increased the gene expression of fatty acid binding protein 4 (FABP4), interleukin 10 (IL-10), catalase (CAT), cannabinoid receptor 1 (CNR1), and cannabinoid receptor 2 (CNR2) compared with CTL placenta. Gene expression of ECS-enzyme FA-amide hydrolase (FAAH) was lower in FLX and FO than in CTL. Proteomic analysis identified 3,974 proteins; of these, 51-59 were differentially abundant between treatments (P ≤ 0.05, |fold change| ≥ 1.5). Top canonical pathways enriched in FLX vs. CTL and in FO vs. CTL were triglyceride metabolism and inflammatory processes. Both n-3 FA increased the placental abundance of FA binding proteins (FABPs) 3 and 7. The abundance of CNR1 cannabinoid-receptor-interacting-protein-1 (CNRIP1) was reduced in FO vs. FLX. In silico modeling affirmed that bovine FABPs bind to endocannabinoids. The FLX increased the abundance of inflammatory CD44-antigen and secreted-phosphoprotein-1, whereas prostaglandin-endoperoxide synthase 2 was decreased in FO vs. CTL placenta. Maternal FO enriched neonatal plasma with n-3 FAs, and both FLX and FO reduced interleukin-6 concentrations compared with CTL. CONCLUSION Maternal n-3 FA from FLX and FO differentially affected the bovine placenta; both enhanced lipid metabolism and modulated oxidative stress, however, FO increased some transcriptional ECS components, possibly related to the increased FABPs. Maternal FO induced a unique balance of pro- and anti-inflammatory components in the placenta. Taken together, different sources of n-3 FA during late pregnancy enhanced placental immune and metabolic processes, which may affect the neonatal immune system.
Collapse
Affiliation(s)
- Priscila Dos Santos Silva
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
| | - Gitit Kra
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yana Butenko
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
| | | | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
3
|
Wu Z, Hu G, Zhang Y, Ao Z. IGF2 May Enhance Placental Fatty Acid Metabolism by Regulating Expression of Fatty Acid Carriers in the Growth of Fetus and Placenta during Late Pregnancy in Pigs. Genes (Basel) 2023; 14:genes14040872. [PMID: 37107630 PMCID: PMC10137774 DOI: 10.3390/genes14040872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Fatty acids (FAs) are essential substances for the growth and development of the fetus and placenta. The growing fetus and placenta must obtain adequate FAs received from the maternal circulation and facilitated by various placental FA carriers, including FA transport proteins (FATPs), FA translocase (FAT/CD36), and cytoplasmic FA binding proteins (FABPs). Placental nutrition transport was regulated by imprinted genes H19 and insulin-like growth factor 2 (IGF2). Nevertheless, the relationship between the expression patterns of H19/IGF2 and placental fatty acid metabolism throughout pig pregnancy remains poorly studied and unclear. We investigated the placental fatty acid profile, expression patterns of FA carriers, and H19/IGF2 in the placentae on Days 40 (D40), 65 (D65), and 95 (D95) of pregnancy. The results showed that the width of the placental folds and the number of trophoblast cells of D65 placentae were significantly increased than those of D40 placentae. Several important long-chain FAs (LCFAs), including oleic acid, linoleic acid, arachidonatic acid, eicosapentaenoic acid, and docosatetraenoic acid, in the pig placenta showed dramatically increased levels throughout pregnancy. The pig placenta possessed higher expression levels of CD36, FATP4, and FABP5 compared with other FA carriers, and their expression levels had significantly upregulated 2.8-, 5.6-, and 12.0-fold from D40 to D95, respectively. The transcription level of IGF2 was dramatically upregulated and there were corresponding lower DNA methylation levels in the IGF2 DMR2 in D95 placentae relative to D65 placentae. Moreover, in vitro experimentation revealed that the overexpression of IGF2 resulted in a significant increase in fatty acid uptake and expression levels of CD36, FATP4, and FABP5 in PTr2 cells. In conclusion, our results indicate that CD36, FATP4, and FABP5 may be important regulators that enhance the transport of LCFAs in the pig placenta and that IGF2 may be involved in FA metabolism by affecting the FA carriers expression to support the growth of the fetus and placenta during late pregnancy in pigs.
