1
|
Wilson SM, Swanson KS. The influence of 'biotics' on the gut microbiome of dogs and cats. Vet Rec 2024; 195:2-12. [PMID: 39545542 DOI: 10.1002/vetr.4914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
A global rise in pet ownership and an increasing tendency towards the humanisation of pets have resulted in a greater focus on improving animal health and longevity. These developments coincide with the increased recognition of the role of the gut microbiome in animal health. The gut microbiome has been shown to play a prominent role in gastrointestinal health, and it is becoming increasingly clear that these health benefits extend beyond the gut and into different physiological systems, such as the immune system. Dietary supplementation with products known as 'biotics', which include probiotics, prebiotics, synbiotics and postbiotics, is a strategy used to modify the gut microbiome and promote host health. Although biotics have been successfully used in companion animals, questions remain regarding appropriate biotic selection, mechanisms of action, optimum inclusion levels and safety. This review aims to summarise the effects of biotics on the gut microbiome of dogs and cats and assess their potential role in supporting gastrointestinal health.
Collapse
Affiliation(s)
- Sofia M Wilson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kelly S Swanson
- Department of Animal Sciences, Department of Veterinary Medicine and Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
HOKKYO A, KAKIYAMA S, SHIWA Y, KAGA C, KOBAYASHI T, NOMOTO K, HARIMA-MIZUSAWA N. Continuous intake of galacto-oligosaccharides containing syrup contributes to maintaining the health of household dogs by modulating their gut microbiota. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:204-212. [PMID: 38966045 PMCID: PMC11220336 DOI: 10.12938/bmfh.2023-062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/22/2024] [Indexed: 07/06/2024]
Abstract
Interest is growing in the relationship of the microbiota and intestinal environment with health in companion animals. Galacto-oligosaccharides (GOS), typical prebiotics, are expected to provide benefits in dogs. Previous studies of GOS in dogs have involved dogs with similar rearing conditions and diets, which may have biased the results. We conducted an open study of 26 healthy dogs kept in households with diverse rearing environments in order to evaluate how the intake of a GOS-containing syrup affects the intestinal microbiota and its metabolites. Each dog was fed 1.2-4.8 g of the GOS-containing syrup (GOS 0.5-2.0 g equivalent) for 8 weeks. Fecal microbiota, fecal concentrations of organic acids and putrefactive products, fecal odor, and serum uremic toxin concentrations were evaluated before intake (0 weeks), during the 8-week intake period (4 and 8 weeks), and 4 weeks after intake (12 weeks). The activity of N-benzoyl-DL-arginine peptidase in dental plaque, which may be associated with periodontal disease, was evaluated at 0 and 8 weeks. Continuous intake of GOS resulted in changes in fecal microbiota, with a particularly marked increase in the abundance of Megamonas, which produces propionic acid. Other findings included a significant increase in the fecal acetic, propionic, and n-butyric acid concentrations. Additionally, significant decreases in fecal odor, fecal phenol concentration, and serum indoxyl sulfate concentration. Intake of GOS was also associated with a significant decrease in N-benzoyl-DL-arginine peptidase activity in dental plaques. These results suggest that continuous intake of GOS may contribute to canine health.
