1
|
Sitthideatphaiboon P, Simseekeaw P, Teerapakpinyo C, Zungsontiporn N, Chintanapakdee W, Itthisawatpan I, Shuangshoti S, Sriuranpong V, Tongbai T, Vinayanuwattikun C. Presence of liver metastasis correlated with high tumor abundance and indicated adverse prognostic feature in EGFR mutation non-small-cell lung cancer patients. Sci Rep 2025; 15:165. [PMID: 39747343 PMCID: PMC11696231 DOI: 10.1038/s41598-024-83930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
EGFR-TKIs are effective therapies for non-small cell lung cancer (NSCLC) patients with EGFR-activating mutations. However, responses vary within individuals and resistant disease inevitably emerges. A prospective cohort of 130 patients with advanced EGFR mutation NSCLC were enrolled. Pre-and post-treatment plasma from subjects treated with EGFR-TKIs were obtained. The correlation between EGFR mutation abundance using the Idylla™ ctEGFR mutation assay, radiographic assessment, and clinical outcomes were analyzed. Eighty-nine patients with retrieved blood collection were analyzed. Undetectable ctEGFR (49.5%), detectable ctEGFR CqMut-high (23.5%), and detectable ctEGFR CqMut low (27%) using CqMut cutoff at 28.1, represented consecutive incremental tumor burden by radiographic assessment and outcome of treatment. Median PFS was 13.4 months [95% CI 12.0-14.8] in undetectable ctEGFR, 10.4 months [95% CI 9.9-10.9] in ctEGFR CqMut-high, and 5.9 months [95% CI 3.8-7.4] in ctEGFR CqMut-low. Number of metastasis sites > 3 was found in 22.7%, 23.8%, and 58.3% of the 3-tier ctEGFR tumor burden levels, respectively (p-value 0.01). Presence of liver metastasis was significantly correlated with number of metastasis sites > 3 and ctEGFR CqMut-low (45.8%). Liver metastasis was an independent factor of reduced PFS and OS by multivariate analysis with an HR = 2.41 [95% CI 1.27-4.60, p-value 0.007]) and HR = 2.96 [95% CI 1.35-6.51, p-value 0.007], respectively. The pretreatment ctEGFR detection using the Idylla™ ctEGFR mutation assay served as a surrogate marker for tumor abundance and tumor burden. Presence of liver metastasis was found to be a clinical predictor associated with high tumor abundance and worsening treatment outcomes.
Collapse
Affiliation(s)
- Piyada Sitthideatphaiboon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Pronwasun Simseekeaw
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Chinachote Teerapakpinyo
- Chula GenePRO Center, Research Affairs, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Nicha Zungsontiporn
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Wariya Chintanapakdee
- Department of Radiology, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Itthi Itthisawatpan
- Department of Radiology, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Shanop Shuangshoti
- Department of Pathology, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
- Chula GenePRO Center, Research Affairs, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Virote Sriuranpong
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Thanisa Tongbai
- Department of Radiology, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand.
| | - Chanida Vinayanuwattikun
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Neefs I, De Meulenaere N, Vanpoucke T, Vandenhoeck J, Peeters D, Peeters M, Van Camp G, Op de Beeck K. Simultaneous detection of eight cancer types using a multiplex droplet digital PCR assay. Mol Oncol 2025; 19:188-203. [PMID: 39239847 PMCID: PMC11705734 DOI: 10.1002/1878-0261.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 09/07/2024] Open
Abstract
DNA methylation biomarkers have emerged as promising tools for cancer detection. Common methylation patterns across tumor types allow multi-cancer detection. Droplet digital PCR (ddPCR) has gained considerable attention for methylation detection. However, multi-cancer detection using multiple targets in ddPCR has never been performed before. Therefore, we developed a multiplex ddPCR assay for multi-cancer detection. Based on previous data analyses using The Cancer Genome Atlas (TCGA), we selected differentially methylated targets for eight frequent tumor types (lung, breast, colorectal, prostate, pancreatic, head and neck, liver, and esophageal cancer). Three targets were validated using ddPCR in 103 tumor and 109 normal adjacent fresh frozen samples. Two distinct ddPCR assays were successfully developed. Output data from both assays is combined to obtain a read-out from the three targets together. Our overall ddPCR assay has a cross-validated area under the curve (cvAUC) of 0.948. Performance between distinct cancer types varies, with sensitivities ranging from 53.8% to 100% and specificities ranging from 80% to 100%. Compared to previously published single-target parameters, we show that combining targets can drastically increase sensitivity and specificity, while lowering DNA input. In conclusion, we are the first to report a multi-cancer methylation ddPCR assay, which allows for highly accurate tumor predictions.
Collapse
Affiliation(s)
- Isabelle Neefs
- Center of Medical GeneticsUniversity of Antwerp and Antwerp University HospitalEdegemBelgium
- Center for Oncological ResearchUniversity of Antwerp and Antwerp University HospitalWilrijkBelgium
| | - Nele De Meulenaere
- Center of Medical GeneticsUniversity of Antwerp and Antwerp University HospitalEdegemBelgium
- Center for Oncological ResearchUniversity of Antwerp and Antwerp University HospitalWilrijkBelgium
| | - Thomas Vanpoucke
- Center of Medical GeneticsUniversity of Antwerp and Antwerp University HospitalEdegemBelgium
- Center for Oncological ResearchUniversity of Antwerp and Antwerp University HospitalWilrijkBelgium
| | - Janah Vandenhoeck
- Center of Medical GeneticsUniversity of Antwerp and Antwerp University HospitalEdegemBelgium
- Center for Oncological ResearchUniversity of Antwerp and Antwerp University HospitalWilrijkBelgium
| | - Dieter Peeters
- Department of PathologyAntwerp University HospitalEdegemBelgium
| | - Marc Peeters
- Center for Oncological ResearchUniversity of Antwerp and Antwerp University HospitalWilrijkBelgium
| | - Guy Van Camp
- Center of Medical GeneticsUniversity of Antwerp and Antwerp University HospitalEdegemBelgium
- Center for Oncological ResearchUniversity of Antwerp and Antwerp University HospitalWilrijkBelgium
| | - Ken Op de Beeck
- Center of Medical GeneticsUniversity of Antwerp and Antwerp University HospitalEdegemBelgium
- Center for Oncological ResearchUniversity of Antwerp and Antwerp University HospitalWilrijkBelgium
| |
Collapse
|
3
|
Kurma K, Eslami-S Z, Alix-Panabières C, Cayrefourcq L. Liquid biopsy: paving a new avenue for cancer research. Cell Adh Migr 2024; 18:1-26. [PMID: 39219215 PMCID: PMC11370957 DOI: 10.1080/19336918.2024.2395807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The current constraints associated with cancer diagnosis and molecular profiling, which rely on invasive tissue biopsies or clinical imaging, have spurred the emergence of the liquid biopsy field. Liquid biopsy involves the extraction of circulating tumor cells (CTCs), circulating free or circulating tumor DNA (cfDNA or ctDNA), circulating cell-free RNA (cfRNA), extracellular vesicles (EVs), and tumor-educated platelets (TEPs) from bodily fluid samples. Subsequently, these components undergo molecular characterization to identify biomarkers that are critical for early cancer detection, prognosis, therapeutic assessment, and post-treatment monitoring. These innovative biosources exhibit characteristics analogous to those of the primary tumor from which they originate or interact. This review comprehensively explores the diverse technologies and methodologies employed for processing these biosources, along with their principal clinical applications.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
4
|
Kourie HR, Zouein J, Zalaquett Z, Chebly A, Nasr L, Karak FE, Sadek M, Safar O, Fouani M, Bitar N, Kachmar K, Nasr F, Farhat F, Makarem J, Kattan J, Taieb J. Liquid biopsy as a tool for KRAS/NRAS/BRAF baseline testing in metastatic colorectal cancer. Clin Res Hepatol Gastroenterol 2024; 48:102417. [PMID: 39009221 DOI: 10.1016/j.clinre.2024.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND The absence of KRAS and NRAS gene mutations (RAS wild type) in metastatic colorectal cancer (mCRC), is associated with a good response to targeted therapy with anti-EGFR receptor antibodies. The current gold standard for RAS mutational status identification is genetic testing on tissue biopsy samples. OBJECTIVE This study aimed to assess the relevance of liquid biopsy as a less invasive alternative to tissue biopsy for detecting KRAS/NRAS and BRAF mutations in patients with metastatic colorectal cancer (mCRC). The study also aimed to determine the concordance between liquid biopsy and tissue biopsy. METHODS This is a phase IV, observational, uncontrolled, non-comparative, non-randomized, open label study. RAS/BRAF status will be tested at baseline using tissue and liquid biopsy using the Idylla/Biocartis PCR-based device. The primary endpoint is the comparison of the RAS status based on liquid biopsy with the RAS status based on tissue biopsy. RESULTS 100 patients with mCRC were included in the study. 75 % of patients showed concordant results between liquid biopsy and tissue biopsy, while 25 % had discordant results. Liquid biopsy demonstrated a sensitivity of 62 % and a specificity of 93 %. The accuracy of liquid biopsy was 75 %, with a moderate agreement between the two tests. The most frequent mutations in concordant cases were in KRAS (41 %), followed by NRAS (4 %) and BRAF (3 %). Mutations were not detected in 42 % of tissue biopsy samples and 60 % of liquid biopsy samples. The presence of hepatic metastases did not significantly affect the concordance between the biopsy methods. CONCLUSION Liquid biopsy using the Idylla™ system showed a relatively low sensitivity but high specificity for detecting KRAS/NRAS and BRAF mutations in mCRC patients. Despite some discordant cases, liquid biopsy remains a promising alternative to tissue biopsy due to its non-invasiveness, ability to provide multiple samples, and better representation of tumor heterogeneity.
Collapse
Affiliation(s)
- Hampig Raphael Kourie
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University, Boulevard Alfred Naccache, Beirut, Lebanon.
| | - Joseph Zouein
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University, Boulevard Alfred Naccache, Beirut, Lebanon; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Ziad Zalaquett
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University, Boulevard Alfred Naccache, Beirut, Lebanon
| | - Alain Chebly
- Jacques Loiselet Center for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon; Higher Institute of Public Health, Saint Joseph University, Beirut, Lebanon
| | - Lewis Nasr
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University, Boulevard Alfred Naccache, Beirut, Lebanon
| | - Fadi El Karak
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University, Boulevard Alfred Naccache, Beirut, Lebanon
| | - Maroun Sadek
- Hematology-Oncology Department, Lebanese Hospital Geitaoui, Beirut, Lebanon
| | | | | | | | | | - Fady Nasr
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University, Boulevard Alfred Naccache, Beirut, Lebanon
| | | | | | - Joseph Kattan
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University, Boulevard Alfred Naccache, Beirut, Lebanon
| | - Julien Taieb
- Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
5
|
Barisic S, Cherkasova E, Nadal R, Tian X, Chen L, Parrizzi A, Reger RN, Scurti GM, Nishimura MI, Childs RW. Quantification of circulating TCR-engineered T cells targeting a human endogenous retrovirus post-adoptive transfer using nanoplate digital PCR. Mol Ther Methods Clin Dev 2024; 32:101324. [PMID: 39319301 PMCID: PMC11419864 DOI: 10.1016/j.omtm.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024]
Abstract
In vivo expansion of genetically modified T cells in cancer patients following adoptive transfer has been linked to both anti-tumor activity and T cell-mediated toxicities. The development of digital PCR has improved the accuracy in quantifying the in vivo status of adoptively infused T cells compared to qPCR or flow cytometry. Here, we developed and evaluated the feasibility and performance of nanoplate-based digital PCR (ndPCR) to quantify adoptively infused T cells engineered with a T cell receptor (TCR) that recognizes a human endogenous retrovirus type E (HERV-E) antigen. Analysis of blood samples collected from patients with metastatic kidney cancer following the infusion of HERV-E TCR-transduced T cells established the limit of detection of ndPCR to be 0.3 transgene copies/μL of reaction. The lower limit of quantification for ndPCR was one engineered T cell per 10,000 PBMCs, which outperformed both qPCR and flow cytometry by 1 log. High inter-test and test-retest reliability was confirmed by analyzing blood samples collected from multiple patients. In conclusion, we demonstrated the feasibility of ndPCR for detecting and monitoring the fate of TCR-engineered T cells in adoptive cell therapy.
