1
|
Wada Y, Jang K, Ishii H, Watakabe Y, Tsutsumi M, Sako M, Takehara T, Suzuki T, Tsujino H, Tsutsumi Y, Nemoto T, Arisawa M. Absorption, Fluorescence, and Two-Photon Excitation Ability of 5-o-Tolyl-11 (or 13)-o-tolylisoindolo[2,1-a]quinolines Prepared by Ring-Closing Metathesis and [2+3] Cycloaddition. Chem Asian J 2025; 20:e202401073. [PMID: 39495489 DOI: 10.1002/asia.202401073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/05/2024]
Abstract
We have successfully improved the fluorescence quantum yield of isoindolo[2,1-a]quinoline derivatives by suppressing the rotation of the phenyl groups at positions 5 and 11 (or 13). Additionally, we found that the planarity of these phenyl groups at positions 5 and 11 (or 13) of isoindolo[2,1-a]quinoline derivatives is crucial for two-photon absorption properties.
Collapse
Affiliation(s)
- Yuki Wada
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Kwangkyun Jang
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Hirokazu Ishii
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
| | - Yuki Watakabe
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
| | - Motosuke Tsutsumi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
| | - Makoto Sako
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Tsunayoshi Takehara
- Comprehensive Analysis Center, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Center, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
- The Museum of Osaka University, Osaka University, 1-13 Machikaneyamacho, Toyonaka, Osaka, 560-0043, Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Tomomi Nemoto
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Smirnov IV, Usatova VS, Berestovoy MA, Fedotov AB, Lanin AA, Belousov VV, Sukhorukov GB. Long-term tracing of individual human neural cells using multiphoton microscopy and photoconvertible polymer capsules. J R Soc Interface 2024; 21:20240497. [PMID: 39471872 PMCID: PMC11521627 DOI: 10.1098/rsif.2024.0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 11/01/2024] Open
Abstract
The study of human neural cells, their behaviour and migration are important areas of research in the biomedical field, particularly for potential therapeutic applications. The safety of using neural cells in therapy is still a concern due to a lack of information on long-term changes that may occur. While current methods of cell tracing explore gene manipulations, we elaborate approaches to cell marking with no genetic interference. In this study, we present a novel method for labelling and tracking neural cells using cell-impregnatable photoconvertible polyelectrolyte microcapsules. These capsules demonstrated low cytotoxicity with no effect on the differentiation ability of the neural cells, maintained a high level of fluorescent signal and ability for tracing individual neural cells for over 7 days. The capsules modified with rhodamine- and fluorescein-based dyes were demonstrated to undergo photoconversion by both one- and two-photon lasers while being internalized by neural cells. The finding gives the possibility to select individual capsules inside multicellular structures like spheroids and tissues and alternate their fluorescent appearance. Thus, we can track individual cell paths in complex systems. This new method offers a promising alternative for studying neural cells' long-term behaviour and migration in complex systems such as three-dimensional cellular populations.