Collapse
Affiliation(s)
- Atsuko HOKKYO
- Yakult Honsha Co., Ltd., Central Research Institute, 5-11
Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Sayaka KAKIYAMA
- Yakult Honsha Co., Ltd., Central Research Institute, 5-11
Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Yuh SHIWA
- Department of Molecular Microbiology, Tokyo University of
Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
- NODAI Genome Research Center, Tokyo University of
Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Chiaki KAGA
- Yakult Honsha Co., Ltd., Central Research Institute, 5-11
Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Toshihide KOBAYASHI
- Yakult Honsha Co., Ltd., Central Research Institute, 5-11
Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Koji NOMOTO
- Department of Molecular Microbiology, Tokyo University of
Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Naomi HARIMA-MIZUSAWA
- Yakult Honsha Co., Ltd., Central Research Institute, 5-11
Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| |
Collapse
|
3
|
Marchi PH, Vendramini THA, Zafalon RVA, Príncipe LDA, Cesar CGL, Perini MP, Putarov TC, Gomes COMS, Balieiro JCDC, Brunetto MA. Effects of Increasing Levels of Purified Beta-1,3/1,6-Glucans on the Fecal Microbiome, Digestibility, and Immunity Variables of Healthy Adult Dogs. Microorganisms 2024; 12:113. [PMID: 38257940 PMCID: PMC10818568 DOI: 10.3390/microorganisms12010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Yeast-purified beta-1,3/1,6-glucans (BG) can modulate dogs' immune systems and microbiome, but the optimal inclusion dose remains unknown. The aim of the study was to evaluate the effects of 0.0, 0.07, 0.14, and 0.28% inclusion of BG in a dry extruded diet on the digestibility, immunity, and fecal microbiota of healthy adult dogs. Eight male and female border collies [n = 4; body condition score (BCS) = 5] and English cocker spaniels (n = 4; BCS = 5), aged 3.5 ± 0.5 years, were randomly distributed into two 4 × 4 balanced Latin squares. Fecal microbiota (using 16S rRNA sequencing, Illumina®), apparent digestibility coefficients (ADC) of nutrients, fecal concentrations of short-chain fatty acids (SCFA) and branched-chain fatty acids (BCFA), ammoniacal nitrogen, lactic acid, IgA and pH, lymphocyte immunophenotyping, intensity and percentage of phagocytosis and oxidative burst were determined. No differences were observed in Faith (p = 0.1414) and Pielou-evenness (p = 0.1151) between treatments, but beta diversity was different between 0.0% and 0.14% BG groups (p = 0.047). Moreover, the Firmicutes phylum was the most abundant in all groups and exhibited the highest relative abundance after the consumption of 0.14% BG, a finding considered beneficial for the canine microbiome. The Erysipelotrichaceae and Ruminococcaceae families, along with the Faecalibacterium and Prevotella genera, considered favorable for their involvement in butyrate production and other metabolites, showed increased abundance after the consumption of 0.14% BG. The potentially pathogenic Proteobacteria phylum displayed lower abundance after the consumption of 0.14% BG. Fecal concentrations of the evaluated compounds and pH did not differ after consumption of the BG at all percentages. Higher crude protein ADC was found after 0.14 and 0.28% BG consumption (p < 0.0001), but no differences were found for other nutrients. Phagocytosis, oxidative burst, and lymphocyte populations were not modulated by any of the treatments; however, 0.14% BG modulated the lymphocyte T CD4+:CD8+ ratio (p = 0.0368), an important marker of immune system efficiency. The inclusion of 0.14% BG resulted in the best responses and was the best dose evaluated.
Collapse
Affiliation(s)
- Pedro Henrique Marchi
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Thiago Henrique Annibale Vendramini
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Rafael Vessecchi Amorim Zafalon
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Leonardo de Andrade Príncipe
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Cinthia Gonçalves Lenz Cesar
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Mariana Pamplona Perini
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | | | | | - Júlio Cesar de Carvalho Balieiro
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Marcio Antonio Brunetto
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| |
Collapse
|
4
|