Collapse
Affiliation(s)
- Zhimin Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Guangling Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Tajonar K, Gonzalez-Ronquillo M, Relling A, Nordquist RE, Nawroth C, Vargas-Bello-Pérez E. Toward assessing the role of dietary fatty acids in lamb's neurological and cognitive development. Front Vet Sci 2023; 10:1081141. [PMID: 36865439 PMCID: PMC9971820 DOI: 10.3389/fvets.2023.1081141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding and measuring sheep cognition and behavior can provide us with measures to safeguard the welfare of these animals in production systems. Optimal neurological and cognitive development of lambs is important to equip individuals with the ability to better cope with environmental stressors. However, this development can be affected by nutrition with a special role from long-chain fatty acid supply from the dam to the fetus or in lamb's early life. Neurological development in lambs takes place primarily during the first two trimesters of gestation. Through late fetal and early postnatal life, the lamb brain has a high level of cholesterol synthesis. This rate declines rapidly at weaning and remains low throughout adulthood. The main polyunsaturated fatty acids (PUFA) in the brain are ω-6 arachidonic acid and ω-3 docosahexaenoic acid (DHA), which are elements of plasma membranes' phospholipids in neuronal cells. DHA is essential for keeping membrane integrity and is vital for normal development of the central nervous system (CNS), and its insufficiency can damage cerebral functions and the development of cognitive capacities. In sheep, there is evidence that supplying PUFA during gestation or after birth may be beneficial to lamb productive performance and expression of species-specific behaviors. The objective of this perspective is to discuss concepts of ruminant behavior and nutrition and reflect on future research directions that could help to improve our knowledge on how dietary fatty acids (FA) relate to optimal neurological and cognitive development in sheep.
Collapse
Affiliation(s)
- Karen Tajonar
- Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico,Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Manuel Gonzalez-Ronquillo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Alejandro Relling
- Department of Animal Science, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Rebecca E. Nordquist
- Unit Animals in Science and Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Christian Nawroth
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany,*Correspondence: Christian Nawroth ✉
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom,Einar Vargas-Bello-Pérez ✉
| |
Collapse
|
5
|
Roque-Jiménez JA, Oviedo-Ojeda MF, Whalin M, Lee-Rangel HA, Relling AE. Ewe early gestation supplementation with eicosapentaenoic and docosahexaenoic acids affects the liver, muscle, and adipose tissue fatty acid profile and liver mRNA expression in the offspring. J Anim Sci 2023; 101:skad144. [PMID: 37158288 PMCID: PMC10263116 DOI: 10.1093/jas/skad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Our objectives were to assess the effects of eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) supplementation to pregnant ewes during the first third of gestation on their offspring's liver, adipose, and muscle tissues fatty acid (FA) profile and liver mRNA expression after a finishing period receiving diets with different FA profiles. Twenty-four post-weaning lambs, blocked by sex and body weight, were used in a 2 × 2 factorial arrangement of treatments. The first factor was dam supplementation (DS) in the first third of gestation with 1.61% of Ca salts of palm fatty acid distillate (PFAD) or Ca salts enriched with EPA-DHA. Ewes were exposed to rams with marking paint harnesses during the breeding. Ewes started DS at the day of mating, considered day 1 of conception. Twenty-eight days after mating, ultrasonography was used to confirm pregnancy, and nonpregnant ewes were removed from the groups. After weaning, the offspring lambs were supplemented (LS, second main factor) with two different FA sources (1.48% of PFAD or 1.48% of EPA-DHA) during the growing and fattening phase. Lambs were fed the LS diet for 56 d and sent to slaughter, where the liver, muscle, and adipose tissue samples were collected for FA analysis. Liver samples were collected for relative mRNA expression for genes associated with FA transport and metabolism. The data were analyzed as a mixed model in SAS (9.4). In the liver, the amount of C20:5 and C22:6 (P < 0.01) increased in lambs with LS-EPA-DHA, while some C18:1 cis FA isomers were greater in the lambs from DS-PFAD. In muscle, amounts of C22:1, C20:5, and C22:5 increased (P < 0.05) in lambs born from DS-EPA-DHA. The adipose tissue amounts of C20:5, C22:5, and C22:6 were greater (P < 0.01) in lambs from LS-EPA-DHA. Interactions (DS × LS; P < 0.05) were observed for DNMT3β, FABP-1, FABP-5, SCD, and SREBP-1; having greater mRNA expression in liver tissue of LS-EPA-DHA, DS-PFAD and LS-PFAD, DS-EPA-DHA lambs compared with the lambs in the other two treatments. Liver ELOVL2 mRNA relative expression (P < 0.03) was greater in the offspring of DS-PFAD. Relative mRNA expression (P < 0.05) of GLUT1, IGF-1, LPL, and PPARγ increased in the liver from LS-EPA-DHA lambs. Dam supplementation during early gestation using with different FA sources changed the lipid FA profile in MT, LT, and SAT during the finishing period depending on the tissue and type of FA source administered during the growing phase.