Collapse
Affiliation(s)
- Ivan V. Smirnov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow121205, Russia
| | - Veronika S. Usatova
- Federal Center for Brain and Neurotechnologies, Federal Medical-Biological Agency, Moscow117997, Russia
| | - Mikhail A. Berestovoy
- Federal Center for Brain and Neurotechnologies, Federal Medical-Biological Agency, Moscow117997, Russia
| | - Andrei B. Fedotov
- Physics Department, Lomonosov Moscow State University, Moscow119992, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow143025, Russia
| | - Aleksandr A. Lanin
- Physics Department, Lomonosov Moscow State University, Moscow119992, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow143025, Russia
| | - Vsevolod V. Belousov
- Federal Center for Brain and Neurotechnologies, Federal Medical-Biological Agency, Moscow117997, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow143025, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow119334, Russia
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow117997, Russia
| | - Gleb B. Sukhorukov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow121205, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow143025, Russia
- School of Engineering and Materials Science, Queen Mary University of London, LondonE1 4NS, UK
| |
Collapse
|
3
|
Talei Franzesi G, Gupta I, Hu M, Piatkveich K, Yildirim M, Zhao JP, Eom M, Han S, Park D, Andaraarachchi H, Li Z, Greenhagen J, Islam AM, Vashishtha P, Yaqoob Z, Pak N, Wissner-Gross AD, Martin-Alarcon D, Veinot J, So PT, Kortshagen U, Yoon YG, Sur M, Boyden ES. In Vivo Optical Clearing of Mammalian Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611421. [PMID: 39282466 PMCID: PMC11398509 DOI: 10.1101/2024.09.05.611421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Established methods for imaging the living mammalian brain have, to date, taken optical properties of the tissue as fixed; we here demonstrate that it is possible to modify the optical properties of the brain itself to significantly enhance at-depth imaging while preserving native physiology. Using a small amount of any of several biocompatible materials to raise the refractive index of solutions superfusing the brain prior to imaging, we could increase several-fold the signals from the deepest cells normally visible and, under both one-photon and two-photon imaging, visualize cells previously too dim to see. The enhancement was observed for both anatomical and functional fluorescent reporters across a broad range of emission wavelengths. Importantly, visual tuning properties of cortical neurons in awake mice, and electrophysiological properties of neurons assessed ex vivo, were not altered by this procedure.
Collapse
|
4
|
Takahashi T, Zhang H, Agetsuma M, Nabekura J, Otomo K, Okamura Y, Nemoto T. Large-scale cranial window for in vivo mouse brain imaging utilizing fluoropolymer nanosheet and light-curable resin. Commun Biol 2024; 7:232. [PMID: 38438546 PMCID: PMC10912766 DOI: 10.1038/s42003-024-05865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 01/26/2024] [Indexed: 03/06/2024] Open
Abstract
Two-photon microscopy enables in vivo imaging of neuronal activity in mammalian brains at high resolution. However, two-photon imaging tools for stable, long-term, and simultaneous study of multiple brain regions in same mice are lacking. Here, we propose a method to create large cranial windows covering such as the whole parietal cortex and cerebellum in mice using fluoropolymer nanosheets covered with light-curable resin (termed the 'Nanosheet Incorporated into light-curable REsin' or NIRE method). NIRE method can produce cranial windows conforming the curved cortical and cerebellar surfaces, without motion artifacts in awake mice, and maintain transparency for >5 months. In addition, we demonstrate that NIRE method can be used for in vivo two-photon imaging of neuronal ensembles, individual neurons and subcellular structures such as dendritic spines. The NIRE method can facilitate in vivo large-scale analysis of heretofore inaccessible neural processes, such as the neuroplastic changes associated with maturation, learning and neural pathogenesis.
Collapse
Affiliation(s)
- Taiga Takahashi
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan
| | - Hong Zhang
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Masakazu Agetsuma
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
- Quantum Regenerative and Biomedical Engineering Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Chiba Inage-ku, Chiba, 263-8555, Japan
| | - Junichi Nabekura
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Kohei Otomo
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yosuke Okamura
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
- Course of Applied Science, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Tomomi Nemoto
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
5
|
Gohma A, Adachi N, Yonemaru Y, Horiba D, Higuchi K, Nishiwaki D, Yokoi E, Ue Y, Miyawaki A, Monai H. Spatial frequency-based correction of the spherical aberration in living brain imaging. Microscopy (Oxf) 2024; 73:37-46. [PMID: 37315186 PMCID: PMC10849036 DOI: 10.1093/jmicro/dfad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023] Open
Abstract
Optical errors, including spherical aberrations, hinder high-resolution imaging of biological samples due to biochemical components and physical properties. We developed the Deep-C microscope system to achieve aberration-free images, employing a motorized correction collar and contrast-based calculations. However, current contrast-maximization techniques, such as the Brenner gradient method, inadequately assess specific frequency bands. The Peak-C method addresses this issue, but its arbitrary neighbor selection and susceptibility to the noise limit its effectiveness. In this paper, we emphasize the importance of a broad spatial frequency range for accurate spherical aberration correction and propose Peak-F. This spatial frequency-based system utilizes a fast Fourier transform as a bandpass filter. This approach overcomes Peak-C's limitations and comprehensively covers the low-frequency domain of image spatial frequencies.