Collapse
Affiliation(s)
- Stefan Barisic
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elena Cherkasova
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rosa Nadal
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Long Chen
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angelina Parrizzi
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert N Reger
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gina M Scurti
- Department of Surgery, Loyola University Chicago, Maywood, IL 60153, USA
| | | | - Richard W Childs
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Li K, Zhu Q, Yang J, Zheng Y, Du S, Song M, Peng Q, Yang R, Liu Y, Qi L. Imaging and Liquid Biopsy for Distinguishing True Progression From Pseudoprogression in Gliomas, Current Advances and Challenges. Acad Radiol 2024; 31:3366-3383. [PMID: 38614827 DOI: 10.1016/j.acra.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
RATIONALE AND OBJECTIVES Gliomas are aggressive brain tumors with a poor prognosis. Assessing treatment response is challenging because magnetic resonance imaging (MRI) may not distinguish true progression (TP) from pseudoprogression (PsP). This review aims to discuss imaging techniques and liquid biopsies used to distinguish TP from PsP. MATERIALS AND METHODS This review synthesizes existing literature to examine advances in imaging techniques, such as magnetic resonance diffusion imaging (MRDI), perfusion-weighted imaging (PWI) MRI, and liquid biopsies, for identifying TP or PsP through tumor markers and tissue characteristics. RESULTS Advanced imaging techniques, including MRDI and PWI MRI, have proven effective in delineating tumor tissue properties, offering valuable insights into glioma behavior. Similarly, liquid biopsy has emerged as a potent tool for identifying tumor-derived markers in biofluids, offering a non-invasive glimpse into tumor evolution. Despite their promise, these methodologies grapple with significant challenges. Their sensitivity remains inconsistent, complicating the accurate differentiation between TP and PSP. Furthermore, the absence of standardized protocols across platforms impedes the reliability of comparisons, while inherent biological variability adds complexity to data interpretation. CONCLUSION Their potential applications have been highlighted, but gaps remain before routine clinical use. Further research is needed to develop and validate these promising methods for distinguishing TP from PsP in gliomas.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China; Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China.; Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qihui Zhu
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Junyi Yang
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Yin Zheng
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Siyuan Du
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Meihui Song
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Qian Peng
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Runwei Yang
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China
| | - Ling Qi
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China.
| |
Collapse
|
7
|
Li Y, Huang K, Yin J, Tan Z, Zhou M, Dai J, Yi B. Clinical evaluation of a multiplex droplet digital PCR for pathogen detection in critically ill COVID-19 patients with bloodstream infections. Infection 2024; 52:1027-1039. [PMID: 38127118 PMCID: PMC11143000 DOI: 10.1007/s15010-023-02157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Nosocomial bloodstream infections (nBSI) have emerged as a clinical concern for physicians treating COVID-19 patients. In this study, we aimed to evaluate the effectiveness of a multiplex ddPCR in detecting bacterial pathogens in the blood of COVID-19 critically ill patients. METHODS This prospective diagnostic study included RT-PCR-confirmed COVID-19 patients admitted to our hospital from December 2022 to February 2023. A multiplex ddPCR assay was used to detect common bacterial pathogens and AMR genes in blood samples of the patients, along with antimicrobial susceptibility testing (AST). The diagnostic performance of the ddPCR assay was evaluated by comparing the results with those obtained through blood culture and clinical diagnosis. Additionally, the ability of ddPCR in detecting bacterial resistance was compared with the AST results. RESULTS Of the 200 blood samples collected from 184 patients, 45 (22.5%) were positive using blood culture, while 113 (56.5%) were positive for bacterial targets using the ddPCR assay. The ddPCR assay outperformed blood culture in pathogen detection rate, mixed infection detection rate, and fungal detection rate. Acinetobacter baumannii and Klebsiella pneumoniae were the most commonly detected pathogens in COVID-19 critically ill patients, followed by Enterococcus and Streptococcus. Compared to blood culture, ddPCR achieved a sensitivity of 75.5%, specificity of 51.0%, PPV of 30.9%, and NPV of 87.8%, respectively. However, there were significant differences in sensitivity among different bacterial species, where Gram-negative bacteria have the highest sensitivity of 90.3%. When evaluated on the ground of clinical diagnosis, the sensitivity, specificity, PPV and NPV of ddPCR were 78.1%, 90.5%, 94.7%, and 65.5%, respectively. In addition, the ddPCR assay detected 23 cases of blaKPC, which shown a better consistent with clinical test results than other detected AMR genes. Compared to blaKPC, there were few other AMR genes detected, indicating that the application of other AMR gene detection in the COVID-19 critically ill patients was limited. CONCLUSION The multiplex ddPCR assay had a significantly higher pathogen detection positivity than the blood culture, which could be an effective diagnostic tool for BSIs in COVID-19 patients and to improve patient outcomes and reduce the burden of sepsis on the healthcare system, though there is room for optimization of the panels used.- Adjusting the targets to include E. faecalis and E. faecium as well as Candida albicans and Candida glabrata could improve the ddPCR' s effectiveness. However, further research is needed to explore the potential of ddPCR in predicting bacterial resistance through AMR gene detection.
Collapse
Affiliation(s)
- Yanbing Li
- Department of Laboratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Kangkang Huang
- Department of Laboratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jun Yin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zheren Tan
- Intensive Care Unit, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Manli Zhou
- Department of Laboratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Jiaoyang Dai
- Department of Laboratory Medicine, Xiangya Medical School, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Bin Yi
- Department of Laboratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Wang N, Li CY, Yao TF, Kang XD, Guo HS. OSW-1 triggers necroptosis in colorectal cancer cells through the RIPK1/RIPK3/MLKL signaling pathway facilitated by the RIPK1-p62/SQSTM1 complex. World J Gastroenterol 2024; 30:2155-2174. [PMID: 38681991 PMCID: PMC11045482 DOI: 10.3748/wjg.v30.i15.2155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Necroptosis has emerged as a novel molecular pathway that can be targeted by chemotherapy agents in the treatment of cancer. OSW-1, which is derived from the bulbs of Ornithogalum saundersiae Baker, exerts a wide range of pharmacological effects. AIM To explore whether OSW-1 can induce necroptosis in colorectal cancer (CRC) cells, thereby expanding its range of clinical applications. METHODS We performed a sequence of functional experiments, including Cell Counting Kit-8 assays and flow cytometry analysis, to assess the inhibitory effect of OSW-1 on CRC cells. We utilized quantitative proteomics, employing tandem mass tag labeling combined with liquid chromatography-tandem mass spectrometry, to analyze changes in protein expression. Subsequent bioinformatic analysis was conducted to elucidate the biological processes associated with the identified proteins. Transmission electron microscopy (TEM) and immunofluorescence studies were also performed to examine the effects of OSW-1 on necroptosis. Finally, western blotting, siRNA experiments, and immunoprecipitation were employed to evaluate protein interactions within CRC cells. RESULTS The results revealed that OSW-1 exerted a strong inhibitory effect on CRC cells, and this effect was accompanied by a necroptosis-like morphology that was observable via TEM. OSW-1 was shown to trigger necroptosis via activation of the RIPK1/RIPK3/MLKL pathway. Furthermore, the accumulation of p62/SQSTM1 was shown to mediate OSW-1-induced necroptosis through its interaction with RIPK1. CONCLUSION We propose that OSW-1 can induce necroptosis through the RIPK1/RIPK3/MLKL signaling pathway, and that this effect is mediated by the RIPK1-p62/SQSTM1 complex, in CRC cells. These results provide a theoretical foundation for the use of OSW-1 in the clinical treatment of CRC.
Collapse
Affiliation(s)
- Nan Wang
- Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
- The Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Chao-Yang Li
- The Institute of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Teng-Fei Yao
- The Institute of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Xiao-Dan Kang
- The Institute of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Hui-Shu Guo
- The Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| |
Collapse
|
9
|
Torresan S, de Scordilli M, Bortolot M, Di Nardo P, Foltran L, Fumagalli A, Guardascione M, Ongaro E, Puglisi F. Liquid biopsy in colorectal cancer: Onward and upward. Crit Rev Oncol Hematol 2024; 194:104242. [PMID: 38128627 DOI: 10.1016/j.critrevonc.2023.104242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide. In recent years, liquid biopsy has emerged as one of the most interesting areas of research in oncology, leading to innovative trials and practical changes in all aspects of CRC management. RNAs and cell free DNA (cfDNA) methylation are emerging as promising biomarkers for early diagnosis. Post-surgical circulating tumour DNA (ctDNA) can aid in evaluating minimal residual disease and personalising adjuvant treatment. In rectal cancer, ctDNA could improve response assessment to neoadjuvant therapy and risk stratification, especially in the era of organ-preservation trials. In the advanced setting, ctDNA analysis offers the opportunity to monitor treatment response and identify driver and resistance mutations more comprehensively than traditional tissue analysis, providing prognostic and predictive information. The aim of this review is to provide a detailed overview of the clinical applications and future perspectives of liquid biopsy in CRC.
Collapse
Affiliation(s)
- Sara Torresan
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Marco de Scordilli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy.
| | - Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Paola Di Nardo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Luisa Foltran
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Arianna Fumagalli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Michela Guardascione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Elena Ongaro
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
10
|
Henriksen TV, Demuth C, Frydendahl A, Nors J, Nesic M, Rasmussen MH, Reinert T, Larsen OH, Jaensch C, Løve US, Andersen PV, Kolbro T, Thorlacius-Ussing O, Monti A, Gögenur M, Kildsig J, Bondeven P, Schlesinger NH, Iversen LH, Gotschalck KA, Andersen CL. Unraveling the potential clinical utility of circulating tumor DNA detection in colorectal cancer-evaluation in a nationwide Danish cohort. Ann Oncol 2024; 35:229-239. [PMID: 37992872 DOI: 10.1016/j.annonc.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Increasingly, circulating tumor DNA (ctDNA) is proposed as a tool for minimal residual disease (MRD) assessment. Digital PCR (dPCR) offers low analysis costs and turnaround times of less than a day, making it ripe for clinical implementation. Here, we used tumor-informed dPCR for ctDNA detection in a large colorectal cancer (CRC) cohort to evaluate the potential for post-operative risk assessment and serial monitoring, and how the metastatic site may impact ctDNA detection. Additionally, we assessed how altering the ctDNA-calling algorithm could customize performance for different clinical settings. PATIENTS AND METHODS Stage II-III CRC patients (N = 851) treated with a curative intent were recruited. Based on whole-exome sequencing on matched tumor and germline DNA, a mutational target was selected for dPCR analysis. Plasma samples (8 ml) were collected within 60 days after operation and-for a patient subset (n = 246)-every 3-4 months for up to 36 months. Single-target dPCR was used for ctDNA detection. RESULTS Both post-operative and serial ctDNA detection were prognostic of recurrence [hazard ratio (HR) = 11.3, 95% confidence interval (CI) 7.8-16.4, P < 0.001; HR = 30.7, 95% CI 20.2-46.7, P < 0.001], with a cumulative ctDNA detection rate of 87% at the end of sample collection in recurrence patients. The ctDNA growth rate was prognostic of survival (HR = 2.6, 95% CI 1.5-4.4, P = 0.001). In recurrence patients, post-operative ctDNA detection was challenging for lung metastases (4/21 detected) and peritoneal metastases (2/10 detected). By modifying the cut-off for calling a sample ctDNA positive, we were able to adjust the sensitivity and specificity of our test for different clinical contexts. CONCLUSIONS The presented results from 851 stage II-III CRC patients demonstrate that our personalized dPCR approach effectively detects MRD after operation and shows promise for serial ctDNA detection for recurrence surveillance. The ability to adjust sensitivity and specificity shows exciting potential to customize the ctDNA caller for specific clinical settings.
Collapse
Affiliation(s)
- T V Henriksen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus; Department of Clinical Medicine, Aarhus University, Aarhus
| | - C Demuth
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus; Department of Clinical Medicine, Aarhus University, Aarhus
| | - A Frydendahl
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus; Department of Clinical Medicine, Aarhus University, Aarhus
| | - J Nors
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus; Department of Clinical Medicine, Aarhus University, Aarhus
| | - M Nesic
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus; Department of Clinical Medicine, Aarhus University, Aarhus
| | - M H Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus; Department of Clinical Medicine, Aarhus University, Aarhus
| | - T Reinert
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus; Department of Clinical Medicine, Aarhus University, Aarhus
| | - O H Larsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus; Department of Clinical Medicine, Aarhus University, Aarhus
| | - C Jaensch
- Department of Surgery, Regional Hospital Gødstrup, Herning
| | - U S Løve
- Department of Surgery, Regional Hospital Viborg, Viborg
| | - P V Andersen
- Department of Surgery, Odense University Hospital, Odense
| | - T Kolbro
- Department of Surgery, Odense University Hospital, Svendborg
| | | | - A Monti
- Department of Surgery, North Denmark Regional Hospital Hjørring, Hjørring
| | - M Gögenur
- Center for Surgical Sciences, Zealand University Hospital, Køge
| | - J Kildsig
- Department of Surgery, Copenhagen University Hospital, Herlev
| | - P Bondeven
- Department of Surgery, Regional Hospital Randers, Randers
| | - N H Schlesinger
- Department of Surgery, Copenhagen University Hospital, Bispebjerg
| | - L H Iversen
- Department of Surgery, Aarhus University Hospital, Aarhus
| | - K A Gotschalck
- Department of Surgery, Regional Hospital Horsens, Horsens, Denmark
| | - C L Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus; Department of Clinical Medicine, Aarhus University, Aarhus.
| |
Collapse
|
11
|
Krell M, Llera B, Brown ZJ. Circulating Tumor DNA and Management of Colorectal Cancer. Cancers (Basel) 2023; 16:21. [PMID: 38201448 PMCID: PMC10778183 DOI: 10.3390/cancers16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Although the incidence of colorectal cancer (CRC) has decreased as a result of increased screening and awareness, it still remains a major cause of cancer-related death. Additionally, early detection of CRC recurrence by conventional means such as CT, endoscopy, and CEA has not translated into an improvement in survival. Liquid biopsies, such as the detection circulating tumor DNA (ctDNA), have been investigated as a biomarker for patients with CRC in terms of prognosis and recurrence, as well as their use to guide therapy. In this manuscript, we provide an overview of ctDNA as well as its utility in providing prognostic information, using it to guide therapy, and monitoring for recurrence in patients with CRC. In addition, we discuss the influence the site of disease may have on the ability to detect ctDNA in patients with metastatic CRC.