Collapse
Affiliation(s)
- José A Roque-Jiménez
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Mario F Oviedo-Ojeda
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Megan Whalin
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| | - Héctor A Lee-Rangel
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Alejandro E Relling
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| |
Collapse
|
6
|
Bezerra AF, Alves JPM, Fernandes CCL, Cavalcanti CM, Silva MRL, Conde AJH, Tetaping GM, Ferreira ACA, Melo LM, Rodrigues APR, Rondina D. Dyslipidemia induced by lipid diet in late gestation donor impact on growth kinetics and in vitro potential differentiation of umbilical cord Wharton's Jelly mesenchymal stem cells in goats. Vet Res Commun 2022; 46:1259-1270. [PMID: 36125693 DOI: 10.1007/s11259-022-09995-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Mesenchymal stem cells (MSC) from the umbilical cord (UC) have several attractive properties for clinical use. This study aimed to verify the impact of a lipid-rich diet during late gestation of donor goats on the growth and differentiation of MSCs from UC. From the 100th day of pregnancy to delivery, 22 goats were grouped based on their diet into the donor-lipid (DLD; n = 11) and donor-baseline (DBD; n = 11) diet groups. Diets were isonitrogenous and isoenergetic, differing in fat content (2.8% vs. 6.3% on a dry matter basis). Wharton's jelly (WJ) fragments were cultured. After primary culture, samples of WJ-MSCs were characterized by the expression of CD90, CD73, CD34, CD45, CD105, and Fas genes, mitochondrial activity using MitoTracker (MT) fluorescence probe, and growth kinetics. Population doubling time (PDT) was also determined. WJ-MSCs were differentiated into chondrocytes, adipocytes and osteocytes, and the mineralized area and adipocytes were determined. The lipid diet significantly increased triglyceride and cholesterol levels during pregnancy. The DLD group showed sub-expression of the CD90 gene, a high MT intensity, and a low proliferation rate at the end of the subculture. The mean PDT was 83.9 ± 1.3 h. Mineralized area and lipid droplet stain intensity from osteogenic and adipogenic differentiations, respectively, were greater in DLD. We conclude that in donor goats, dietary dyslipidemia during late pregnancy affects the ability of UC-derived MSCs to express their developmental potential in vitro, thus limiting their possible use for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Camila Muniz Cavalcanti
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, CE, 60.714.903, Brazil
| | | | | | - Gildas Mbemya Tetaping
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, CE, 60.714.903, Brazil
| | | | - Luciana Magalhães Melo
- School of Veterinary Medicine, Centro Universitario Fametro (UNIFAMETRO), Fortaleza, CE, 60010-470, Brazil
| | | | - Davide Rondina
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, CE, 60.714.903, Brazil.