Collapse
Affiliation(s)
- Aoi Gohma
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
- RIKEN Center for Brain Science-Evident Open Collaboration Center, Center for Brain Science (CBS), RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0106, Japan
| | - Naoya Adachi
- RIKEN Center for Brain Science-Evident Open Collaboration Center, Center for Brain Science (CBS), RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0106, Japan
| | - Yasuo Yonemaru
- RIKEN Center for Brain Science-Evident Open Collaboration Center, Center for Brain Science (CBS), RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0106, Japan
| | - Daiki Horiba
- RIKEN Center for Brain Science-Evident Open Collaboration Center, Center for Brain Science (CBS), RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0106, Japan
| | - Kaori Higuchi
- RIKEN Center for Brain Science-Evident Open Collaboration Center, Center for Brain Science (CBS), RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0106, Japan
| | - Daisuke Nishiwaki
- RIKEN Center for Brain Science-Evident Open Collaboration Center, Center for Brain Science (CBS), RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0106, Japan
| | - Eiji Yokoi
- RIKEN Center for Brain Science-Evident Open Collaboration Center, Center for Brain Science (CBS), RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0106, Japan
| | - Yoshihiro Ue
- RIKEN Center for Brain Science-Evident Open Collaboration Center, Center for Brain Science (CBS), RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0106, Japan
| | - Atsushi Miyawaki
- RIKEN Center for Brain Science-Evident Open Collaboration Center, Center for Brain Science (CBS), RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0106, Japan
| | - Hiromu Monai
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
- RIKEN Center for Brain Science-Evident Open Collaboration Center, Center for Brain Science (CBS), RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0106, Japan
| |
Collapse
|
6
|
Lees RM, Bianco IH, Campbell RAA, Orlova N, Peterka DS, Pichler B, Smith SL, Yatsenko D, Yu CH, Packer AM. Standardised Measurements for Monitoring and Comparing Multiphoton Microscope Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576417. [PMID: 38328224 PMCID: PMC10849699 DOI: 10.1101/2024.01.23.576417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The goal of this protocol is to enable better characterisation of multiphoton microscopy hardware across a large user base. The scope of this protocol is purposefully limited to focus on hardware, touching on software and data analysis routines only where relevant. The intended audiences are scientists using and building multiphoton microscopes in their laboratories. The goal is that any scientist, not only those with optical expertise, can test whether their multiphoton microscope is performing well and producing consistent data over the lifetime of their system.
Collapse
Affiliation(s)
- Robert M Lees
- Science and Technology Facilities Council, Octopus imaging facility, Research Complex at Harwell, Harwell Campus, Oxfordshire, UK
| | - Isaac H Bianco
- Department of Neuroscience, Physiology & Pharmacology, University College London, UK
| | | | | | - Darcy S Peterka
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Bruno Pichler
- Independent NeuroScience Services INSS Ltd, Lewes, East Sussex, UK
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, USA
| | | | - Che-Hang Yu
- Department of Electrical and Computer Engineering, University of California Santa Barbara, USA
| | - Adam M Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Yatsuzuka K, Kawakami R, Niko Y, Tsuda T, Kameda K, Kohri N, Yoshida S, Shiraishi K, Muto J, Mori H, Fujisawa Y, Imamura T, Murakami M. A fluorescence imaging technique suggests that sweat leakage in the epidermis contributes to the pathomechanism of palmoplantar pustulosis. Sci Rep 2024; 14:378. [PMID: 38172327 PMCID: PMC10764317 DOI: 10.1038/s41598-023-50875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Sweat is an essential protection system for the body, but its failure can result in pathologic conditions, including several skin diseases, such as palmoplantar pustulosis (PPP). As reduced intraepidermal E-cadherin expression in skin lesions was confirmed in PPP skin lesions, a role for interleukin (IL)-1-rich sweat in PPP has been proposed, and IL-1 has been implicated in the altered E-cadherin expression observed in both cultured keratinocytes and mice epidermis. For further investigation, live imaging of sweat perspiration on a mouse toe-pad under two-photon excitation microscopy was performed using a novel fluorescent dye cocktail (which we named JSAC). Finally, intraepidermal vesicle formation which is the main cause of PPP pathogenesis was successfully induced using our "LASER-snipe" technique with JSAC. "LASER-snipe" is a type of laser ablation technique that uses two-photon absorption of fluorescent material to destroy a few acrosyringium cells at a pinpoint location in three-dimensional space of living tissue to cause eccrine sweat leakage. These observatory techniques and this mouse model may be useful not only in live imaging for physiological phenomena in vivo such as PPP pathomechanism investigation, but also for the field of functional physiological morphology.