Collapse
Affiliation(s)
| | | | - Zachary J. Brown
- Department of Surgery, Division of Surgical Oncology, NYU Langone Health, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (M.K.); (B.L.)
| |
Collapse
|
12
|
Jafri HSMO, Mushtaq S, Baig S, Bhatty A, Siraj S. Comparison of KRAS gene in circulating tumor DNA levels vs histological grading of colorectal cancer patients through liquid biopsy. Saudi J Gastroenterol 2023; 29:371-375. [PMID: 37602638 PMCID: PMC10754382 DOI: 10.4103/sjg.sjg_85_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
Background To determine KRAS gene in circulating tumor DNA in comparison with histological grading through liquid biopsy in colorectal cancer patients. Methods This dual-centered cross-sectional study included 73 diagnosed patients of colorectal cancer at different grading levels [Grade I, well differentiated (n = 7, 9.5%); Grade II, moderately differentiated (n = 14,18.9%); and Grade III, poorly differentiated (n = 52, 70%)]. Blood was collected, and plasma was separated. ctDNA was extracted, using magnetic bead-based technique (MagMAX Cell-Free DNA kit). KRAS gene was quantified through qPCR. STRING database was used to find KRAS interactomes. Results Mean threshold cycle (CT value) of KRAS gene in Grade III samples showed significantly higher (P = 0.001) levels of ctDNA (2.7 ± 1.14) compared with Grade II and Grade I (3.1 ± 0.68, 2.3 ± 0.60), respectively. Grading characterization showed that rectal cancer (n = 22, 42.3%) with Grade III (68.8%) was more prevalent than colon and sigmoid cancer (n = 19, 36.5%, n = 11, 21%, respectively). STRING database showed 10 functional genes interacting with KRAS expressed as gene/proteins. Conclusion Liquid biopsy can be used to detect ctDNA in plasma of CRC patients and enabled to detect the KRAS gene by qPCR. The technique being less invasive and cost-effective is convenient for multiple biopsies in different cancers.
Collapse
Affiliation(s)
| | - Shamim Mushtaq
- Department of Biochemistry, Basic Health Sciences, Ziauddin University, Karachi, Pakistan
| | - Saeeda Baig
- Department of Biochemistry, Basic Health Sciences, Ziauddin University, Karachi, Pakistan
| | - Afreen Bhatty
- Department of Biochemistry, Basic Health Sciences, Ziauddin University, Karachi, Pakistan
| | - Sabra Siraj
- Department of Pharmacology, Basic Health Sciences, Ziauddin University, Karachi, Pakistan
| |
Collapse
|
13
|
Léonce C, Guerriau C, Chalabreysse L, Duruisseaux M, Couraud S, Brevet M, Bringuier PP, Poncet DA. Comparison and Validation of Rapid Molecular Testing Methods for Theranostic Epidermal Growth Factor Receptor Alterations in Lung Cancer: Idylla versus Digital Droplet PCR. Int J Mol Sci 2023; 24:15684. [PMID: 37958668 PMCID: PMC10648419 DOI: 10.3390/ijms242115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Targeting EGFR alterations, particularly the L858R (Exon 21) mutation and Exon 19 deletion (del19), has significantly improved the survival of lung cancer patients. From now on, the issue is to shorten the time to treatment. Here, we challenge two well-known rapid strategies for EGFR testing: the cartridge-based platform Idylla™ (Biocartis) and a digital droplet PCR (ddPCR) approach (ID_Solution). To thoroughly investigate each testing performance, we selected a highly comprehensive cohort of 39 unique del19 (in comparison, the cbioportal contains 40 unique del19), and 9 samples bearing unique polymorphisms in exon 19. Additional L858R (N = 24), L861Q (N = 1), del19 (N = 63), and WT samples (N = 34) were used to determine clear technical and biological cutoffs. A total of 122 DNA samples extracted from formaldehyde-fixed samples was used as input. No false positive results were reported for either of the technologies, as long as careful droplet selection (ddPCR) was ensured for two polymorphisms. ddPCR demonstrated higher sensitivity in detecting unique del19 (92.3%, 36/39) compared to Idylla (67.7%, 21/31). However, considering the prevalence of del19 and L858R in the lung cancer population, the adjusted theranostic values were similar (96.51% and 95.26%, respectively). ddPCR performs better for small specimens and low tumoral content, but in other situations, Idylla is an alternative (especially if a molecular platform is absent).
Collapse
Affiliation(s)
- Camille Léonce
- Department of Pathology, Tumor Molecular Biology Unit, Groupement Hospitalier Est, Hospices Civils de Lyon, 69394 Bron, France; (C.L.); (C.G.); (L.C.); (M.B.); (P.-P.B.)
- University of Lyon, Université Claude Bernard Lyon 1, 69100 Lyon, France; (M.D.); (S.C.)
- Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, 69008 Lyon, France
| | - Clémence Guerriau
- Department of Pathology, Tumor Molecular Biology Unit, Groupement Hospitalier Est, Hospices Civils de Lyon, 69394 Bron, France; (C.L.); (C.G.); (L.C.); (M.B.); (P.-P.B.)
- CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) Laboratory, Team Chromatin Dynamics, Nuclear Domains, Virus, 69008 Lyon, France
| | - Lara Chalabreysse
- Department of Pathology, Tumor Molecular Biology Unit, Groupement Hospitalier Est, Hospices Civils de Lyon, 69394 Bron, France; (C.L.); (C.G.); (L.C.); (M.B.); (P.-P.B.)
- University of Lyon, Université Claude Bernard Lyon 1, 69100 Lyon, France; (M.D.); (S.C.)
| | - Michaël Duruisseaux
- University of Lyon, Université Claude Bernard Lyon 1, 69100 Lyon, France; (M.D.); (S.C.)
- Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, 69008 Lyon, France
- Respiratory Department and Early Phase, Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, 69100 Lyon, France
| | - Sébastien Couraud
- University of Lyon, Université Claude Bernard Lyon 1, 69100 Lyon, France; (M.D.); (S.C.)
- Department of Pulmonology and Thoracic Oncology, Lyon Sud Hospital, 69495 Pierre Bénite, France
| | - Marie Brevet
- Department of Pathology, Tumor Molecular Biology Unit, Groupement Hospitalier Est, Hospices Civils de Lyon, 69394 Bron, France; (C.L.); (C.G.); (L.C.); (M.B.); (P.-P.B.)
- University of Lyon, Université Claude Bernard Lyon 1, 69100 Lyon, France; (M.D.); (S.C.)
| | - Pierre-Paul Bringuier
- Department of Pathology, Tumor Molecular Biology Unit, Groupement Hospitalier Est, Hospices Civils de Lyon, 69394 Bron, France; (C.L.); (C.G.); (L.C.); (M.B.); (P.-P.B.)
- University of Lyon, Université Claude Bernard Lyon 1, 69100 Lyon, France; (M.D.); (S.C.)
| | - Delphine Aude Poncet
- Department of Pathology, Tumor Molecular Biology Unit, Groupement Hospitalier Est, Hospices Civils de Lyon, 69394 Bron, France; (C.L.); (C.G.); (L.C.); (M.B.); (P.-P.B.)
- University of Lyon, Université Claude Bernard Lyon 1, 69100 Lyon, France; (M.D.); (S.C.)
- CNRS UMR 5261, INSERM U 1315, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), Pathophysiology and Genetics of the Neuron and Muscle (PGNM) Laboratory, Team Chromatin Dynamics, Nuclear Domains, Virus, 69008 Lyon, France
| |
Collapse
|
14
|
Napolitano S, Parikh AR, Henry J, Parseghian CM, Willis J, Raghav KP, Morris VK, Johnson B, Kee BK, Dasari AN, Overman MJ, Luthra R, Drusbosky LM, Corcoran RB, Kopetz S, Sun R. Novel Clinical Tool to Estimate Risk of False-Negative KRAS Mutations in Circulating Tumor DNA Testing. JCO Precis Oncol 2023; 7:e2300228. [PMID: 37824798 DOI: 10.1200/po.23.00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/29/2023] [Accepted: 08/03/2023] [Indexed: 10/14/2023] Open
Abstract
PURPOSE In metastatic colorectal cancer, the detection of RAS mutations by circulating tumor DNA (ctDNA) has emerged as a valid and noninvasive alternative approach to determining RAS status. However, some RAS mutations may be missed, that is, false negatives can occur, possibly compromising important treatment decisions. We propose a statistical model to assess the probability of false negatives when performing ctDNA testing for RAS. METHODS Cohorts of 172 subjects with tissue and multipanel ctDNA testing from MD Anderson Cancer Center and 146 subjects from Massachusetts General Hospital were collected. We developed a Bayesian model that uses observed frequencies of reference mutations (the maximum of APC and TP53) to provide information about the probability of KRAS false negatives. The model was alternatively trained on one cohort and tested on the other. All data were collected on Guardant assays. RESULTS The model suggests that negative KRAS findings are believable when the maximum of APC and TP53 frequencies is at least 8% (corresponding posterior probability of false negative <5%). Validation studies demonstrated the ability of our tool to discriminate between false-negative and true-negative subjects. Simulations further confirmed the utility of the proposed approach. CONCLUSION We suggest clinicians use the tool to more precisely quantify KRAS false-negative ctDNA results when at least one of the reference mutations (APC, TP53) is observed; usage may be especially important for subjects with a maximum reference frequency of <8%. Extension of the methodology to predict false negatives of other genes is possible. Additional reference genes can also be considered. Use of personal training data sets is supported. An open-source R Shiny application is available for public use.
Collapse
Affiliation(s)
- Stefania Napolitano
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italy
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Aparna R Parikh
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| | | | - Christine M Parseghian
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason Willis
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kanwal P Raghav
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Benny Johnson
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bryan K Kee
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Arvind N Dasari
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Raja Luthra
- Department of Hematopathology, Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ryan Sun
- Department of Biostatistics, Division of Basic Science, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
15
|
Ponomaryova AA, Rykova EY, Solovyova AI, Tarasova AS, Kostromitsky DN, Dobrodeev AY, Afanasiev SA, Cherdyntseva NV. Genomic and Transcriptomic Research in the Discovery and Application of Colorectal Cancer Circulating Markers. Int J Mol Sci 2023; 24:12407. [PMID: 37569782 PMCID: PMC10419249 DOI: 10.3390/ijms241512407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) is the most frequently occurring malignancy in the world. However, the mortality from CRC can be reduced through early diagnostics, selection of the most effective treatment, observation of the therapy success, and the earliest possible diagnosis of recurrences. A comprehensive analysis of genetic and epigenetic factors contributing to the CRC development is needed to refine diagnostic, therapeutic, and preventive strategies and to ensure appropriate decision making in managing specific CRC cases. The liquid biopsy approach utilizing circulating markers has demonstrated its good performance as a tool to detect the changes in the molecular pathways associated with various cancers. In this review, we attempted to brief the main tendencies in the development of circulating DNA and RNA-based markers in CRC such as cancer-associated DNA mutations, DNA methylation changes, and non-coding RNA expression shifts. Attention is devoted to the existing circulating nucleic acid-based CRC markers, the possibility of their application in clinical practice today, and their future improvement. Approaches to the discovery and verification of new markers are described, and the existing problems and potential solutions for them are highlighted.