| |
Collapse
|
7
|
Rosa-Velazquez M, Wang Y, Sanders A, Pyle S, Garcia LG, Bohrer BM, Relling AE. Effects of maternal dietary fatty acids during mid-gestation on growth, glucose metabolism, carcass characteristics, and meat quality of lamb progeny that were fed differing levels of dry matter of intake. Meat Sci 2022; 194:108991. [PMID: 36152601 DOI: 10.1016/j.meatsci.2022.108991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
This experiment evaluated growth, glucose metabolism, carcass characteristics, and meat quality of market lambs that were offered ad libitum or restricted (85% of ad libitum) feed intake following two different maternal fatty acid (FA) supplementations while in-utero. Ewes received either a diet supplemented with polyunsaturated FA or saturated/monounsaturated FA during mid- to late-gestation. Following weaning, progeny wethers were fed either ad libitum or a restricted level of feed intake. Ewe FA supplementation did not affect (P ≥ 0.11) growth, meat quality, nor plasma glucose or insulin concentrations of the progeny. Carcass body fat and yield grade of the progeny were affected (P = 0.01) by maternal FA supplementation and restricted feed intake. In summary, maternal FA supplementation did not affect progeny growth, while feed restriction during finishing did not affect meat quality. The interaction between maternal FA supplementation and finishing strategy for body fat accretion indicates that metabolism and the supply of FA during gestation may warrant further investigation.
Collapse
Affiliation(s)
- Milca Rosa-Velazquez
- Department of Animal Science, The Ohio State University, Wooster, OH 44691, USA.
| | - Yifei Wang
- Department of Animal Science, The Ohio State University, Columbus, OH 43210, USA.
| | - Allison Sanders
- Department of Animal Science, The Ohio State University, Wooster, OH 44691, USA.
| | - Shannon Pyle
- Department of Animal Science, The Ohio State University, Columbus, OH 43210, USA.
| | - Lyda G Garcia
- Department of Animal Science, The Ohio State University, Columbus, OH 43210, USA.
| | - Benjamin M Bohrer
- Department of Animal Science, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
8
|
Rosa-Velazquez M, Pinos-Rodriguez JM, Parker AJ, Relling AE. Maternal supply of a source of omega-3 fatty acids and methionine during late gestation on the offspring's growth, metabolism, carcass characteristic, and liver's mRNA expression in sheep. J Anim Sci 2022; 100:skac032. [PMID: 35137115 PMCID: PMC9037365 DOI: 10.1093/jas/skac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
The objective of the present experiment was to evaluate the effect of maternal supplementation with fatty acids (FAs) and methionine (Met) during late gestation on offspring growth, energy metabolism, plasma resolvin (RvD1) concentration, carcass characteristics, and hepatic mRNA expression. Ewes (5 pens/treatment; 3 ewes/pen) blocked by body weight (BW) were assigned to one of four treatments from day 100 of gestation until lambing. The treatments were: basal diet (NS) without FAs or Met supplementation; FA supplementation (FS; 1.01 % of Ca salts, containing n-3 FA); Met supplementation (MS; 0.1 % of rumen-protected methionine); and FS and MS (FS-MS). At birth (day 0), ewes and lambs were placed in a common pen. On day 60, lambs were weaned, sorted by sex, blocked by BW, and placed on a common finishing diet for 54 d (FP). A lamb per pen was used for a glucose tolerance test (GTT) after the FP. Carcass characteristics were recorded on day 56. Lamb data were analyzed as a randomized complete block design with a 2 × 2 × 2 factorial arrangement, with repeated measurements when needed (SAS 9.4). At weaning, lambs born to MS- or FS-fed ewes were heavier than lambs born from FS-MS ewes (FS × MS × Time; P = 0.02). A marginal significant FS × MS interaction (P = 0.09) was also observed on RvD1; lambs born to ewes in the NS and FS-MS treatments showed a lower RvD1 plasma concentration when compared with lambs born to FS- or MS-fed ewes. Lambs born to dams fed FA showed an increase (P = 0.05) in liver COX-2 mRNA relative expression. Lambs born to ewes supplemented with Met showed an increase (P = 0.03) in liver FABP4 mRNA expression. An FS × MS × Time interaction (P = 0.07) was observed in plasma glucose during the GTT; lambs born from FS-fed ewes showed lower plasma glucose concentration than lambs born to Met-supplemented ewes at 2 min after bolus administration. During the GTT, a marginal significant effect (P = 0.06) was observed for the lamb average insulin concentration due to maternal Met supplementation during late gestation, where these lambs had the lowest plasma concentration. Contrary to our hypothesis, the interaction of FA and Met supplementation during late gestation did not show a greater positive effect on offspring postnatal growth and metabolism. However, the individual supplementation of each nutrient has an effect on offspring development with a concomitant change in markers involved in the inflammatory response and energy metabolism.