Collapse
Affiliation(s)
- Kazuki Yatsuzuka
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ryosuke Kawakami
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi, Japan
| | - Teruko Tsuda
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kenji Kameda
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Nobushige Kohri
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Satoshi Yoshida
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ken Shiraishi
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Jun Muto
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hideki Mori
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yasuhiro Fujisawa
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masamoto Murakami
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan.
| |
Collapse
|
8
|
Tanikawa S, Ebisu Y, Sedlačík T, Semba S, Nonoyama T, Kurokawa T, Hirota A, Takahashi T, Yamaguchi K, Imajo M, Kato H, Nishimura T, Tanei ZI, Tsuda M, Nemoto T, Gong JP, Tanaka S. Engineering of an electrically charged hydrogel implanted into a traumatic brain injury model for stepwise neuronal tissue reconstruction. Sci Rep 2023; 13:2233. [PMID: 36788295 PMCID: PMC9929269 DOI: 10.1038/s41598-023-28870-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Neural regeneration is extremely difficult to achieve. In traumatic brain injuries, the loss of brain parenchyma volume hinders neural regeneration. In this study, neuronal tissue engineering was performed by using electrically charged hydrogels composed of cationic and anionic monomers in a 1:1 ratio (C1A1 hydrogel), which served as an effective scaffold for the attachment of neural stem cells (NSCs). In the 3D environment of porous C1A1 hydrogels engineered by the cryogelation technique, NSCs differentiated into neuroglial cells. The C1A1 porous hydrogel was implanted into brain defects in a mouse traumatic damage model. The VEGF-immersed C1A1 porous hydrogel promoted host-derived vascular network formation together with the infiltration of macrophages/microglia and astrocytes into the gel. Furthermore, the stepwise transplantation of GFP-labeled NSCs supported differentiation towards glial and neuronal cells. Therefore, this two-step method for neural regeneration may become a new approach for therapeutic brain tissue reconstruction after brain damage in the future.
Collapse
Affiliation(s)
- Satoshi Tanikawa
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Yuki Ebisu
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Tomáš Sedlačík
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Shingo Semba
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Takayuki Kurokawa
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Akira Hirota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Taiga Takahashi
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Kazushi Yamaguchi
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Masamichi Imajo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Hinako Kato
- Graduate School of Life Science, Hokkaido University, N21, W11, Sapporo, Japan, 001-0021
| | - Takuya Nishimura
- Graduate School of Life Science, Hokkaido University, N21, W11, Sapporo, Japan, 001-0021
| | - Zen-Ichi Tanei
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.,Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Tomomi Nemoto
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.,Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan. .,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.
| |
Collapse
|
9
|
Focusing new light on brain functions: multiphoton microscopy for deep and super-resolution imaging. Neurosci Res 2021; 179:24-30. [PMID: 34861295 DOI: 10.1016/j.neures.2021.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022]
Abstract
Multiphoton microscopy has become a powerful tool for visualizing neurobiological phenomena such as the dynamics of individual synapses and the functional activities of neurons. Owing to its near-infrared excitation laser wavelength, multiphoton microscopy achieves greater penetration depth and is less invasive than single-photon excitation. Here, we review the principles of two-photon microscopy and its technical limitations (penetration depth and spatial resolution) on brain tissue imaging. We then describe the technological improvements of two-photon microscopy that enable deeper imaging with higher spatial resolution for investigating unrevealed brain functions.