Wilson SM, Kang Y, Marshall K, Swanson KS. Effects of dietary fiber and biotic supplementation on apparent total tract macronutrient digestibility and the fecal characteristics, metabolites, and microbiota of healthy adult dogs. J Anim Sci 2024; 102:skae138. [PMID: 38783711 PMCID: PMC11161905 DOI: 10.1093/jas/skae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Dietary fibers and biotics have been shown to support gastrointestinal health in dogs, but are usually tested individually. There is value in testing fiber-biotic combinations that are commonly used commercially. Therefore, this study was conducted to determine the apparent total tract macronutrient digestibility (ATTD) of diets supplemented with fibers or biotics and to evaluate their effects on the fecal characteristics, metabolites, microbiota, and immunoglobulin A (IgA) concentrations of dogs. Twelve healthy adult female beagle dogs (age = 6.2 ± 1.6 yr; body weight = 9.5 ± 1.1 kg) were used in a replicated 3 × 3 Latin square design to test three treatments: 1) control diet based on rice, chicken meal, tapioca starch, and cellulose + a placebo treat (CT); 2) diet based on rice, chicken meal, garbanzo beans, and cellulose + a placebo treat (GB); 3) diet based on rice, chicken meal, garbanzo beans, and a functional fiber/prebiotic blend + a probiotic-containing treat (GBPP). In each 28-d period, a 22-d diet adaptation was followed by a 5-d fecal collection phase. Fasted blood samples were collected on day 28. Data were analyzed using the Mixed Models procedure of SAS 9.4, with P < 0.05 being significant and P < 0.10 being trends. ATTD of dry matter (DM), organic matter, and energy were lower (P < 0.001) and DM fecal output was higher (P < 0.01) in dogs fed GBPP than CT or GB, whereas ATTD of crude protein was higher (P < 0.001) in dogs fed CT and GBPP than GB. ATTD of fat was higher (P < 0.001) and wet fecal output was lower (P < 0.01) in dogs fed CT than GB or GBPP. Fecal DM% was higher (P < 0.001) in dogs fed CT than GBPP or GB, and higher in dogs fed GBPP than GB. Fecal short-chain fatty acid concentrations were higher (P < 0.001) in dogs fed GB than CT or GBPP, and higher in dogs fed GB than GBPP. Fecal IgA concentrations were higher (P < 0.01) in dogs fed GB than CT. Fecal microbiota populations were affected by diet, with alpha diversity being higher (P < 0.01) in dogs fed GB than CT, and beta diversity shifting following dietary fiber and biotic supplementation. The relative abundance of 24 bacterial genera was altered in dogs fed GB or GBPP than CT. Serum triglyceride concentrations were lower in dogs fed GB than GBPP or CT. Our results demonstrate that legume-based dietary fibers, with or without prebiotics and probiotics, reduce ATTD, increase stool output, beneficially shift fecal metabolites and microbiota, and reduce blood lipids in adult dogs.
Collapse
Affiliation(s)
- Sofia M Wilson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yifei Kang
- The Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Le Bon M, Carvell-Miller L, Marshall-Jones Z, Watson P, Amos G. A Novel Prebiotic Fibre Blend Supports the Gastrointestinal Health of Senior Dogs. Animals (Basel) 2023; 13:3291. [PMID: 37894015 PMCID: PMC10603684 DOI: 10.3390/ani13203291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Senior pets can suffer from a wide range of age-related diseases that can impact the quality of life for the pet and the relationship between a pet and their owner. Dietary fibre plays a key role in shaping the gastrointestinal health in mammalian species. The aim of this study was to investigate the impact of a novel prebiotic fibre blend containing sugar beet pulp, galacto-oligosaccharides, and cellulose on the health of senior dogs when fed on top of a background commercial dry diet. Thirty-two dogs aged >8 years received the prebiotic fibre blend as a dietary topper for 21 days on top of a nutritionally complete diet using a cross-over study design. The prebiotic fibre blend improved the gastrointestinal health of senior dogs as measured through improved faecal quality scores, a reduction in faecal pH, changes to the taxonomic composition of the gut, and a reduction in faecal branched-chain fatty acids, which are markers for proteolytic degradation. Broader systemic measures, such as changes to serum cytokines, were not impacted by the prebiotic fibre blend. In conclusion, a novel prebiotic fibre blend containing sugar beet pulp, galacto-oligosaccharides, and cellulose improved the gastrointestinal health of senior dogs and could have a range of potential future dietary applications.