Collapse
Affiliation(s)
- Milca Rosa-Velazquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico
- Department of Animal Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691, USA
| | | | - Anthony J Parker
- Department of Animal Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691, USA
| | - Alejandro E Relling
- Department of Animal Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
9
|
Nudda A, Bee G, Correddu F, Lunesu MF, Cesarani A, Rassu SPG, Pulina G, Battacone G. Linseed supplementation during uterine and early post-natal life markedly affects fatty acid profiles of brain, liver and muscle of lambs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2038039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anna Nudda
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Giuseppe Bee
- Agroscope, Institute for Livestock Sciences ILS, Posieux, 1725, Switzerland
| | - Fabio Correddu
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Mondina Francesca Lunesu
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Alberto Cesarani
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Salvatore Pier Giacomo Rassu
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Giuseppe Pulina
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Gianni Battacone
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| |
Collapse
|
10
|
Oviedo-Ojeda MF, Roque-Jiménez JA, Whalin M, Lee-Rangel HA, Relling AE. Effect of supplementation with different fatty acid profile to the dam in early gestation and to the offspring on the finishing diet on offspring growth and hypothalamus mRNA expression in sheep. J Anim Sci 2021; 99:6153448. [PMID: 33640974 DOI: 10.1093/jas/skab064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Supplementation with omega-3 and omega-9 fatty acids (FA) during late gestation regulates offspring development; however, their effect in the first third of gestation is unknown in sheep. The objective of this experiment was to evaluate the effects of the maternal supplementation with an enriched source of monounsaturated FA (MUFA) or an enriched source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) during the first third of gestation on productive performance on ewes and offspring, and hypothalamic neuropeptides on offspring. Seventy-nine post-weaning lambs, born of sheep supplemented in the first third of gestation with 1.61% Ca salts rich with MUFA or EPA+DHA (dam supplementation, DS), were distributed in a 2×2 factorial arrangement of treatments to finishing diets containing 1.48% of Ca salts of MUFA or EPA+DHA (lamb supplementation, LS). The finishing period of the offspring lasted for 56 d. During the finishing period dry matter intake (DMI, daily) and body weight (BW) were recorded. Plasma was collected for metabolites analysis. Twenty-four lambs were slaughtered, and hypothalamus was collected for mRNA expression of hormone receptors, neuropeptides, and lipid transport genes. The data were analyzed with a mixed model in SAS (9.4) using repeated measurements, when needed. There was a DS×LS interaction for BW (P = 0.10) where LS with EPA+DHA born from DS with MUFA were heavier than the other 3 treatments. Lambs born from DS with MUFA have a greater DMI (P < 0.01) than the offspring born from DS with EPA+DHA. Lambs born from MUFA supplemented dams had a greater (P ≤ 0.05) hypothalamus mRNA expression for cocaine and amphetamine regulated transcript, growth hormone receptor, metastasis suppressor 1, leptin receptor, pro-opiomelanocortin, and Neuropeptide Y. These results indicate that growth depends not on the type of FA during the finishing phase but the interaction of different sources of FA ad different stages. Also, supplementation with FA during early pregnancy changes productive performance and neuropeptides' mRNA expression of lambs independently of the finishing diet.