Collapse
|
10
|
Mizuta Y. Advances in Two-Photon Imaging in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:1224-1230. [PMID: 34019083 PMCID: PMC8579158 DOI: 10.1093/pcp/pcab062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 05/06/2023]
Abstract
Live and deep imaging play a significant role in the physiological and biological study of organisms. Two-photon excitation microscopy (2PEM), also known as multiphoton excitation microscopy, is a fluorescent imaging technique that allows deep imaging of living tissues. Two-photon lasers use near-infrared (NIR) pulse lasers that are less invasive and permit deep tissue penetration. In this review, recent advances in two-photon imaging and their applications in plant studies are discussed. Compared to confocal microscopy, NIR 2PEM exhibits reduced plant-specific autofluorescence, thereby achieving greater depth and high-resolution imaging in plant tissues. Fluorescent proteins with long emission wavelengths, such as orange-red fluorescent proteins, are particularly suitable for two-photon live imaging in plants. Furthermore, deep- and high-resolution imaging was achieved using plant-specific clearing methods. In addition to imaging, optical cell manipulations can be performed using femtosecond pulsed lasers at the single cell or organelle level. Optical surgery and manipulation can reveal cellular communication during development. Advances in in vivo imaging using 2PEM will greatly benefit biological studies in plant sciences.
Collapse
Affiliation(s)
- Yoko Mizuta
- Institute for Advanced Research (IAR), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
11
|
Park Y, Chung TS, Lee G, Rogers JA. Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chem Rev 2021; 122:5277-5316. [PMID: 34739219 DOI: 10.1021/acs.chemrev.1c00639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Advances in materials chemistry and engineering serve as the basis for multifunctional neural interfaces that span length scales from individual neurons to neural networks, neural tissues, and complete neural systems. Such technologies exploit electrical, electrochemical, optical, and/or pharmacological modalities in sensing and neuromodulation for fundamental studies in neuroscience research, with additional potential to serve as routes for monitoring and treating neurodegenerative diseases and for rehabilitating patients. This review summarizes the essential role of chemistry in this field of research, with an emphasis on recently published results and developing trends. The focus is on enabling materials in diverse device constructs, including their latest utilization in 3D bioelectronic frameworks formed by 3D printing, self-folding, and mechanically guided assembly. A concluding section highlights key challenges and future directions.
Collapse
Affiliation(s)
- Yoonseok Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ted S Chung
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Geumbee Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
12
|
Hobson CM, Aaron JS, Heddleston JM, Chew TL. Visualizing the Invisible: Advanced Optical Microscopy as a Tool to Measure Biomechanical Forces. Front Cell Dev Biol 2021; 9:706126. [PMID: 34552926 PMCID: PMC8450411 DOI: 10.3389/fcell.2021.706126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 01/28/2023] Open
Abstract
The importance of mechanical force in biology is evident across diverse length scales, ranging from tissue morphogenesis during embryo development to mechanotransduction across single adhesion proteins at the cell surface. Consequently, many force measurement techniques rely on optical microscopy to measure forces being applied by cells on their environment, to visualize specimen deformations due to external forces, or even to directly apply a physical perturbation to the sample via photoablation or optogenetic tools. Recent developments in advanced microscopy offer improved approaches to enhance spatiotemporal resolution, imaging depth, and sample viability. These advances can be coupled with already existing force measurement methods to improve sensitivity, duration and speed, amongst other parameters. However, gaining access to advanced microscopy instrumentation and the expertise necessary to extract meaningful insights from these techniques is an unavoidable hurdle. In this Live Cell Imaging special issue Review, we survey common microscopy-based force measurement techniques and examine how they can be bolstered by emerging microscopy methods. We further explore challenges related to the accompanying data analysis in biomechanical studies and discuss the various resources available to tackle the global issue of technology dissemination, an important avenue for biologists to gain access to pre-commercial instruments that can be leveraged for biomechanical studies.