Collapse
Affiliation(s)
| | | | | | | | - Gregory Amos
- Waltham Petcare Science Institute, Melton Mowbray LE14 4RT, UK; (M.L.B.); (L.C.-M.); (P.W.)
| |
Collapse
|
6
|
Tian P, Zou R, Wang L, Chen Y, Qian X, Zhao J, Zhang H, Qian L, Wang Q, Wang G, Chen W. Multi-Probiotics ameliorate Major depressive disorder and accompanying gastrointestinal syndromes via serotonergic system regulation. J Adv Res 2023; 45:117-125. [PMID: 35618633 PMCID: PMC10006521 DOI: 10.1016/j.jare.2022.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) is a leading global psychiatric disease. MDD is highly comorbid with gastrointestinal abnormalities, such as gut motility dysfunction. An effective strategy to manage depression and its accompanying gastrointestinal symptoms is warranted. OBJECTIVES Three probiotic strains (Bifidobacterium breve CCFM1025, Bifidobacterium longum CCFM687, and Pediococcus acidilactici CCFM6432) had previously been validated in mice to possess antidepressant-like potential. This study investigated the potential psychotropic effects of a combined three-strain probiotic intervention for human MDD patients. The mechanism of action was further investigated in the stress-induced depression mice model. METHODS MDD patients were given a freeze-dried, mixed probiotic formula for four weeks. The patients' psychometric and gastrointestinal conditions were evaluated using clinical rating scales before and after treatment. Their gut microbiome was also analysed using 16S rRNA gene amplicon sequencing. The mechanisms underlying the beneficial probiotic effects were determined using a chronic stress-induced depressive mouse model. RESULTS Multi-probiotics significantly reduced depression scores, and to a greater extent than the placebo (based on the Hamilton Depression Rating, Montgomery-Asberg Depression Rating, and Brief Psychiatric Rating Scales). Multi-probiotics also significantly improved the patients' gastrointestinal functions (based on self-evaluation using the Gastrointestinal Symptom Rating Scale). Serotonergic system modification was demonstrated as the key mechanism behind the probiotics' benefits for the brain and the gut. CONCLUSION Our findings suggest a novel and promising treatment to manage MDD and accompanying gut motility problems, and provide options for treating other gut-brain axis-related disorders.
Collapse
Affiliation(s)
- Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Renying Zou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luyao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Long Qian
- The Tinghu People's Hospital, Yancheng 224002, China
| | - Qun Wang
- The Tinghu People's Hospital, Yancheng 224002, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Evaluation of the Influence of Coprophagic Behavior on the Digestibility of Dietary Nutrients and Fecal Fermentation Products in Adult Dogs. Vet Sci 2022; 9:vetsci9120686. [PMID: 36548846 PMCID: PMC9783008 DOI: 10.3390/vetsci9120686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Coprophagia is a common and undesirable behavior observed in dogs; however, little is known about its causes or possible consequences when analysis of the animal's feces is needed for experimental purposes. Therefore, this study evaluated the effect of coprophagy on digestibility, fecal pH, and fermentative metabolites. Twelve healthy dogs with a mean age of 3.50 ± 1.45 years were included and divided into two groups: coprophagic (COP) and non-coprophagic (NCOP). The study lasted 30 days, the last 6 days being used to collect feces for the analysis of the apparent digestibility of coefficients (ADC), fecal pH, and the concentration of short- and branched-chain fatty acids, ammonia, and fecal lactic acid. Statistical analysis was performed using the SAS software. No differences were observed for most variables, except for the ADC of nitrogen-free extract (NFE), which presented the highest average for the COP. This result should be interpreted with caution, as the NFE is estimated from calculations and was not determined in the laboratory; in addition, the results represent not only starch and sugars but also some parts referring to fibers. Therefore, coprophagy seemed not to influence the fecal variables analyzed.