Collapse
Affiliation(s)
- Mario Francisco Oviedo-Ojeda
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA.,Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - José Alejandro Roque-Jiménez
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA.,Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Megan Whalin
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| | - Héctor Aarón Lee-Rangel
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Alejandro Enrique Relling
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| |
Collapse
|
11
|
Roque-Jiménez JA, Rosa-Velázquez M, Pinos-Rodríguez JM, Vicente-Martínez JG, Mendoza-Cervantes G, Flores-Primo A, Lee-Rangel HA, Relling AE. Role of Long Chain Fatty Acids in Developmental Programming in Ruminants. Animals (Basel) 2021; 11:ani11030762. [PMID: 33801880 PMCID: PMC8001802 DOI: 10.3390/ani11030762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The objective of the current review is to provide a broad perspective on developmental program aspects of dietary n-3 FA supplementation in ruminants during pre-conception, conception, pregnancy, early life, including its effects on production, lipid metabolism, and health of the offspring. Offspring growth and metabolism could change depending on the FA profile and the stage of gestation when the dam is supplemented. Despite this extended review we are highlighting areas that we consider that there is a lack of information. Abstract Nutrition plays a critical role in developmental programs. These effects can be during gametogenesis, gestation, or early life. Omega-3 polyunsaturated fatty acids (PUFA) are essential for normal physiological functioning and for the health of humans and all domestic species. Recent studies have demonstrated the importance of n-3 PUFA in ruminant diets during gestation and its effects on pre-and postnatal offspring growth and health indices. In addition, different types of fatty acids have different metabolic functions, which affects the developmental program differently depending on when they are supplemented. This review provides a broad perspective of the effect of fatty acid supplementation on the developmental program in ruminants, highlighting the areas of a developmental program that are better known and the areas that more research may be needed.
Collapse
Affiliation(s)
- José Alejandro Roque-Jiménez
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico; (J.A.R.-J.); (H.A.L.-R.)
| | - Milca Rosa-Velázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | - Juan Manuel Pinos-Rodríguez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | - Jorge Genaro Vicente-Martínez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | | | - Argel Flores-Primo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | - Héctor Aarón Lee-Rangel
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico; (J.A.R.-J.); (H.A.L.-R.)
| | - Alejandro E. Relling
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
- Correspondence: ; Tel.: +1-330-263-3900
| |
Collapse
|
12
|
Rosa-Velazquez M, Jaborek JR, Pinos-Rodriguez JM, Relling AE. Maternal Supply of Fatty Acids during Late Gestation on Offspring's Growth, Metabolism, and Carcass Characteristics in Sheep. Animals (Basel) 2021; 11:719. [PMID: 33800817 PMCID: PMC8001004 DOI: 10.3390/ani11030719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
Lambs born from dams supplemented with different sources of fatty acids (FA) during late gestation have a different growth rate and plasma glucose concentration. The main objectives of this experiment were to evaluate the effect of supplementing different sources of FA during late gestation on offspring plasma metabolite concentrations, growth, and on a glucose tolerance test (GTT) during the finishing phase. Fifty-four lambs (18 pens, 3 lambs/pen) were born from ewes supplemented during late gestation with one of three treatments: (1) no FA (NF); (2) a source of monounsaturated FA (PDS, 1.01% of Ca salts); or (3) a source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (EDS, 1.01% of Ca salts containing). At birth (day 0), supplementation ceased, and all ewes and lambs were placed in a common pen. On day 60, lambs were weaned, grouped by sex, blocked by body weight (BW), and placed on a common finishing diet for 54 days (FP). One lamb per pen was used for the GTT after the FP. There was a tendency for FA × Sex × Day interaction (p = 0.08) on lamb growth during the finishing period, with PDS females being heavier than PDS males, while EDS males were heavier than EDS females at day 60. There was a tendency for FA × Sex interaction (p = 0.06) for plasma insulin concentration for the GTT. Plasma insulin concentration of wethers increased as FA unsaturation degree increased during the GTT; the opposite happened with the plasma insulin concentration of female lambs. In conclusion, FA supplementation during late gestation tended to modified growth and insulin response to a GTT; these changes differed with the degree of FA unsaturation of the supplement and lamb sex.