Collapse
Affiliation(s)
- Anastasia A. Ponomaryova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Elena Yu. Rykova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Engineering Problems of Ecology, Novosibirsk State Technical University, 630087 Novosibirsk, Russia
| | - Anastasia I. Solovyova
- Department of Biochemistry, Medico-Biological Faculty, Siberian State Medical University, 634050 Tomsk, Russia
| | - Anna S. Tarasova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Dmitry N. Kostromitsky
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Alexey Yu. Dobrodeev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Sergey A. Afanasiev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Nadezhda V. Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
- Faculty of Chemistry, National Research Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
16
|
Ukkola I, Nummela P, Heiskanen A, Holm M, Zafar S, Kero M, Haglund C, Satomaa T, Kytölä S, Ristimäki A. N-Glycomic Profiling of Microsatellite Unstable Colorectal Cancer. Cancers (Basel) 2023; 15:3571. [PMID: 37509233 PMCID: PMC10376987 DOI: 10.3390/cancers15143571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Aberrant glycosylation affects cancer progression and immune evasion. Approximately 15% of colorectal cancers (CRCs) demonstrate microsatellite instability (MSI) and display major differences in outcomes and therapeutic responses, as compared to corresponding microsatellite stable (MSS) tumors. We compared the N-glycan profiles of stage II and IV MSI CRC tumors, further subdivided into BRAFV600E wild-type and mutated subgroups (n = 10 in each subgroup), with each other and with those of paired non-neoplastic mucosal samples using mass spectrometry. Further, the N-glycans of BRAFV600E wild-type stage II MSI tumors were compared to corresponding MSS tumors (n = 9). Multiple differences in N-glycan profiles were identified between the MSI CRCs and control tissues, as well as between the stage II MSI and MSS samples. The MSI CRC tumors showed a lower relative abundance of high-mannose N-glycans than did the control tissues or the MSS CRCs. Among MSI CRC subgroups, acidic N-glycans showed tumor stage and BRAF mutation status-dependent variation. Specifically, the large, sulfated/phosphorylated, and putative terminal N-acetylhexosamine-containing acidic N-glycans differed between the MSI CRC subgroups, showing opposite changes in stages II and IV, when comparing BRAF mutated and wild-type tumors. Our results show that molecular subgroups of CRC exhibit characteristic glycan profiles that may explain certain carcinogenic properties of MSI tumors.
Collapse
Affiliation(s)
- Iiris Ukkola
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
| | - Pirjo Nummela
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
| | | | - Matilda Holm
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Surgery, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Sadia Zafar
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
| | - Mia Kero
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Caj Haglund
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Surgery, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Tero Satomaa
- Glykos Finland Co., Ltd., 00790 Helsinki, Finland
| | - Soili Kytölä
- HUSLAB, Department of Genetics, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Ari Ristimäki
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
17
|
Raei N, Safaralizadeh R, Latifi-Navid S. Clinical application of circulating tumor DNA in metastatic cancers. Expert Rev Mol Diagn 2023; 23:1209-1220. [PMID: 37797209 DOI: 10.1080/14737159.2023.2268008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Advances in genomics have facilitated the application of cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA) in phase II and phase III clinical trials. The various mutations of cfDNA/ctDNA have been correlated with clinical features. Advances in next-generation sequencing (NGS) and digital droplet PCR have paved the way for identifying cfDNA/ctDNA mutations. AREAS COVERED Herein, the biology of ctDNA and its function in clinical application in metastasis, which may lead to improved clinical management of metastatic cancer patients, are comprehensively reviewed. EXPERT OPINION Metastatic cancer ctDNA shows the greatest frequency of mutations in TP53, HER-2, KRAS, and EGFR genes (alteration frequency of > 50%). Therefore, identifying key mutations frequently present in metastatic cancers can help identify patients with pre-malignant tumors before cancer progression. Studying ctDNA can help determine the prognosis and select appropriate treatments for affected patients. Nevertheless, the obstacles to detecting and analyzing ctDNA should be addressed before translation into routine practice. Also, more clinical trials should be conducted to study the significance of ctDNA in commonly diagnosed malignancies. Given the recent advances in personalized anti-neoplastic treatments, further studies are needed to detect a panel of ctDNA and patient-specific ctDNA for various cancers.
Collapse
Affiliation(s)
- Negin Raei
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
18
|
Lin CY, Shen MY, Chen WTL, Yang CA. Evaluation of the Prognostic Value of Low-Frequency KRAS Mutation Detection in Circulating Tumor DNA of Patients with Metastatic Colorectal Cancer. J Pers Med 2023; 13:1051. [PMID: 37511664 PMCID: PMC10381461 DOI: 10.3390/jpm13071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
KRAS mutation in tumor tissue is a well-known predictor of resistance to the treatment of anti-EGFR antibodies in metastatic colorectal cancers (mCRC). However, the prognostic value of low-frequency plasma circulating tumor DNA (ctDNA) KRAS mutation in predicting treatment resistance in pretreated mCRC patients remains controversial. This study retrospectively reviewed the clinical course, including response to anti-EGFR and anti-VEGF therapies, and changes in serum tumor marker levels along with image studies in mCRC patients with <1.5% KRAS mutations detected in plasma ctDNA by next-generation sequencing (NGS) at a single center in Taiwan. We identified six pretreated mCRC patients with low-frequency KRAS G12V/G12D/G12S/G13D mutations (variant allele frequency 0.26~1.23%) in plasma ctDNA. Co-occurring low-frequency ctDNA mutations in APC, TP53, MAP2K1, KEAP1, or CTNNB1 were also detected. Although all six patients had treatment adjustments within one month after the ctDNA genetic test, image-evident tumor progression was noted in all patients within a median of 4 months afterwards. Re-challenge therapy with a combination of anti-EGFR, anti-VEGF, and FOLFIRI chemotherapy was found to be ineffective in a patient with 0.38% KRAS G12D mutation in baseline ctDNA. Our study suggests that the detection of low-frequency KRAS mutations in ctDNA could be used as a predictor of treatment response in mCRC patients.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Integrated Precision Health and Immunodiagnostic Center, Department of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
| | - Ming-Yin Shen
- Department of Colorectal Surgery, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Chin-An Yang
- Integrated Precision Health and Immunodiagnostic Center, Department of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
19
|
Abbes S, Baldi S, Sellami H, Amedei A, Keskes L. Molecular methods for colorectal cancer screening: Progress with next-generation sequencing evolution. World J Gastrointest Oncol 2023; 15:425-442. [PMID: 37009313 PMCID: PMC10052664 DOI: 10.4251/wjgo.v15.i3.425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Currently, colorectal cancer (CRC) represents the third most common malignancy and the second most deadly cancer worldwide, with a higher incidence in developed countries. Like other solid tumors, CRC is a heterogeneous genomic disease in which various alterations, such as point mutations, genomic rearrangements, gene fusions or chromosomal copy number alterations, can contribute to the disease development. However, because of its orderly natural history, easily accessible onset location and high lifetime incidence, CRC is ideally suited for preventive intervention, but the many screening efforts of the last decades have been compromised by performance limitations and low penetrance of the standard screening tools. The advent of next-generation sequencing (NGS) has both facilitated the identification of previously unrecognized CRC features such as its relationship with gut microbial pathogens and revolutionized the speed and throughput of cataloguing CRC-related genomic alterations. Hence, in this review, we summarized the several diagnostic tools used for CRC screening in the past and the present, focusing on recent NGS approaches and their revolutionary role in the identification of novel genomic CRC characteristics, the advancement of understanding the CRC carcinogenesis and the screening of clinically actionable targets for personalized medicine.
Collapse
Affiliation(s)
- Salma Abbes
- Laboratory of Parasitic and Fungal Molecular Biology, University of Sfax, Sfax 3029, Tunisia
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Hayet Sellami
- Drosophila Research Unit-Parasitology and Mycologie Laboratory, University of Sfax, Sfax 3029, Tunisia
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
- SOD of Interdisciplinary Internal Medicine, Careggi University Hospital, Florence 50134, Italy
| | - Leila Keskes
- Laboratory of Human Molecular Genetic, University of Sfax, Sfax 3029, Tunisia
| |
Collapse
|
20
|
Akagündüz B, Guven DC, Ozer M, Okten IN, Atag E, Unek İT, Tatli AM, Karaoglu A. Tailoring adjuvant chemotherapy by circulating tumor DNA (ctDNA) in older patients with stage II-III colon cancer. J Geriatr Oncol 2023; 14:101367. [PMID: 36038467 DOI: 10.1016/j.jgo.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Baran Akagündüz
- Department of Medical Oncology, Erzincan Binali Yıldrıım University Medical School, Erzincan, Turkey.
| | - Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Medical School, Istanbul, Turkey
| | - Muhammet Ozer
- Department of Internal Medicine, Capital Health Regional Medical Center, Trenton, NJ, USA.
| | - Ilker Nihat Okten
- Department of Medical Oncology, Gaziantep Ersin Arslan State Hospital, Gaziantep, Turkey
| | - Elif Atag
- Department of Medical Oncology, Haydarpaşa Numune Research Hospital, Istanbul, Turkey
| | - İlkay Tugba Unek
- Department of Medical Oncology, Dokuzeylül University Medical School, 34000 Istanbul, Turkey
| | - Ali Murat Tatli
- Department of Medical Oncology, Akdeniz University Medical School, 07010 Antalya, Turkey
| | - Aziz Karaoglu
- Department of Medical Oncology, Dokuzeylül University Medical School, 34000 Istanbul, Turkey
| |
Collapse
|
21
|
Cherri S, Melocchi L, Gandolfi L, Rossi G, Zaniboni A. Integrated Decision-Making in the Treatment of Colon-Rectal Cancer: The Case of KRAS-Mutated Tumors. Life (Basel) 2023; 13:395. [PMID: 36836752 PMCID: PMC9967356 DOI: 10.3390/life13020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
In recent years, precision medicine has taken an increasing place in various branches of medical oncology, including colorectal cancer. Among the potentially relevant mutations for this cancer is the KRAS mutation, initially defined as "untargetable"; today, we see the birth of new molecules that target one of the variants of the KRAS mutation, KRAS G12C, having a significant impact on the therapeutic options for other malignancies, such as metastatic lung cancer. This fundamental step forward has stimulated scientific research on other potential targets of KRAS, both indirect and direct, and combination treatments aiming to overcome the mechanisms of resistance to these drugs that decrease in efficacy in colorectal cancer. What was once a negative predictive marker of response to anti-EGFR drugs today has become a potential target for targeted treatments. In turn, the prognostic role of the mutation has become extremely interesting, making it a potentially useful element in therapeutic decision-making, not only regarding oncological treatments but also in a more complex and complete manner within a global vision of the patient, involving other figures on the multidisciplinary team, such as surgeons, radiotherapists, and interventional radiologists.
Collapse
Affiliation(s)
- Sara Cherri
- Department of Clinical Oncology, Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Laura Melocchi
- Department of Anatomical Pathology, Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Laura Gandolfi
- Department of Anatomical Pathology, Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Giulio Rossi
- Department of Anatomical Pathology, Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Alberto Zaniboni
- Department of Clinical Oncology, Fondazione Poliambulanza, 25124 Brescia, Italy
| |
Collapse
|
22
|
Jiang B, Xie D, Wang S, Li X, Wu G. Advances in early detection methods for solid tumors. Front Genet 2023; 14:1091223. [PMID: 36911396 PMCID: PMC9998680 DOI: 10.3389/fgene.2023.1091223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
During the last decade, non-invasive methods such as liquid biopsy have slowly replaced traditional imaging and invasive pathological methods used to diagnose and monitor cancer. Improvements in the available detection methods have enabled the early screening and diagnosis of solid tumors. In addition, advances in early detection methods have made the continuous monitoring of tumor progression using repeat sampling possible. Previously, the focus of liquid biopsy techniques included the following: 1) the isolation of circulating tumor cells, circulating tumor DNA, and extracellular tumor vesicles from solid tumor cells in the patient's blood; in addition to 2) analyzing genomic and proteomic data contained within the isolates. Recently, there has been a rapid devolvement in the techniques used to isolate and analyze molecular markers. This rapid evolvement in detection techniques improves their accuracy, especially when few samples are available. In addition, there is a tremendous expansion in the acquisition of samples and targets for testing; solid tumors can be detected from blood and other body fluids. Test objects have also expanded from samples taken directly from cancer to include indirect objects affected in cancer development. Liquid biopsy technology has limitations. Even so, this detection technique is the key to a new phase of oncogenetics. This review aims to provide an overview of the current advances in liquid biopsy marker selection, isolation, and detection methods for solid tumors. The advantages and disadvantages of liquid biopsy technology will also be explored.
Collapse
Affiliation(s)
- Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiunan Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
23
|
Yang W, Lu S, Peng L, Zhang Z, Zhang Y, Guo D, Ma F, Hua Y, Chen X. Integrated analysis of necroptosis-related genes for evaluating immune infiltration and colon cancer prognosis. Front Immunol 2022; 13:1085038. [PMID: 36618366 PMCID: PMC9814966 DOI: 10.3389/fimmu.2022.1085038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background Colon cancer (CC) is the second most common gastrointestinal malignancy. About one in five patients have already developed distant metastases at the time of initial diagnosis, and up to half of patients develop distant metastases from initial local disease, which leads to a poor prognosis for CC patients. Necroptosis plays a key role in promoting tumor growth in different tumors. The purpose of this study was to construct a prognostic model composed of necroptosis-related genes (NRGs) in CC. Methods The Cancer Genome Atlas was used to obtain information on clinical features and gene expression. Gene expression differential analysis, weighted gene co-expression network analysis, univariate Cox regression analysis and the least absolute shrinkage and selection operator regression algorithm were utilized to identify prognostic NRGs. Thereafter, a risk scoring model was established based on the NRGs. Biological processes and pathways were identified by gene ontology and gene set enrichment analysis (GSEA). Further, protein-protein interaction and ceRNA networks were constructed based on mRNA-miRNA-lncRNA. Finally, the effect of necroptosis related risk score on different degrees of immune cell infiltration was evaluated. Results CALB1, CHST13, and SLC4A4 were identified as NRGs of prognostic significance and were used to establish a risk scoring model. The time-dependent receiver operating characteristic curve analysis revealed that the model could well predict the 1-, 3-, and 5-year overall survival (OS). Further, GSEA suggested that the NRGs may participate in biological processes, such as the WNT pathway and JAK-Stat pathway. Eight key hub genes were identified, and a ceRNA regulatory network, which comprised 1 lncRNA, 5 miRNAs and 3 mRNAs, was constructed. Immune infiltration analysis revealed that the low-risk group had significantly higher immune-related scores than the high-risk group. A nomogram of the model was constructed based on the risk score, necroptosis, and the clinicopathological features (age and TNM stage). The calibration curves implied that the model was effective at predicting the 1-, 3-, and 5-year OS of CC. Conclusion Our NRG-based prognostic model can assist in the evaluation of CC prognosis and the identification of therapeutic targets for CC.