Collapse
|
8
|
Souza AFCE, Gabardo S, Coelho RDJS. Galactooligosaccharides: Physiological benefits, production strategies, and industrial application. J Biotechnol 2022; 359:116-129. [DOI: 10.1016/j.jbiotec.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023]
|
9
|
Maráz A, Kovács Z, Benjamins E, Pázmándi M. Recent developments in microbial production of high-purity galacto-oligosaccharides. World J Microbiol Biotechnol 2022; 38:95. [PMID: 35441950 PMCID: PMC9021073 DOI: 10.1007/s11274-022-03279-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/03/2022] [Indexed: 12/30/2022]
Abstract
Galacto-oligosaccharides (GOS) are used as prebiotic ingredients in various food and pharmaceutical formulations. Currently, production of GOS involves the enzymatic conversion of lactose by transgalactosylation using β-galactosidase. The purity of the resulting product is low, typically limited to up to 55% GOS on total carbohydrate basis due to the presence of non-reacted lactose, and the formation of by-products glucose and galactose. In industrial practice high-purity GOS is manufactured by removing the unwanted mono- and disaccharides from raw GOS with simulated moving bed (SMB) chromatography. This purification step is associated with high processing cost that increases the price of pure GOS and limits its marketability. The last decades have witnessed a growing interest in developing competitive biotechnological processes that could replace chromatography. This paper presents a comprehensive review on the recent advancements of microbial GOS purification, a process commonly referred to as selective fermentation or selective metabolism. Purification strategies include: (i) removal of glucose alone or together with galactose by lactose negative yeast species, that typically results in purity values below 60% due to remaining lactose; (ii) removal of both mono- and disaccharides by combining the fast monosaccharide metabolizing capacity of some yeast species with efficient lactose consumption by certain lactose positive microbes, reaching GOS purity in the range of 60-95%; and (iii) the application of selected strains of Kluyveromyces species with high lactose metabolizing activity to achieve high-purity GOS that is practically free from lactose and monosaccharides.
Collapse
Affiliation(s)
- Anna Maráz
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118, Somlói út 14-16, Budapest, Hungary.
| | - Zoltán Kovács
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | | | - Melinda Pázmándi
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118, Somlói út 14-16, Budapest, Hungary
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| |
Collapse
|
10
|
Saccharomyces cerevisiae Dehydrated Culture Modulates Fecal Microbiota and Improves Innate Immunity of Adult Dogs. FERMENTATION 2021. [DOI: 10.3390/fermentation8010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Saccharomyces cerevisiae yeast culture can be dehydrated, and it has a potential prebiotic effect. This study evaluated the effects of supplementing increasing levels of dehydrated yeast culture (DYC) of Saccharomyces cerevisiae (Original XPC™, Diamond V, Cedar Rapids, IA, USA) on fecal microbiota, nutrient digestibility, and fermentative and immunological parameters of healthy adult dogs. Eighteen adult male and female dogs with a mean body weight of 15.8 ± 7.37 kg were randomly assigned to three experimental treatments: CD (control diet), DYC 0.3 (control diet with 0.3% DYC) and DYC 0.6 (control diet with 0.6% DYC). After 21 days of acclimation, fecal samples were collected for analysis of nutrient digestibility, microbiota and fecal fermentation products. On the last day, the blood samples were collected for the analysis of immunological parameters. The microbiome profile was assessed by the Illumina sequencing method, which allowed identifying the population of each bacterial phylum and genus. The statistical analyses were performed using the SAS software and the Tukey test for multiple comparison (p < 0.05). Our results suggest that the addition of DYC increased the percentage of the phyla Actinobacteria and Firmicutes (p = 0.0048 and p < 0.0001, respectively) and reduced that of the phylum Fusobacteria (p = 0.0008). Regardless of the inclusion level, the yeast addition promoted reduction of the genera Allobaculum and Fusobacterium (p = 0.0265 and p = 0.0006, respectively) and increased (p = 0.0059) that of the genus Clostridium. At the highest prebiotic inclusion level (DYC 0.6), an increase (p = 0.0052) in the genus Collinsella and decrease (p = 0.0003) in Prevotella were observed. Besides that, the inclusion of the additive improved the apparent digestibility of the crude fiber and decreased the digestibility of crude protein, nitrogen-free extract and metabolizable energy (p < 0.05). There were no significant changes in the production of volatile organic compounds. However, an increase in propionate production was observed (p = 0.05). In addition, the inclusion of yeast resulted in an increased phagocytosis index in both treatments (p = 0.01). The addition of 0.3 and 0.6% DYC to the diet of dogs wase able to modulate the proportions of some phyla and genera in healthy dogs, in addition to yielding changes in nutrient digestibility, fermentative products and immunity in healthy adult dogs, indicating that this additive can modulate fecal microbiota and be included in dog nutrition.