Collapse
Affiliation(s)
- Milca Rosa-Velazquez
- Facultad de Medicina Veterinaria Zootecnia, Universidad Veracruzana, 91710 Veracruz, Mexico; (M.R.-V.); (J.M.P.-R.)
- Department of Animal Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster 44691, OH, USA;
| | - Jerad R. Jaborek
- Department of Animal Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster 44691, OH, USA;
| | - Juan Manuel Pinos-Rodriguez
- Facultad de Medicina Veterinaria Zootecnia, Universidad Veracruzana, 91710 Veracruz, Mexico; (M.R.-V.); (J.M.P.-R.)
| | - Alejandro Enrique Relling
- Department of Animal Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster 44691, OH, USA;
| |
Collapse
|
13
|
Rosa Velazquez M, Batistel F, Pinos Rodriguez JM, Relling AE. Effects of maternal dietary omega-3 polyunsaturated fatty acids and methionine during late gestation on fetal growth, DNA methylation, and mRNA relative expression of genes associated with the inflammatory response, lipid metabolism and DNA methylation in placenta and offspring's liver in sheep. J Anim Sci Biotechnol 2020; 11:111. [PMID: 33292515 PMCID: PMC7672917 DOI: 10.1186/s40104-020-00513-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Omega-3 PUFA or methionine (Met) supply during gestation alters offspring physiology. However, the effect of both nutrients on fetal development has not been explored. Our objective was to determine the effects of supplementation of these two nutrients during late gestation on fetal growth, DNA methylation, and mRNA expression of genes associated with the inflammatory response, and DNA methylation. Ewes (n = 5/treatment) were fed from day 100 to 145 of gestation one of the following treatments: 1) basal diet (NS) without fatty acids (FS) or methionine (MS) supplementation; 2) FS (10 g/kg Ca salts, source omega-3 PUFA); 3) MS (1 g/kg rumen protected methionine); and 4) FS and MS (FS-MS). On day 145, ewes were euthanized, and data from dams and fetus was recorded. Placenta (cotyledon), fetal liver, and blood samples were collected. RESULTS A treatments interaction on fetal liver weight, ewe body weight and body condition score (BCS) was observed; FS-MS were heavier (P < 0.01) than FS and MS, and FS-MS ewes had a better (P = 0.02) BCS than NS. Methionine increased (P = 0.03) ewe plasma glucose concentration. Fetal liver global DNA methylation increased (P < 0.01) in FS and MS. Dietary treatments modify the mRNA relative expression on some of the genes evaluated. In the fetal liver, FS increased (P = 0.04) the mRNA relative expression of arachidonate-5-lipoxygenase-activating-protein and tended to decrease (P = 0.06) methionine-adenosyltransferase-1A. Moreover, MS decreased (P = 0.04) DNA-methyltransferase-1 and tended to decrease (P = 0.08) free-fatty-acid-receptor-1 mRNA relative expression. Furthermore, FS-MS decreased mRNA relative expression of tumor-necrosis-factor-alpha (P = 0.05), peroxisome-proliferator-activated-receptor-delta (P = 0.03) and gamma (P = 0.04), tended to decrease (P ≤ 0.09) interleukin-6, fatty-acid-transport-protein-1, and delta-5-desaturase, and increased adenosylhomocysteinase (P = 0.04) mRNA relative expression. In cotyledon, FS tended to decrease fatty acid binding protein 4 (P = 0.09) mRNA relative expression. CONCLUSION Omega-3 PUFA and Met supplementation improves dam's performance in late gestation, which was positively correlated with an increase in offspring's liver development. Moreover, FS-MS decreased mRNA relative expression of proinflammatory cytokines, and lipogenic genes, and increased the expression on an enzyme that has an important role in methylation.
Collapse
Affiliation(s)
- Milca Rosa Velazquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, 91710, Veracruz, Mexico.,Department of Animal Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, 114 Gerlaugh Hall, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Fernanda Batistel
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | | | - Alejandro Enrique Relling
- Department of Animal Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, 114 Gerlaugh Hall, 1680 Madison Ave, Wooster, OH, 44691, USA.
| |
Collapse
|