Collapse
Affiliation(s)
- Wei Yang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shuaibing Lu
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Liangqun Peng
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhandong Zhang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yonglei Zhang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Dandan Guo
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Ma
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yawei Hua
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaobing Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China,*Correspondence: Xiaobing Chen,
| |
Collapse
|
24
|
Fernandes MC, Horvat N. Editorial for "A Deep Learning Model Based on MRI and Clinical Factors Facilitates Noninvasive Prediction of KRAS Mutation in Rectal Cancer". J Magn Reson Imaging 2022; 56:1669-1670. [PMID: 35575434 DOI: 10.1002/jmri.28233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Maria Clara Fernandes
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
25
|
Mattila KE, Mäkelä S, Kytölä S, Andersson E, Vihinen P, Ramadan S, Skyttä T, Tiainen L, Vuoristo MS, Tyynelä-Korhonen K, Koivunen J, Kohtamäki L, Aittomäki K, Hernberg M. Circulating tumor DNA is a prognostic biomarker in metastatic melanoma patients treated with chemoimmunotherapy and BRAF inhibitor. Acta Oncol 2022; 61:1263-1267. [DOI: 10.1080/0284186x.2022.2137693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Kalle E. Mattila
- Department of Oncology and Radiotherapy, Fican West Cancer Centre, University of Turku and Turku University Hospital, and InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Siru Mäkelä
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Soili Kytölä
- Department of Genetics, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Emma Andersson
- Department of Genetics, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Pia Vihinen
- Department of Oncology and Radiotherapy and Fican West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Susan Ramadan
- Department of Oncology and Radiotherapy and Fican West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Tanja Skyttä
- Department of Oncology and Radiotherapy, Tays Cancer Centre, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leena Tiainen
- Department of Oncology and Radiotherapy, Tays Cancer Centre, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Meri-Sisko Vuoristo
- Department of Oncology and Radiotherapy, Tays Cancer Centre, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Jussi Koivunen
- Department of Oncology and Radiotherapy, University of Oulu and Oulu University Hospital, MRC Oulu, Oulu, Finland
| | - Laura Kohtamäki
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Micaela Hernberg
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Read Count Patterns and Detection of Cancerous Copy Number Alterations in Plasma Cell-Free DNA Whole Exome Sequencing Data for Advanced Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms232112932. [DOI: 10.3390/ijms232112932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
Plasma cell-free DNA (cfDNA) sequencing data have been widely studied for early diagnosis and treatment response or recurrence monitoring of cancers because of the non-invasive benefits. In cancer studies, whole exome sequencing (WES) is mostly used for discovering single nucleotide variants (SNVs), but it also has the potential to detect copy number alterations (CNAs) that are mostly discovered by whole genome sequencing or microarray. In clinical settings where the quantity of the acquired blood from the patients is limited and where various sequencing experiments are not possible, providing various types of mutation information such as CNAs and SNVs using only WES will be helpful in the treatment decision. Here, we questioned whether the plasma cfDNA WES data for patients with advanced non-small cell lung cancer (NSCLC) could be exploited for CNA detection. When the read count (RC) signals of the WES data were investigated, a similar fluctuation pattern was observed among the signals of different samples, and it can be a major challenge hindering CNA detection. When these RC patterns among cfDNA were suppressed by the method we proposed, the cancerous CNAs were more distinguishable in some samples with higher cfDNA quantity. Although the potential to detect CNAs using the plasma cfDNA WES data for NSCLC patients was studied here, further studies with other cancer types, with more samples, and with more sophisticated techniques for bias correction are required to confirm our observation. In conclusion, the detection performance for cancerous CNAs can be improved by controlling RC bias, but it depends on the quantity of cfDNA in plasma.
Collapse
|
27
|
Suzuki T, Masugi Y, Inoue Y, Hamada T, Tanaka M, Takamatsu M, Arita J, Kato T, Kawaguchi Y, Kunita A, Nakai Y, Nakano Y, Ono Y, Sasahira N, Takeda T, Tateishi K, Uemura S, Koike K, Ushiku T, Takeuchi K, Sakamoto M, Hasegawa K, Kitago M, Takahashi Y, Fujishiro M. KRAS variant allele frequency, but not mutation positivity, associates with survival of patients with pancreatic cancer. Cancer Sci 2022; 113:3097-3109. [PMID: 35567350 PMCID: PMC9459293 DOI: 10.1111/cas.15398] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 11/27/2022] Open
Abstract
KRAS mutation is a major driver of pancreatic carcinogenesis and will likely be a therapeutic target. Due to lack of sensitive assays for clinical samples of pancreatic cancer with low cellularity, KRAS mutations and their prognostic association have not been fully examined in large populations. In a multi-institutional cohort of 1162 pancreatic cancer patients with formalin-fixed paraffin-embedded tumor samples, we undertook droplet digital PCR (ddPCR) for KRAS codons 12/13/61. We examined detection rates of KRAS mutations by clinicopathological parameters and survival associations of KRAS mutation status. Multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) for disease-free survival (DFS) and overall survival (OS) were computed using the Cox regression model with adjustment for potential confounders. KRAS mutations were detected in 1139 (98%) patients. The detection rate did not differ by age of tissue blocks, tumor cellularity, or receipt of neoadjuvant chemotherapy. KRAS mutations were not associated with DFS or OS (multivariable HR comparing KRAS-mutant to KRAS-wild-type tumors, 1.04 [95% CI, 0.62-1.75] and 1.05 [95% CI, 0.60-1.84], respectively). Among KRAS-mutant tumors, KRAS variant allele frequency (VAF) was inversely associated with DFS and OS with HRs per 20% VAF increase of 1.27 (95% CI, 1.13-1.42; ptrend <0.001) and 1.31 (95% CI, 1.16-1.48; ptrend <0.001), respectively. In summary, ddPCR detected KRAS mutations in clinical specimens of pancreatic cancer with high sensitivity irrespective of parameters potentially affecting mutation detections. KRAS VAF, but not mutation positivity, was associated with survival of pancreatic cancer patients.
Collapse
Affiliation(s)
- Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yohei Masugi
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Yosuke Inoue
- Department of Hepatobiliary and Pancreatic SurgeryThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Hepato‐Biliary‐Pancreatic MedicineThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Mariko Tanaka
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Manabu Takamatsu
- Division of PathologyThe Cancer Institute of Japanese Foundation for Cancer ResearchTokyoJapan
- Department of PathologyThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Junichi Arita
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Tomotaka Kato
- Department of Hepatobiliary and Pancreatic SurgeryThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Yoshikuni Kawaguchi
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Akiko Kunita
- Next‐Generation Precision Medicine Development Laboratory, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Endoscopy and Endoscopic SurgeryThe University of Tokyo HospitalTokyoJapan
| | - Yutaka Nakano
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yoshihiro Ono
- Department of Hepatobiliary and Pancreatic SurgeryThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Naoki Sasahira
- Department of Hepato‐Biliary‐Pancreatic MedicineThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tsuyoshi Takeda
- Department of Hepato‐Biliary‐Pancreatic MedicineThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Sho Uemura
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kengo Takeuchi
- Division of PathologyThe Cancer Institute of Japanese Foundation for Cancer ResearchTokyoJapan
- Department of PathologyThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Michiie Sakamoto
- Department of PathologyKeio University School of MedicineTokyoJapan
| | - Kiyoshi Hasegawa
- Hepato‐Biliary‐Pancreatic Surgery Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Minoru Kitago
- Department of SurgeryKeio University School of MedicineTokyoJapan
| | - Yu Takahashi
- Department of Hepatobiliary and Pancreatic SurgeryThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | | |
Collapse
|
28
|
Hot-Spot-Specific Probe (HSSP) for Rapid and Accurate Detection of KRAS Mutations in Colorectal Cancer. BIOSENSORS 2022; 12:bios12080597. [PMID: 36004993 PMCID: PMC9406089 DOI: 10.3390/bios12080597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
Abstract
Detection of oncogene mutations has significance for early diagnosis, customized treatment, treatment progression, and drug resistance monitoring. Here, we introduce a rapid, sensitive, and specific mutation detection assay based on the hot-spot-specific probe (HSSP), with improved clinical utility compared to conventional technologies. We designed HSSP to recognize KRAS mutations in the DNA of colorectal cancer tissues (HSSP-G12D (GGT→GAT) and HSSP-G13D (GGC→GAC)) by integration with real-time PCR. During the PCR analysis, HSSP attaches to the target mutation sequence for interference with the amplification. Then, we determine the mutation detection efficiency by calculating the difference in the cycle threshold (Ct) values between HSSP-G12D and HSSP-G13D. The limit of detection to detect KRAS mutations (G12D and G13D) was 5–10% of the mutant allele in wild-type populations. This is superior to the conventional methods (≥30% mutant allele). In addition, this technology takes a short time (less than 1.5 h), and the cost of one sample is as low as USD 2. We verified clinical utility using 69 tissue samples from colorectal cancer patients. The clinical sensitivity and specificity of the HSSP assay were higher (84% for G12D and 92% for G13D) compared to the direct sequencing assay (80%). Therefore, HSSP, in combination with real-time PCR, provides a rapid, highly sensitive, specific, and low-cost assay for detecting cancer-related mutations. Compared to the gold standard methods such as NGS, this technique shows the possibility of the field application of rapid mutation detection and may be useful in a variety of applications, such as customized treatment and cancer monitoring.
Collapse
|
29
|
Nauheim D, Moskal D, Renslo B, Chadwick M, Jiang W, Yeo CJ, Nevler A, Bowne W, Lavu H. KRAS mutation allele frequency threshold alters prognosis in right-sided resected pancreatic cancer. J Surg Oncol 2022; 126:314-321. [PMID: 35333412 DOI: 10.1002/jso.26860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/18/2022] [Accepted: 03/05/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Next-generation sequencing (NGS) provides information on genetic mutations and mutant allele frequency in tumor specimens. We investigated the prognostic significance of KRAS mutant allele frequency in patients with right-sided pancreatic ductal adenocarcinoma (PDAC) treated with surgical resection. METHODS A retrospective study reviewed patients who underwent surgical resection for PDAC and analyzed tumors with an in-house mutational panel. Microdissected samples were studied using an NGS-based assay to detect over 200 hotspot mutations in 42 genes (Pan42) commonly involved in PDAC. RESULTS A total of 144 PDAC right-sided surgical patients with a Pan42 panel were evaluated between 2015 and 2020; 121 patients (84%) harbored a KRAS mutation. Detected mutant allele frequencies were categorized as less than 20% (low mKRAS, n = 92) or greater than or equal to 20% (high mKRAS, n = 29). High mKRAS (KRAS ≥ 20%) patients were noted to have shorter disease-free survival after surgery (11.5 ± 2.1 vs. 19.5 ± 3.5 months, p = 0.03), more advanced tumor stage (p = 0.02), larger tumors (3.6 vs. 2.7 cm, p = 0.001), greater tumor cellularity (26% vs. 18%, p = 0.001), and higher rate of distant recurrence (p = 0.03) than low mKRAS patients. CONCLUSION This study demonstrates the importance of KRAS mutant allele frequency on pathological characteristics and prognosis in right-sided PDAC treated with surgery.