Collapse
|
11
|
de Oliveira Matheus LF, Risolia LW, Ernandes MC, de Souza JM, Oba PM, Vendramini THA, Pedrinelli V, Henríquez LBF, de Oliveira Massoco C, Pontieri CFF, Brunetto MA. Effects of Saccharomyces cerevisiae cell wall addition on feed digestibility, fecal fermentation and microbiota and immunological parameters in adult cats. BMC Vet Res 2021; 17:351. [PMID: 34784923 PMCID: PMC8596940 DOI: 10.1186/s12917-021-03049-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/26/2021] [Indexed: 11/25/2022] Open
Abstract
Background This study aimed to evaluate the effects of increasing dosages of a commercial product composed by Saccharomyces cerevisiae yeast (YAM), with active metabolites, which are beta glucans, nucleotides, organic acids, polyphenols, amino acids, vitamins and minerals (Original XPCtm, Diamond V, IOWA, USA) added to a commercially available dry cat food. Apparent digestibility of dietary nutrients, fecal microbiota, fecal fermentation products and immunological parameters were evaluated. Twenty-seven healthy cats of mixed sexes, with a mean body weight of 4.19 ± 0.83 kg and a mean age of 9.44 ± 5.35 years were distributed by age in an unbalanced randomized block design, consisting of three experimental treatments: CD (control diet), YAM 0.3 (control diet with 0.3% yeast with active metabolites) and YAM 0.6 (control diet with 0.6% yeast with active metabolites). Results The inclusion of the additive elevated the apparent digestibility of crude fiber (p = 0.013) and ash (p < 0.001) without interfering feed consumption, fecal production and fecal characteristics. Regarding fermentation products present in the feces, prebiotic inclusion increased lactic acid concentration (p = 0.004) while reducing isovaleric acid (p = 0.014), only in the treatment YAM 0.3. No differences were noticed on biogenic amines (BA), fecal pH, ammonia concentration, total and individuals short-chain fatty acids (SCFA) and total and individuals branched-chain fatty acids (BCFA) (except isovaleric acid in YAM 0.3). As regards to fecal microbiota, prebiotic inclusion has resulted in the reduction of Clostridium perfringens (p = 0.023). No differences were found in the immunological parameters evaluated. Conclusion It can be concluded that the additive, at the levels of inclusion assessed shows prebiotic potential and it has effects on fecal fermentation products and microbiota without interfering on crude protein and dry matter digestibility. More studies evaluating grater inclusion levels of the prebiotic are necessary to determine optimal concentration.
Collapse
Affiliation(s)
- Laura Fantucci de Oliveira Matheus
- School of Veterinary Medicine and Animal Science, University of São Paulo, 87, Prof. Orlando Marques de Paiva Ave, São Paulo, São Paulo, 05508270, Brazil
| | - Larissa Wunsche Risolia
- School of Veterinary Medicine and Animal Science, University of São Paulo, 87, Prof. Orlando Marques de Paiva Ave, São Paulo, São Paulo, 05508270, Brazil
| | - Mariane Ceschin Ernandes
- School of Veterinary Medicine and Animal Science, University of São Paulo, 87, Prof. Orlando Marques de Paiva Ave, São Paulo, São Paulo, 05508270, Brazil
| | - Johnny Maciel de Souza
- School of Veterinary Medicine and Animal Science, University of São Paulo, 87, Prof. Orlando Marques de Paiva Ave, São Paulo, São Paulo, 05508270, Brazil
| | - Patrícia Massae Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 120, 7 W Gregory Dr, Urbana, IL, 61801, USA
| | - Thiago Henrique Annibale Vendramini
- School of Veterinary Medicine and Animal Science, University of São Paulo, 87, Prof. Orlando Marques de Paiva Ave, São Paulo, São Paulo, 05508270, Brazil
| | - Vivian Pedrinelli
- School of Veterinary Medicine and Animal Science, University of São Paulo, 87, Prof. Orlando Marques de Paiva Ave, São Paulo, São Paulo, 05508270, Brazil
| | - Lucas Ben Fiuza Henríquez
- School of Veterinary Medicine and Animal Science, University of São Paulo, 87, Prof. Orlando Marques de Paiva Ave, São Paulo, São Paulo, 05508270, Brazil
| | - Cristina de Oliveira Massoco
- School of Veterinary Medicine and Animal Science, University of São Paulo, 87, Prof. Orlando Marques de Paiva Ave, São Paulo, São Paulo, 05508270, Brazil
| | | | - Marcio Antonio Brunetto
- School of Veterinary Medicine and Animal Science, University of São Paulo, 87, Prof. Orlando Marques de Paiva Ave, São Paulo, São Paulo, 05508270, Brazil.