Collapse
Affiliation(s)
- Chad M. Hobson
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Jesse S. Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - John M. Heddleston
- Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, FL, United States
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| |
Collapse
|
13
|
Wang Y, Xi L. Chronic cranial window for photoacoustic imaging: a mini review. Vis Comput Ind Biomed Art 2021; 4:15. [PMID: 34037873 PMCID: PMC8155166 DOI: 10.1186/s42492-021-00081-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/27/2021] [Indexed: 12/31/2022] Open
Abstract
Photoacoustic (PA) microscopy is being increasingly used to visualize the microcirculation of the brain cortex at the micron level in living rodents. By combining it with long-term cranial window techniques, vasculature can be monitored over a period of days extending to months through a field of view. To fulfill the requirements of long-term in vivo PA imaging, the cranial window must involve a simple and rapid surgical procedure, biological compatibility, and sufficient optical-acoustic transparency, which are major challenges. Recently, several cranial window techniques have been reported for longitudinal PA imaging. Here, the development of chronic cranial windows for PA imaging is reviewed and its technical details are discussed, including window installation, imaging quality, and longitudinal stability.
Collapse
Affiliation(s)
- Yongchao Wang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
14
|
Yamaguchi K, Otomo K, Kozawa Y, Tsutsumi M, Inose T, Hirai K, Sato S, Nemoto T, Uji-i H. Adaptive Optical Two-Photon Microscopy for Surface-Profiled Living Biological Specimens. ACS OMEGA 2021; 6:438-447. [PMID: 33458495 PMCID: PMC7807736 DOI: 10.1021/acsomega.0c04888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 05/08/2023]
Abstract
We developed adaptive optical (AO) two-photon excitation microscopy by introducing a spatial light modulator (SLM) in a commercially available microscopy system. For correcting optical aberrations caused by refractive index (RI) interfaces at a specimen's surface, spatial phase distributions of the incident excitation laser light were calculated using 3D coordination of the RI interface with a 3D ray-tracing method. Based on the calculation, we applied a 2D phase-shift distribution to a SLM and achieved the proper point spread function. AO two-photon microscopy improved the fluorescence image contrast in optical phantom mimicking biological specimens. Furthermore, it enhanced the fluorescence intensity from tubulin-labeling dyes in living multicellular tumor spheroids and allowed successful visualization of dendritic spines in the cortical layer V of living mouse brains in the secondary motor region with a curved surface. The AO approach is useful for observing dynamic physiological activities in deep regions of various living biological specimens with curved surfaces.
Collapse
Affiliation(s)
- Kazushi Yamaguchi
- Graduate
School of Information Science and Technology, Hokkaido University, 060-0814 Sapporo, Hokkaido, Japan
- Research
Institute for Electronic Science, Hokkaido
University, 060-0814 Sapporo, Hokkaido, Japan
- Division
of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 444-8787 Okazaki, Aichi, Japan
| | - Kohei Otomo
- Graduate
School of Information Science and Technology, Hokkaido University, 060-0814 Sapporo, Hokkaido, Japan
- Research
Institute for Electronic Science, Hokkaido
University, 060-0814 Sapporo, Hokkaido, Japan
- Division
of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 444-8787 Okazaki, Aichi, Japan
- Exploratory
Research Center on Life and Living Systems, National Institutes of Natural Sciences, 444-8787 Okazaki, Aichi, Japan
- Department
of Physiological Sciences, The Graduate
School for Advanced Study, 240-0193 Hayama, Kanagawa, Japan
| | - Yuichi Kozawa
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Miyagi, Japan
| | - Motosuke Tsutsumi
- Research
Institute for Electronic Science, Hokkaido
University, 060-0814 Sapporo, Hokkaido, Japan
- Division
of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 444-8787 Okazaki, Aichi, Japan
- Exploratory
Research Center on Life and Living Systems, National Institutes of Natural Sciences, 444-8787 Okazaki, Aichi, Japan
| | - Tomoko Inose
- Graduate
School of Information Science and Technology, Hokkaido University, 060-0814 Sapporo, Hokkaido, Japan
- Research
Institute for Electronic Science, Hokkaido
University, 060-0814 Sapporo, Hokkaido, Japan
| | - Kenji Hirai
- Graduate
School of Information Science and Technology, Hokkaido University, 060-0814 Sapporo, Hokkaido, Japan
- Research
Institute for Electronic Science, Hokkaido