Collapse
Affiliation(s)
- David Nauheim
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - David Moskal
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bryan Renslo
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Matthew Chadwick
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Wei Jiang
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Charles J Yeo
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Avinoam Nevler
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Wilbur Bowne
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Harish Lavu
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Callesen LB, Hamfjord J, Boysen AK, Pallisgaard N, Guren TK, Kure EH, Spindler KLG. Circulating tumour DNA and its clinical utility in predicting treatment response or survival in patients with metastatic colorectal cancer: a systematic review and meta-analysis. Br J Cancer 2022; 127:500-513. [PMID: 35440666 PMCID: PMC9345951 DOI: 10.1038/s41416-022-01816-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We investigate the current knowledge on circulating tumour DNA (ctDNA) and its clinical utility in predicting outcomes in patients with metastatic colorectal cancer (mCRC). METHODS PubMed, Embase, Cochrane Database of Systematic Reviews and Cochrane Central Register of Controlled Trials were searched. Last search 16/12/2020. We included studies on patients with mCRC reporting the predictive or prognostic value of ctDNA. We performed separate random-effects meta-analyses to investigate if baseline ctDNA and early changes in ctDNA levels during treatment were associated with survival. The risk of bias was assessed according to the Quality in Prognosis Studies tool. RESULTS Seventy-one studies were included with 6930 patients. Twenty-four studies were included in meta-analyses. High baseline ctDNA level was associated with short progression-free survival (PFS) (HR = 2.2; 95% CI 1.8-2.8; n = 509) and overall survival (OS) (HR = 2.4; 95% CI 1.9-3.1; n = 1336). A small or no early decrease in ctDNA levels during treatment was associated with short PFS (HR = 3.0; 95% CI 2.2-4.2; n = 479) and OS (HR = 2.8; 95% CI 2.1-3.9; n = 583). Results on clonal evolution and lead-time were inconsistent. A majority of included studies (n = 50/71) had high risk of bias in at least one domain. CONCLUSIONS Plasma ctDNA is a strong prognostic biomarker in mCRC. However, true clinical utility is lacking.
Collapse
Affiliation(s)
- Louise B Callesen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Julian Hamfjord
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anders K Boysen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Pallisgaard
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Tormod K Guren
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Elin H Kure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Campus Bø, Bø, Norway
| | - Karen-Lise G Spindler
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
31
|
Henriksen TV, Reinert T, Rasmussen MH, Demuth C, Løve US, Madsen AH, Gotschalck KA, Iversen LH, Andersen CL. Comparing single-target and multi-target approaches for postoperative circulating tumor DNA detection in stage II-III colorectal cancer patients. Mol Oncol 2022; 16:3654-3665. [PMID: 35895438 PMCID: PMC9580876 DOI: 10.1002/1878-0261.13294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Circulating tumour DNA (ctDNA) detection for postoperative risk stratification in cancer patients has great clinical potential. However, low ctDNA abundances complicates detection. Multitarget (MT) detection strategies have been developed to increase sensitivity. Yet, empirical evidence supporting performance gains of MT vs. single‐target (ST) strategies in a postoperative setting is limited. We compared ctDNA detection in 379 paired plasma samples from 112 stage II–III colorectal cancer patients by ST digital PCR and MT sequencing of 16 patient‐specific variants. The strategies exhibited good concordance (90%, Cohen's Kappa 0.79), with highly correlated ctDNA quantifications (Pearson r = 0.985). A difference was observed in ctDNA detection preoperatively (ST 72/92, MT 88/92). However, no difference was observed immediately after surgery in recurrence (ST 11/22, MT 10/22) or nonrecurrence (both 2/34) patients. In serial samples, detection was similar within recurrence (ST 13/16, MT 14/16) and nonrecurrence (ST 3/49, MT 1/49) patients. Both approaches yielded similar lead times to standard‐of‐care radiology (ST 4.0 months, MT 4.1 months). Our findings do not support significant performance gains of the MT strategy over the ST strategy for postoperative ctDNA detection.
Collapse
Affiliation(s)
- Tenna Vesterman Henriksen
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, DK-8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, DK-8200, Aarhus N, Denmark
| | - Thomas Reinert
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, DK-8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, DK-8200, Aarhus N, Denmark
| | - Mads Heilskov Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, DK-8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, DK-8200, Aarhus N, Denmark
| | - Christina Demuth
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, DK-8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, DK-8200, Aarhus N, Denmark
| | - Uffe Schou Løve
- Department of Surgery, Regional Hospital Viborg, Banevejen 7C, DK-8800, Viborg, Denmark
| | - Anders Husted Madsen
- Department of Surgery, Regional Hospital Herning, Hospitalsparken 15, DK-7400, Herning, Denmark
| | | | - Lene Hjerrild Iversen
- Department of Surgery, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 35, DK-8200, Aarhus N, Denmark
| | - Claus Lindbjerg Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, DK-8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, DK-8200, Aarhus N, Denmark
| |
Collapse
|
32
|
Yu IS, Aubin F, Goodwin R, Loree JM, Mather C, Sheffield BS, Snow S, Gill S. Tumor Biomarker Testing for Metastatic Colorectal Cancer: a Canadian Consensus Practice Guideline. Ther Adv Med Oncol 2022; 14:17588359221111705. [PMID: 35898967 PMCID: PMC9310231 DOI: 10.1177/17588359221111705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
The systemic therapy management of metastatic colorectal cancer (mCRC) has evolved from primarily cytotoxic chemotherapies to now include targeted agents given alone or in combination with chemotherapy, and immune checkpoint inhibitors. A better understanding of the pathogenesis and molecular drivers of colorectal cancer not only aided the development of novel targeted therapies but led to the discovery of tumor mutations which act as predictive biomarkers for therapeutic response. Mutational status of the KRAS gene became the first genomic biomarker to be established as part of standard of care molecular testing, where KRAS mutations within exons 2, 3, and 4 predict a lack of response to anti- epidermal growth factor receptor therapies. Since then, several other biomarkers have become relevant to inform mCRC treatment; however, there are no published Canadian guidelines which reflect the current standards for biomarker testing. This guideline was developed by a pan-Canadian advisory group to provide contemporary, evidence-based recommendations on the minimum acceptable standards for biomarker testing in mCRC, and to describe additional biomarkers for consideration.
Collapse
Affiliation(s)
- Irene S. Yu
- Department of Medical Oncology, BC Cancer
Surrey, Surrey, BC, Canada
| | - Francine Aubin
- Division of Hematology and Oncology, Department
of Medicine, Centre Hospitalier de l’Université de Montréal, Montreal, QC,
Canada
| | - Rachel Goodwin
- Division of Medical Oncology, Department of
Medicine, Ottawa Hospital Cancer Centre, Ottawa, ON, Canada
| | - Jonathan M. Loree
- Department of Medical Oncology, BC Cancer
Agency - Vancouver Centre, Vancouver, BC, Canada
| | - Cheryl Mather
- Department of Laboratory Medicine and
Pathology, University of Alberta, Edmonton, AB, Canada
| | - Brandon S. Sheffield
- Division of Advanced Diagnostics, William Osler
Health System, Brampton, ON, Canada
| | - Stephanie Snow
- Department of Medicine, Queen Elizabeth II
Health Sciences Centre, Halifax, NS, Canada
| | - Sharlene Gill
- Department of Medical Oncology, BC Cancer
Agency – Vancouver Centre, 600 W 10th Ave, Vancouver, BC, V5Z 4E6,
Canada
| |
Collapse
|
33
|
Kirchweger P, Wundsam HV, Rumpold H. Circulating tumor DNA for diagnosis, prognosis and treatment of gastrointestinal malignancies. World J Clin Oncol 2022; 13:473-484. [PMID: 35949436 PMCID: PMC9244970 DOI: 10.5306/wjco.v13.i6.473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/06/2021] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Minimally invasive detection of circulating tumor DNA (ctDNA) in peripheral blood or other body fluids of patients with gastrointestinal malignancies via liquid biopsy has emerged as a promising biomarker. This is urgently needed, as conventional imaging and plasma protein-derived biomarkers lack sensitivity and specificity in prognosis, early detection of relapse or treatment monitoring. This review summarizes the potential role of liquid biopsy in diagnosis, prognosis and treatment monitoring of gastrointestinal malignancies, including upper gastrointestinal, liver, bile duct, pancreatic and colorectal cancer. CtDNA can now be part of the clinical routine as a promising, highly sensitive and specific biomarker with a broad range of applicability. Liquid-biopsy based postoperative relapse prediction could lead to improved survival by intensification of adjuvant treatment in patients identified to be at risk of early recurrence. Moreover, ctDNA allows monitoring of antineoplastic treatment success, with identification of potentially developed resistance or therapeutic targets during the course of treatment. It may also assist in early change of chemotherapy in metastatic gastrointestinal malignancies prior to imaging findings of relapse. Nevertheless, clinical utility is dependent on the tumor’s entity and burden.
Collapse
Affiliation(s)
- Patrick Kirchweger
- Department of Surgery, Ordensklinikum Linz, Linz 4010, Austria
- Gastrointestinal Cancer Center, Ordensklinikum Linz, Linz 4010, Austria
- Medical Faculty, JKU University Linz, Linz 4040, Austria
| | | | - Holger Rumpold
- Gastrointestinal Cancer Center, Ordensklinikum Linz, Linz 4010, Austria
- Medical Faculty, JKU University Linz, Linz 4040, Austria
| |
Collapse
|
34
|
Wang Y, Li Y, Liang X, Xin S, Yang L, Cao P, Jiang M, Xin Y, Zhang S, Yang Y, Lu J. The implications of cell-free DNAs derived from tumor viruses as biomarkers of associated cancers. J Med Virol 2022; 94:4677-4688. [PMID: 35652186 DOI: 10.1002/jmv.27903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
Cancer is still ranked as a leading cause of death according to estimates from the World Health Organization (WHO) and the strong link between tumor viruses and human cancers have been proved for almost six decades. Cell-free DNA (cfDNA) has drawn enormous attention for its dynamic, instant, and noninvasive advantages as one popular type of cancer biomarker. cfDNAs are mainly released from apoptotic cells and exosomes released from cancer cells, including those infected with viruses. Although cfDNAs are present at low concentrations in peripheral blood, they can reflect tumor load with high sensitivity. Considering the relevance of the tumor viruses to the associated cancers, cfDNAs derived from viruses may serve as good biomarkers for the early screening, diagnosis, and treatment monitoring. In this review, we summarize the methods and newly developed analytic techniques for the detection of cfDNAs from different body fluids, and discuss the implications of cfDNAs derived from different tumor viruses in the detection and treatment monitoring of virus-associated cancers. A better understanding of cfDNAs derived from tumor viruses may help formulate novel anti-tumoral strategies to decrease the burden of cancers that attributed to viruses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yiwei Wang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Xinyu Liang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Pengfei Cao
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China
| | - Mingjuan Jiang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yujie Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Senmiao Zhang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yang Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
35
|
Makutani Y, Sakai K, Yamada M, Wada T, Chikugo T, Satou T, Iwasa Y, Yamamoto H, de Velasco MA, Nishio K, Kawamura J. Performance of Idylla ™ RAS-BRAF mutation test for formalin-fixed paraffin-embedded tissues of colorectal cancer. Int J Clin Oncol 2022; 27:1180-1187. [PMID: 35474548 PMCID: PMC9209352 DOI: 10.1007/s10147-022-02167-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/03/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The Biocartis Idylla™ platform is a fully automated, real-time PCR-based diagnostic system. The Idylla™ KRAS and NRAS-BRAF Mutation Tests have been developed for the qualitative detection of mutations in KRAS, NRAS and BRAF genes, facilitating the genomic profiling of patients with colorectal cancer. The aim of the present study was to evaluate clinical performances of these tests in Japan. METHODS The RAS and BRAF mutation statuses of 253 formalin-fixed paraffin-embedded (FFPE) colorectal cancer tissues were analyzed using the Investigational Use Only Idylla™ KRAS Mutation Test and the Idylla™ NRAS-BRAF Mutation Test and an in vitro diagnostics (IVD) kit (MEBGEN RASKET™-B kit). RESULTS The success rate for obtaining a valid mutational data without retest of the Idylla tests was 97.6% (247/253): 111 KRAS mutations (43.8%), 9 NRAS mutations (3.6%), and 36 BRAF V600E mutations (14.2%) were detected using the Idylla tests. Compared with the MEBGEN RASKET-B results, the positive concordance rate was 97.4%, the negative concordance rate was 95.7%, and the overall concordance rate was 95.3% (κ = 0.919, 95% CI 0.871-0.967). The average turnaround time to Idylla™ KRAS and NRAS-BRAF Mutation Test was 5.6 working days (range: 3-11 days). CONCLUSION This result demonstrates a high concordance between the Idylla™ KRAS and NRAS-BRAF Mutation Tests and an existing IVD kit. In this manner, the Idylla™ mutation tests were validated for the detection of clinically significant KRAS, NRAS, and BRAF mutations in FFPE samples from colorectal cancer patients.