| |
Collapse
|
12
|
Rose EC, Odle J, Blikslager AT, Ziegler AL. Probiotics, Prebiotics and Epithelial Tight Junctions: A Promising Approach to Modulate Intestinal Barrier Function. Int J Mol Sci 2021; 22:6729. [PMID: 34201613 PMCID: PMC8268081 DOI: 10.3390/ijms22136729] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Disruptions in the intestinal epithelial barrier can result in devastating consequences and a multitude of disease syndromes, particularly among preterm neonates. The association between barrier dysfunction and intestinal dysbiosis suggests that the intestinal barrier function is interactive with specific gut commensals and pathogenic microbes. In vitro and in vivo studies demonstrate that probiotic supplementation promotes significant upregulation and relocalization of interepithelial tight junction proteins, which form the microscopic scaffolds of the intestinal barrier. Probiotics facilitate some of these effects through the ligand-mediated stimulation of several toll-like receptors that are expressed by the intestinal epithelium. In particular, bacterial-mediated stimulation of toll-like receptor-2 modulates the expression and localization of specific protein constituents of intestinal tight junctions. Given that ingested prebiotics are robust modulators of the intestinal microbiota, prebiotic supplementation has been similarly investigated as a potential, indirect mechanism of barrier preservation. Emerging evidence suggests that prebiotics may additionally exert a direct effect on intestinal barrier function through mechanisms independent of the gut microbiota. In this review, we summarize current views on the effects of pro- and prebiotics on the intestinal epithelial barrier as well as on non-epithelial cell barrier constituents, such as the enteric glial cell network. Through continued investigation of these bioactive compounds, we can maximize their therapeutic potential for preventing and treating gastrointestinal diseases associated with impaired intestinal barrier function and dysbiosis.
Collapse
Affiliation(s)
- Elizabeth C. Rose
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27607, USA;
| | - Anthony T. Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| | - Amanda L. Ziegler
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| |
Collapse
|
13
|
Lee AH, Vidal S, Oba PM, Wyss R, Miao Y, Adesokan Y, Swanson KS. Evaluation of a novel animal milk oligosaccharide biosimilar: macronutrient digestibility and gastrointestinal tolerance, fecal metabolites, and fecal microbiota of healthy adult dogs and in vitro genotoxicity assays. J Anim Sci 2021; 99:6102879. [PMID: 33454743 DOI: 10.1093/jas/skab014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Milk oligosaccharides (MO) are bioactive compounds in mammalian milk that provide health benefits to neonates beyond essential nutrients. GNU100, a novel animal MO biosimilar, was recently tested in vitro, with results showing beneficial shifts in microbiota and increased short-chain fatty acid (SCFA) production, but other effects of GNU100 were unknown. Three studies were conducted to evaluate the safety, palatability, and gastrointestinal (GI) tolerance of GNU100. In study 1, the mutagenic potential of GNU100 was tested using a bacterial reverse mutation assay and a mammalian cell micronucleus test. In study 2, palatability was assessed by comparing diets containing 0% vs. 1% GNU100 in 20 adult dogs. In study 3, 32 adult dogs were used in a completely randomized design to assess the safety and GI tolerance of GNU100 and explore utility. Following a 2-wk baseline, dogs were assigned to one of four treatments and fed for 26 wk: 0%, 0.5%, 1%, and 1.5% GNU100. On weeks 2, 4, and 26, fresh fecal samples were collected to measure stool quality, immunoglobulin A, and calprotectin, and blood samples were collected to measure serum chemistry, inflammatory markers, and hematology. On weeks 2 and 4, fresh fecal samples were