University, 001-0020 Sapporo, Hokkaido, Japan
| | - Shunichi Sato
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Miyagi, Japan
| | - Tomomi Nemoto
- Graduate
School of Information Science and Technology, Hokkaido University, 060-0814 Sapporo, Hokkaido, Japan
- Research
Institute for Electronic Science, Hokkaido
University, 060-0814 Sapporo, Hokkaido, Japan
- Division
of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 444-8787 Okazaki, Aichi, Japan
- Exploratory
Research Center on Life and Living Systems, National Institutes of Natural Sciences, 444-8787 Okazaki, Aichi, Japan
- Department
of Physiological Sciences, The Graduate
School for Advanced Study, 240-0193 Hayama, Kanagawa, Japan
| | - Hiroshi Uji-i
- Graduate
School of Information Science and Technology, Hokkaido University, 060-0814 Sapporo, Hokkaido, Japan
- KU
Leuven, Department of Chemistry, Celestijinenlaan 200F, 3001 Heverlee, Leuven, Belgium
- Research
Institute for Electronic Science, Hokkaido
University, 001-0020 Sapporo, Hokkaido, Japan
| |
Collapse
|
15
|
Takahashi T, Zhang H, Kawakami R, Yarinome K, Agetsuma M, Nabekura J, Otomo K, Okamura Y, Nemoto T. PEO-CYTOP Fluoropolymer Nanosheets as a Novel Open-Skull Window for Imaging of the Living Mouse Brain. iScience 2020; 23:101579. [PMID: 33083745 PMCID: PMC7554658 DOI: 10.1016/j.isci.2020.101579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/20/2020] [Accepted: 09/15/2020] [Indexed: 01/30/2023] Open
Abstract
In vivo two-photon deep imaging with a broad field of view has revealed functional connectivity among brain regions. Here, we developed a novel observation method that utilizes a polyethylene-oxide-coated CYTOP (PEO-CYTOP) nanosheet with a thickness of ∼130 nm that exhibited a water retention effect and a hydrophilized adhesive surface. PEO-CYTOP nanosheets firmly adhered to brain surfaces, which suppressed bleeding from superficial veins. By taking advantage of the excellent optical properties of PEO-CYTOP nanosheets, we performed in vivo deep imaging in mouse brains at high resolution. Moreover, PEO-CYTOP nanosheets enabled to prepare large cranial windows, achieving in vivo imaging of neural structure and Ca2+ elevation in a large field of view. Furthermore, the PEO-CYTOP nanosheets functioned as a sealing material, even after the removal of the dura. These results indicate that this method would be suitable for the investigation of neural functions that are composed of interactions among multiple regions. PEO-CYTOP nanosheet enables in vivo deep brain imaging in a vast field of view The 130 nm thickness and the hydrophilized surface realize the strong adhesiveness Suppressions of bleeding from the surface and inflammation in long-term are achieved The vast and transparent cranial window with natural curvature of the surface
Collapse
Affiliation(s)
- Taiga Takahashi
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Research Institute for Electronic Science, Hokkaido University, Hokkaido, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Graduate School of Information Science and Technology Hokkaido University, Hokkaido, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Hong Zhang
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.,Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Ryosuke Kawakami
- Research Institute for Electronic Science, Hokkaido University, Hokkaido, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Graduate School of Information Science and Technology Hokkaido University, Hokkaido, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine Ehime University, Shitsukawa 454, Toon, Ehime 791-0295, Japan
| | - Kenji Yarinome
- Course of Applied Science, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Masakazu Agetsuma
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Junichi Nabekura
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Kohei Otomo
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Research Institute for Electronic Science, Hokkaido University, Hokkaido, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Graduate School of Information Science and Technology Hokkaido University, Hokkaido, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Yosuke Okamura
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.,Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.,Course of Applied Science, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Tomomi Nemoto
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Research Institute for Electronic Science, Hokkaido University, Hokkaido, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Graduate School of Information Science and Technology Hokkaido University, Hokkaido, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|