Collapse
Affiliation(s)
- Yusuke Makutani
- Department of Surgery, Faculty of Medicine, Kindai University, Osaka-sayama, Osaka, 589-8511, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Masahiro Yamada
- Department of Surgery, Shiga General Hospital, Moriyama, Shiga, 524-8524, Japan
| | - Toshiaki Wada
- Department of Surgery, Faculty of Medicine, Kindai University, Osaka-sayama, Osaka, 589-8511, Japan
| | - Takaaki Chikugo
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Takao Satou
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Yoko Iwasa
- Department of Diagnostic Pathology, Shiga General Hospital, Moriyama, Shiga, 524-8524, Japan
| | - Hidekazu Yamamoto
- Department of Surgery, Shiga General Hospital, Moriyama, Shiga, 524-8524, Japan
- Department of Diagnostic Pathology, Shiga General Hospital, Moriyama, Shiga, 524-8524, Japan
| | - Marco A de Velasco
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Junichiro Kawamura
- Department of Surgery, Faculty of Medicine, Kindai University, Osaka-sayama, Osaka, 589-8511, Japan
| |
Collapse
|
36
|
Ukkola I, Nummela P, Kero M, Tammio H, Tuominen J, Kairisto V, Kallajoki M, Haglund C, Peltomäki P, Kytölä S, Ristimäki A. Gene fusions and oncogenic mutations in MLH1 deficient and BRAFV600E wild-type colorectal cancers. Virchows Arch 2022; 480:807-817. [PMID: 35237889 PMCID: PMC9023403 DOI: 10.1007/s00428-022-03302-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 01/09/2023]
Abstract
Gene fusions can act as oncogenic drivers and offer targets for cancer therapy. Since fusions are rare in colorectal cancer (CRC), their universal screening seems impractical. Our aim was to investigate gene fusions in 62 CRC cases with deficient MLH1 (dMLH1) and BRAFV600E wild-type (wt) status from a consecutive real-life series of 2079 CRCs. First, gene fusions were analysed using a novel FusionPlex Lung v2 RNA-based next-generation sequencing (NGS) panel, and these results were compared to a novel Idylla GeneFusion assay and pan-TRK immunohistochemistry (IHC). NGS detected seven (7/62, 11%) NTRK1 fusions (TPM3::NTRK1, PLEKHA6::NTRK1 and LMNA::NTRK1, each in two cases, and IRF2BP2::NTRK1 in one case). In addition, two ALK, four RET and seven BRAF fusions were identified. Idylla detected seven NTRK1 expression imbalances, in line with the NGS results (overall agreement 100%). Furthermore, Idylla detected the two NGS-identified ALK rearrangements as one specific ALK fusion and one ALK expression imbalance, whilst only two of the four RET fusions were discovered. However, Idylla detected several expression imbalances of ALK (n = 7) and RET (n = 1) that were found to be fusion negative with the NGS. Pan-TRK IHC showed clearly detectable, fusion partner-dependent staining patterns in the seven NTRK1 fusion cases. Overall agreement for pan-TRK antibody clone EPR17341 was 98% and for A7H6R 100% when compared to the NGS. Of the 62 CRCs, 43 were MLH1 promoter hypermethylated (MLH1ph) and 39 were RASwt. All fusion cases were both MLH1ph and RASwt. Our results show that kinase fusions (20/30, 67%) and most importantly targetable NTRK1 fusions (7/30, 23%) are frequent in CRCs with dMLH1/BRAFV600Ewt/MLH1ph/RASwt. NGS was the most comprehensive method in finding the fusions, of which a subset can be screened by Idylla or IHC, provided that the result is confirmed by NGS.
Collapse
Affiliation(s)
- Iiris Ukkola
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, 00029, HUS, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirjo Nummela
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mia Kero
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, 00029, HUS, Helsinki, Finland
| | - Hanna Tammio
- Department of Genetics, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jenni Tuominen
- Department of Genomics, Laboratory of Molecular Haematology and Pathology, Turku University Central Hospital, Turku, Finland
| | - Veli Kairisto
- Department of Genomics, Laboratory of Molecular Haematology and Pathology, Turku University Central Hospital, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Soili Kytölä
- Department of Genetics, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, 00029, HUS, Helsinki, Finland.
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
37
|
Daily Practice Assessment of KRAS Status in NSCLC Patients: A New Challenge for the Thoracic Pathologist Is Right around the Corner. Cancers (Basel) 2022; 14:cancers14071628. [PMID: 35406400 PMCID: PMC8996900 DOI: 10.3390/cancers14071628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary RAS mutation is the most frequent oncogenic alteration in human cancers and KRAS is the most frequently mutated, notably in non-small cell lung carcinomas (NSCLC). Various attempts to inhibit KRAS in the past were unsuccessful in these latter tumors. However, recently, several small molecules (AMG510, MRTX849, JNJ-74699157, and LY3499446) have been developed to specifically target KRAS G12C-mutated tumors, which seems promising for patient treatment and should soon be administered in daily practice for non-squamous (NS)-NSCLC. In this context, it will be mandatory to systematically assess the KRAS status in routine clinical practice, at least in advanced NS-NSCLC, leading to new challenges for thoracic oncologists. Abstract KRAS mutations are among the most frequent genomic alterations identified in non-squamous non-small cell lung carcinomas (NS-NSCLC), notably in lung adenocarcinomas. In most cases, these mutations are mutually exclusive, with different genomic alterations currently known to be sensitive to therapies targeting EGFR, ALK, BRAF, ROS1, and NTRK. Recently, several promising clinical trials targeting KRAS mutations, particularly for KRAS G12C-mutated NSCLC, have established new hope for better treatment of patients. In parallel, other studies have shown that NSCLC harboring co-mutations in KRAS and STK11 or KEAP1 have demonstrated primary resistance to immune checkpoint inhibitors. Thus, the assessment of the KRAS status in advanced-stage NS-NSCLC has become essential to setting up an optimal therapeutic strategy in these patients. This stimulated the development of new algorithms for the management of NSCLC samples in pathology laboratories and conditioned reorganization of optimal health care of lung cancer patients by the thoracic pathologists. This review addresses the recent data concerning the detection of KRAS mutations in NSCLC and focuses on the new challenges facing pathologists in daily practice for KRAS status assessment.
Collapse
|
38
|
Lone SN, Nisar S, Masoodi T, Singh M, Rizwan A, Hashem S, El-Rifai W, Bedognetti D, Batra SK, Haris M, Bhat AA, Macha MA. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer 2022; 21:79. [PMID: 35303879 PMCID: PMC8932066 DOI: 10.1186/s12943-022-01543-7] [Citation(s) in RCA: 298] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Over the past decade, invasive techniques for diagnosing and monitoring cancers are slowly being replaced by non-invasive methods such as liquid biopsy. Liquid biopsies have drastically revolutionized the field of clinical oncology, offering ease in tumor sampling, continuous monitoring by repeated sampling, devising personalized therapeutic regimens, and screening for therapeutic resistance. Liquid biopsies consist of isolating tumor-derived entities like circulating tumor cells, circulating tumor DNA, tumor extracellular vesicles, etc., present in the body fluids of patients with cancer, followed by an analysis of genomic and proteomic data contained within them. Methods for isolation and analysis of liquid biopsies have rapidly evolved over the past few years as described in the review, thus providing greater details about tumor characteristics such as tumor progression, tumor staging, heterogeneity, gene mutations, and clonal evolution, etc. Liquid biopsies from cancer patients have opened up newer avenues in detection and continuous monitoring, treatment based on precision medicine, and screening of markers for therapeutic resistance. Though the technology of liquid biopsies is still evolving, its non-invasive nature promises to open new eras in clinical oncology. The purpose of this review is to provide an overview of the current methodologies involved in liquid biopsies and their application in isolating tumor markers for detection, prognosis, and monitoring cancer treatment outcomes.
Collapse
Affiliation(s)
- Saife N Lone
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Arshi Rizwan
- Department of Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | - Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Davide Bedognetti
- Cancer Research Department, Research Branch, Sidra Medicince, Doha, Qatar
- Department of Internal Medicine and Medical Specialities, University of Genova, Genova, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE 68198, Omaha, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, University of Nebraska Medical Center, NE 68198, Omaha, USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, (IUST), 192122, Awantipora, Jammu & Kashmir, India.
| |
Collapse
|
39
|
Danila DC. Liquid biopsy as a cancer biomarker-potential, and challenges. Cancer Biomark 2022. [DOI: 10.1016/b978-0-12-824302-2.00013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Bourhis A, Remoué A, Samaison L, Uguen A. Diagnostic mutationnel rapide Idylla™ : applications théranostiques actuelles et futures. Ann Pathol 2022; 42:329-343. [DOI: 10.1016/j.annpat.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
|
41
|
Procaccio L, Bergamo F, Daniel F, Rasola C, Munari G, Biason P, Crucitta S, Barsotti G, Zanella G, Angerilli V, Magro C, Paccagnella S, Di Antonio V, Loupakis F, Danesi R, Zagonel V, Del Re M, Lonardi S, Fassan M. A Real-World Application of Liquid Biopsy in Metastatic Colorectal Cancer: The Poseidon Study. Cancers (Basel) 2021; 13:cancers13205128. [PMID: 34680277 PMCID: PMC8533756 DOI: 10.3390/cancers13205128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND First-line decision making is the key to the successful care of mCRC patients and RAS/BRAF status is crucial to select the best targeted agent. In hub centers, a relevant proportion of patients referred from small volume centers may not have standard tissue-based (STB) molecular results available at the time of the first visit (T0). Liquid biopsy (LB) may help circumvent these hurdles. METHODS A monoinstitutional prospective head-to-head comparison of LB versus (vs.) STB testing was performed in a real-world setting. Selection criteria included: mCRC diagnosis with unknown RAS/BRAF status at T0, tumoral tissue archived in external centers, no previous treatment with anti-EGFR. At T0, patients underwent plasma sampling for LB testing and procedure for tissue recovery. RAS/BRAF genotyping was carried out by droplet digital PCR on circulating-tumoral (ct) DNA. The primary endpoint was the comparison of time to LB (T1) vs. STB (T2) results using the Mann-Whitney U test. Secondary endpoints were the concordance between LB and STB defined as overall percent agreement and the accuracy of LB in terms of specificity, sensitivity, positive and negative predictive value. We also performed an exploratory analysis on urinary (u) ctDNA. RESULTS A total of 33 mCRC patients were included. Mean T1 and T2 was 7 and 22 days (d), respectively (p < 0.00001). T2 included a mean time for archival tissue recovery of 17 d. The overall percent agreement between LB and STB analysis was 83%. Compared to STB testing, LB specificity and sensitivity were 90% and 80%, respectively, with a positive predictive value of 94% and negative one of 69%. In detail, at STB and LB testing, RAS mutation was found in 45% and 42% of patients, respectively; BRAF mutation in 15%. LB results included one false positive and four false negative. False negative cases showed a significantly lower tumor burden at basal CT scan. Concordance between STB and uctDNA testing was 89%. CONCLUSIONS Faster turnaround time, high concordance and accuracy are three key points supporting the adoption of LB in routinary mCRC care, in particular when decision on first-line therapy is urgent and tissue recovery from external centers may require a long time. Results should be interpreted with caution in LB wild-type cases with low tumor burden.
Collapse
Affiliation(s)
- Letizia Procaccio
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology—IRCCS, 35128 Padova, Italy; (L.P.); (F.B.); (F.D.); (C.R.); (P.B.); (G.B.); (G.Z.); (C.M.); (V.D.A.); (F.L.); (V.Z.)
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, 35121 Padova, Italy
| | - Francesca Bergamo
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology—IRCCS, 35128 Padova, Italy; (L.P.); (F.B.); (F.D.); (C.R.); (P.B.); (G.B.); (G.Z.); (C.M.); (V.D.A.); (F.L.); (V.Z.)
| | - Francesca Daniel
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology—IRCCS, 35128 Padova, Italy; (L.P.); (F.B.); (F.D.); (C.R.); (P.B.); (G.B.); (G.Z.); (C.M.); (V.D.A.); (F.L.); (V.Z.)
| | - Cosimo Rasola
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology—IRCCS, 35128 Padova, Italy; (L.P.); (F.B.); (F.D.); (C.R.); (P.B.); (G.B.); (G.Z.); (C.M.); (V.D.A.); (F.L.); (V.Z.)
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, 35121 Padova, Italy
| | - Giada Munari
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padova, 35121 Padova, Italy; (G.M.); (V.A.); (S.P.); (M.F.)
- Veneto Institute of Oncology (IOV-IRCCS), 35128 Padova, Italy
| | - Paola Biason
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology—IRCCS, 35128 Padova, Italy; (L.P.); (F.B.); (F.D.); (C.R.); (P.B.); (G.B.); (G.Z.); (C.M.); (V.D.A.); (F.L.); (V.Z.)
| | - Stefania Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 56121 Pisa, Italy; (S.C.); (R.D.); (M.D.R.)
| | - Giulia Barsotti
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology—IRCCS, 35128 Padova, Italy; (L.P.); (F.B.); (F.D.); (C.R.); (P.B.); (G.B.); (G.Z.); (C.M.); (V.D.A.); (F.L.); (V.Z.)