collected to measure metabolites and microbiota. On week 4, total feces were collected to assess apparent total tract macronutrient digestibility. Although revertant numbers were greater compared with the solvent control in tester strain WP2uvrA(pKM101) in the presence of metabolic activation (S9) in the initial experiment, they remained below the threshold for a positive mutagenic response in follow-up confirmatory tests, supporting that GNU100 is not mutagenic. Similarly, no cytotoxicity or chromosome damage was observed in the cell micronucleus test. The palatability test showed that 1% GNU100 was strongly preferred (P < 0.05; 3.6:1 consumption ratio) over the control. In study 3, all dogs were healthy and had no signs of GI intolerance or illness. All diets were well accepted, and food intake, fecal characteristics, metabolite concentrations, and macronutrient digestibilities were not altered. GNU100 modulated fecal microbiota, increasing evenness and Catenibacterium, Megamonas, and Prevotella (SCFA producers) and reducing Collinsella. Overall, the results suggest that GNU100 is palatable and well-tolerated, causes no genotoxicity or adverse effects on health, and beneficially shifts the fecal microbiota, supporting the safety of GNU100 for the inclusion in canine diets.
Collapse
Affiliation(s)
- Anne H Lee
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Sara Vidal
- Gnubiotics Sciences SA, Epalinges, Switzerland
| | - Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Romain Wyss
- Gnubiotics Sciences SA, Epalinges, Switzerland
| | - Yong Miao
- Gnubiotics Sciences SA, Epalinges, Switzerland
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
14
|
Vijay A, Astbury S, Le Roy C, Spector TD, Valdes AM. The prebiotic effects of omega-3 fatty acid supplementation: A six-week randomised intervention trial. Gut Microbes 2021; 13:1-11. [PMID: 33382352 PMCID: PMC7781624 DOI: 10.1080/19490976.2020.1863133] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 02/04/2023] Open
Abstract
Prebiotics are compounds in food that benefit health via affecting the gut microbiome. Omega-3 fatty acids have been associated with differences in gut microbiome composition and are widely accepted to have health benefits, although recent large trials have been inconclusive. We carried out a 6-week dietary intervention comparing the effects of daily supplementation with 500 mg of omega-3 versus 20 g of a well-characterized prebiotic, inulin. Inulin supplementation resulted in large increases in Bifidobacterium and Lachnospiraceae. In contrast, omega-3 supplementation resulted in significant increases in Coprococcus spp. and Bacteroides spp, and significant decreases in the fatty-liver associated Collinsella spp. On the other hand, similar to the results with inulin supplementation which resulted in significant increases in butyrate, iso-valerate, and iso-butyrate (p < .004), omega-3 supplementation resulted in significant increases in iso-butyrate and isovalerate (p < .002) and nearly significant increases in butyrate (p < .053). Coprococcus, which was significantly increased post-supplementation with omega-3, was found to be positively associated with iso-butyric acid (Beta (SE) = 0.69 (0.02), P = 1.4 x 10-3) and negatively associated with triglyceride-rich lipoproteins such as VLDL (Beta (SE) = -0.381 (0.01), P = .001) and VLDL-TG (Beta (SE) = -0.372 (0.04), P = .001) after adjusting for confounders. Dietary omega-3 alters gut microbiome composition and some of its cardiovascular effects appear to be potentially mediated by its effect on gut microbial fermentation products indicating that it may be a prebiotic nutrient.
Collapse
Affiliation(s)
- Amrita Vijay
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Stuart Astbury
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Caroline Le Roy
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Ana M Valdes
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|