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, 35121 Padova, Italy
| | - Giulia Zanella
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology—IRCCS, 35128 Padova, Italy; (L.P.); (F.B.); (F.D.); (C.R.); (P.B.); (G.B.); (G.Z.); (C.M.); (V.D.A.); (F.L.); (V.Z.)
| | - Valentina Angerilli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padova, 35121 Padova, Italy; (G.M.); (V.A.); (S.P.); (M.F.)
| | - Cristina Magro
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology—IRCCS, 35128 Padova, Italy; (L.P.); (F.B.); (F.D.); (C.R.); (P.B.); (G.B.); (G.Z.); (C.M.); (V.D.A.); (F.L.); (V.Z.)
| | - Silvia Paccagnella
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padova, 35121 Padova, Italy; (G.M.); (V.A.); (S.P.); (M.F.)
| | - Veronica Di Antonio
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology—IRCCS, 35128 Padova, Italy; (L.P.); (F.B.); (F.D.); (C.R.); (P.B.); (G.B.); (G.Z.); (C.M.); (V.D.A.); (F.L.); (V.Z.)
| | - Fotios Loupakis
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology—IRCCS, 35128 Padova, Italy; (L.P.); (F.B.); (F.D.); (C.R.); (P.B.); (G.B.); (G.Z.); (C.M.); (V.D.A.); (F.L.); (V.Z.)
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 56121 Pisa, Italy; (S.C.); (R.D.); (M.D.R.)
| | - Vittorina Zagonel
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology—IRCCS, 35128 Padova, Italy; (L.P.); (F.B.); (F.D.); (C.R.); (P.B.); (G.B.); (G.Z.); (C.M.); (V.D.A.); (F.L.); (V.Z.)
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 56121 Pisa, Italy; (S.C.); (R.D.); (M.D.R.)
| | - Sara Lonardi
- Oncology Unit 3, Department of Oncology, Veneto Institute of Oncology—IRCCS, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-0498215953
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padova, 35121 Padova, Italy; (G.M.); (V.A.); (S.P.); (M.F.)
- Veneto Institute of Oncology (IOV-IRCCS), 35128 Padova, Italy
| |
Collapse
|
42
|
Clinical Applications of Minimal Residual Disease Assessments by Tumor-Informed and Tumor-Uninformed Circulating Tumor DNA in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13184547. [PMID: 34572774 PMCID: PMC8471730 DOI: 10.3390/cancers13184547] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Circulating tumor DNA, or ctDNA, are fragments of tumor DNA that can be detected in the blood of patients with colorectal cancer. Measuring ctDNA levels in the blood has shown the potential to provide important information that can be helpful in the clinical care of patients with colorectal cancer. For example, in patients with colon cancer that has been removed by surgery, measuring ctDNA in the blood can predict the likelihood of cancer recurrence, while in those with metastatic colorectal cancer, measuring ctDNA can inform the clinician whether chemotherapy is effective at earlier timepoints than currently available tests. In this review, we discuss the results from ongoing studies describing the utility of ctDNA measurements across all stages of colorectal cancer. We also discuss the various clinical scenarios that ctDNA may have the most immediate impact in colorectal cancer management. Abstract Emerging data suggest that circulating tumor DNA (ctDNA) can detect colorectal cancer (CRC)-specific signals across both non-metastatic and metastatic settings. With the development of multiple platforms, including tumor-informed and tumor-agnostic ctDNA assays and demonstration of their provocative analytic performance to detect minimal residual disease, there are now ongoing, phase III randomized clinical trials to evaluate their role in the management paradigm of CRC. In this review, we highlight landmark studies that have formed the basis for ongoing studies on the clinically applicability of plasma ctDNA assays in resected, stage I–III CRC and metastatic CRC. We discuss clinical settings by which ctDNA may have the most immediate impact in routine clinical practice. These include the potential for ctDNA to (1) guide surveillance and intensification or de-intensification strategies of adjuvant therapy in resected, stage I–III CRC, (2) predict treatment response to neoadjuvant therapy in locally advanced rectal cancer inclusive of total neoadjuvant therapy (TNT), and (3) predict response to systemic and surgical therapies in metastatic disease. We end by considering clinical variables that can influence our ability to reliably interpret ctDNA dynamics in the clinic.
Collapse
|
43
|
Palacín-Aliana I, García-Romero N, Asensi-Puig A, Carrión-Navarro J, González-Rumayor V, Ayuso-Sacido Á. Clinical Utility of Liquid Biopsy-Based Actionable Mutations Detected via ddPCR. Biomedicines 2021; 9:906. [PMID: 34440110 PMCID: PMC8389639 DOI: 10.3390/biomedicines9080906] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide and remains a major public health challenge. The introduction of more sensitive and powerful technologies has permitted the appearance of new tumor-specific molecular aberrations with a significant cancer management improvement. Therefore, molecular pathology profiling has become fundamental not only to guide tumor diagnosis and prognosis but also to assist with therapeutic decisions in daily practice. Although tumor biopsies continue to be mandatory in cancer diagnosis and classification, several studies have demonstrated that liquid biopsies could be used as a potential tool for the detection of cancer-specific biomarkers. One of the main advantages is that circulating free DNA (cfDNA) provides information about intra-tumoral heterogeneity, reflecting dynamic changes in tumor burden. This minimally invasive tool has become an accurate and reliable instrument for monitoring cancer genetics. However, implementing liquid biopsies across the clinical practice is still ongoing. The main challenge is to detect genomic alterations at low allele fractions. Droplet digital PCR (ddPCR) is a powerful approach that can overcome this issue due to its high sensitivity and specificity. Here we explore the real-world clinical utility of the liquid biopsy ddPCR assays in the most diagnosed cancer subtypes.
Collapse
Affiliation(s)
- Irina Palacín-Aliana
- Atrys Health, 08025 Barcelona, Spain; (I.P.-A.); (A.A.-P.); (V.G.-R.)
- Fundación de Investigación HM Hospitales, HM Hospitales, 28015 Madrid, Spain
- Faculty of Science, Universidad de Alcalá, 28801 Madrid, Spain
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Adrià Asensi-Puig
- Atrys Health, 08025 Barcelona, Spain; (I.P.-A.); (A.A.-P.); (V.G.-R.)
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | | | - Ángel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| |
Collapse
|
44
|
Personalized Therapy and Liquid Biopsy-A Focus on Colorectal Cancer. J Pers Med 2021; 11:jpm11070630. [PMID: 34357097 PMCID: PMC8305103 DOI: 10.3390/jpm11070630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Resistance mechanisms represent a barrier to anti-cancer therapies. Liquid biopsies would allow obtaining additional information in order to develop targeted therapies to thwart the resistance phenomena but also to follow in time real response to treatment and be able to adapt it the most quickly possible way in case of resistance. (2) Methods: herein we summarize the different liquid biopsies which are currently under research; we then review the literature and focalize on one of their potential roles: the theranostic one and especially in the cases of colorectal cancers. (3) Results: few studies targeting liquid biopsy as a potential tool to adapt cancer treatments are present in the literature and encompass few patients. (4) Conclusions: further research is needed to prove the efficiency of LB. Indeed, it seems a promising tool to guide treatment by targeting actionable mutations with detection of resistant mutations.
Collapse
|
45
|
Testing EGFR with Idylla on Cytological Specimens of Lung Cancer: A Review. Int J Mol Sci 2021; 22:ijms22094852. [PMID: 34063720 PMCID: PMC8125729 DOI: 10.3390/ijms22094852] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
The current standard of care for advanced non-small-cell lung cancer is based on detecting actionable mutations that can benefit from targeted therapy. Comprehensive genetic tests can have long turn-around times, and because EGFR mutations are the most prevalent actionable mutation, a quick detection would enable a prompt initiation of targeted therapy. Furthermore, the scarcity of diagnostic material means that sometimes only cytologic material is available. The Idylla™ EGFR assay is a real-time PCR–based method able to detect 51 EGFR mutations in 2.5 h. Idylla is validated for use only on FFPE sections, but some researchers described their experiences with cytological material. We reviewed the relevant literature, finding four articles describing 471 cases and many types of cytological input material: smears, cell-block sections, suspensions, and extracted DNA. The sensitivity, specificity, and limit of detection appear comparable to those obtained with histological input material, with one exception: the usage of scraped stained smears as input may reduce the accuracy of the test. In conclusion, usage of cytological material as input to the Idylla EGFR test is possible. A workflow where common mutations are tested first and fast, leaving rarer mutations for subsequent comprehensive profiling, seems the most effective approach.
Collapse
|
46
|
Speirs V. Quality Considerations When Using Tissue Samples for Biomarker Studies in Cancer Research. Biomark Insights 2021; 16:11772719211009513. [PMID: 33958852 PMCID: PMC8060748 DOI: 10.1177/11772719211009513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue obtained from biobanks is frequently employed in biomarker studies. Biomarkers define objective, measurable characteristics of biological and biomedical procedures and have been used as indicators of clinical outcome. This article outlines some of the steps scientists should consider when embarking on biomarker research in cancer research using samples from biobanks and the importance and challenges of linking clinical data to biological samples.
Collapse
Affiliation(s)
- Valerie Speirs
- Institute of Medical Sciences, School of Medicine,
Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland,
UK
| |
Collapse
|
47
|
Nicolazzo C, Barault L, Caponnetto S, De Renzi G, Belardinilli F, Bottillo I, Bargiacchi S, Macagno M, Grammatico P, Giannini G, Cortesi E, Di Nicolantonio F, Gazzaniga P. True conversions from RAS mutant to RAS wild-type in circulating tumor DNA from metastatic colorectal cancer patients as assessed by methylation and mutational signature. Cancer Lett 2021; 507:89-96. [PMID: 33744389 DOI: 10.1016/j.canlet.2021.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/10/2023]
Abstract
The paucity of targeted treatments available in patients with RAS mutant colorectal cancers contributes to the poor prognosis of this patient group compared to those with RAS wild-type disease. Recent liquid biopsy-driven studies have demonstrated that RAS mutant clones might disappear in plasma during the clonal evolution of the disease, opening new unforeseen perspectives for EGFR blockade in these patients. Nevertheless, the lack of detection of RAS mutations in plasma might depend on the low amount of released circulating tumor DNA (ctDNA), making it necessary a more accurate selection of patients with true RAS mutation conversions. In this liquid biopsy-based study, we assessed RAS mutational status in initially RAS-mutant patients at the time of progressive disease from any line of therapy and investigated the incidence of true conversions to plasma RAS wild-type, comparing a colon cancer specific methylation profile with a mutational signature of ctDNA. Globally, considering either mutational panel or methylation profile as reliable tests to confirm or exclude the presence of ctDNA, the percentage of "true RAS converters" was 37.5%. In our series we observed a trend toward a better PFS in patients who received anti-EGFR as second or subsequent treatment lines compared to those who did not.
Collapse
Affiliation(s)
- Chiara Nicolazzo
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy.
| | - Ludovic Barault
- Department of Oncology, University of Torino, Strada Provinciale, 142 km 3,95, 10060, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale, 142 km 3,95, 10060, Candiolo, TO, Italy.
| | - Salvatore Caponnetto
- Department of Radiology, Oncology and Pathology, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy.
| | - Gianluigi De Renzi
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy.
| | - Francesca Belardinilli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291, 00161, Rome, Italy.
| | - Irene Bottillo
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Circonvallazione Gianicolense, 87, 00152, Rome, Italy.
| | - Simone Bargiacchi
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Circonvallazione Gianicolense, 87, 00152, Rome, Italy.
| | - Marco Macagno
- Department of Oncology, University of Torino, Strada Provinciale, 142 km 3,95, 10060, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale, 142 km 3,95, 10060, Candiolo, TO, Italy.
| | - Paola Grammatico
- Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Circonvallazione Gianicolense, 87, 00152, Rome, Italy.
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291, 00161, Rome, Italy.
| | - Enrico Cortesi
- Department of Radiology, Oncology and Pathology, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy.
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Strada Provinciale, 142 km 3,95, 10060, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale, 142 km 3,95, 10060, Candiolo, TO, Italy.
| | - Paola Gazzaniga
- Cancer Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy.
| |
Collapse
|
48
|
Gragnano G, Nacchio M, Sgariglia R, Conticelli F, Iaccarino A, De Luca C, Troncone G, Malapelle U. Performance evaluation of a fully closed real-time PCR platform for the detection of KRAS p.G12C mutations in liquid biopsy of patients with non-small cell lung cancer. J Clin Pathol 2021; 75:350-353. [PMID: 33649142 DOI: 10.1136/jclinpath-2021-207416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Whenever tissue sample is not available, non-small cell lung cancer (NSCLC) biomarker testing is performed with liquid biopsy. The Kirsten rat sarcoma viral oncogene homolog (KRAS) p.G12C mutation is a novel target in patients with NSCLC. In this study, 33 NSCLC frozen plasma samples, previously characterised for KRAS mutational status by next generation sequencing (NGS), were processed by the fully automated Idylla KRAS assay. In 30/33 cases, archival matched cell-free DNA (cfDNA) was also directly pipetted in the cartridge. Overall, 30/33 plasma and 28/30 cfDNA samples yielded valid results. In 29/30 of KRAS p.G12C mutant plasma samples and 26/28 of cfDNA, Idylla confirmed the NGS results. In conclusion, the Idylla NSCLC KRAS liquid biopsy assay may represent a reliable tool to assess KRAS p.G12C mutation.
Collapse
|