1
|
Li C, Xue P, Duan G, Song A, Zhai R, Ma J, Li M. ED-71 promotes osseointegration of titanium implants in a rat model of GIOP by alleviating the effects of dexamethasone on bone remodeling in a SIRT1-dependent manner. J Oral Biosci 2024:S1349-0079(24)00205-6. [PMID: 39395651 DOI: 10.1016/j.job.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE Glucocorticoid-induced osteoporosis (GIOP), a common complication of glucocorticoid usage, plays a critical role in the success of dental implant restoration by affecting osseointegration. Eldecalcitol (ED-71) prevents GIOP; however, its role in the osseointegration of implants under GIOP conditions remains elusive. METHODS Dexamethasone was used to establish a rat model of GIOP. Subsequently, mini-implant surgery was performed on the femur. GIOP rats were administered ED-71 via gavage to assess its role in the osseointegration of titanium implants under GIOP conditions. MC3T3-E1 and RAW264.7 cells were utilized to explore the molecular mechanism of ED-71 in ameliorating disorder of bone remodeling caused by dexamethasone. RESULTS The administration of ED-71 promoted the formation of newly formed woven bone and the resolution of inflammation around titanium implants. In vitro experiments indicated that ED-71 ameliorated dexamethasone-induced dysfunction of osteoblasts and osteoclasts by increasing the expression level of sirtuin 1 (SIRT1). Inhibition of SIRT1 by selisistat counteracts the regulatory effects of ED-71 on dexamethasone-induced disorder of bone remodeling. Molecular docking and Western blotting revealed that the neurogenic locus notch homolog protein and nuclear factor kappa B signaling pathways are essential for the effects of ED-71 on dexamethasone-induced disorder of bone remodeling. CONCLUSION ED-71 promoted implant osseointegration in a rat model of GIOP by alleviating the effects of dexamethasone on bone remodeling in a SIRT1-dependent manner.
Collapse
Affiliation(s)
- Chunying Li
- Department of stomatology, Zibo Municipal Hospital, Zibo, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.
| | - Pengfei Xue
- Department of stomatology, Zibo Municipal Hospital, Zibo, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Guanglin Duan
- Department of stomatology, Zibo Municipal Hospital, Zibo, China
| | - Ailing Song
- Department of stomatology, Zibo Municipal Hospital, Zibo, China
| | - Runbing Zhai
- Department of stomatology, Zibo Municipal Hospital, Zibo, China
| | - Jie Ma
- Department of stomatology, Zibo Municipal Hospital, Zibo, China
| | - Minqi Li
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| |
Collapse
|
2
|
Di Fiore V, Cappelli F, Del Punta L, De Biase N, Armenia S, Maremmani D, Lomonaco T, Biagini D, Lenzi A, Mazzola M, Tricò D, Masi S, Mengozzi A, Pugliese NR. Novel Techniques, Biomarkers and Molecular Targets to Address Cardiometabolic Diseases. J Clin Med 2024; 13:2883. [PMID: 38792427 PMCID: PMC11122330 DOI: 10.3390/jcm13102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/01/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Cardiometabolic diseases (CMDs) are interrelated and multifactorial conditions, including arterial hypertension, type 2 diabetes, heart failure, coronary artery disease, and stroke. Due to the burden of cardiovascular morbidity and mortality associated with CMDs' increasing prevalence, there is a critical need for novel diagnostic and therapeutic strategies in their management. In clinical practice, innovative methods such as epicardial adipose tissue evaluation, ventricular-arterial coupling, and exercise tolerance studies could help to elucidate the multifaceted mechanisms associated with CMDs. Similarly, epigenetic changes involving noncoding RNAs, chromatin modulation, and cellular senescence could represent both novel biomarkers and targets for CMDs. Despite the promising data available, significant challenges remain in translating basic research findings into clinical practice, highlighting the need for further investigation into the complex pathophysiology underlying CMDs.
Collapse
Affiliation(s)
- Valerio Di Fiore
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Federica Cappelli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Lavinia Del Punta
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Nicolò De Biase
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Silvia Armenia
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Davide Maremmani
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (T.L.)
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (T.L.)
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (T.L.)
| | - Matteo Mazzola
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Nicola Riccardo Pugliese
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| |
Collapse
|
3
|
Zhang D, Ding H, Liu C, Huang Y, Tai W, Feng S, Wang X, Zhao C, Li Y. Circulating exosome-mediated AMPKα-SIRT1 pathway regulates lipid metabolism disorders in calf hepatocytes. Res Vet Sci 2024; 169:105177. [PMID: 38350170 DOI: 10.1016/j.rvsc.2024.105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Subclinical ketosis (SCK) in dairy cows is often misdiagnosed because it lacks clinical signs and detection indicators. However, it is highly prevalent and may transform into clinical ketosis if not treated promptly. Due to the negative energy balance, a large amount of fat is mobilized, producing NEFA that exceeds the upper limit of liver processing, which in turn leads to the disturbance of liver lipid metabolism. The silent information regulator 1 (SIRT1) is closely related to hepatic lipid metabolism disorders. Exosomes as signal transmitters, also play a role in the circulatory system. We hypothesize that the circulating exosome-mediated adenosine 5'-monophosphate (AMP)-activated protein kinase alpha (AMPKα)-SIRT1 pathway regulates lipid metabolism disorders in SCK cows. We extracted the exosomes required for the experiment from the peripheral circulating blood of non-ketotic (NK) and SCK cows. We investigated the effect of circulating exosomes on the expression levels of mRNA and protein of the AMPKα-SIRT1 pathway in non-esterified fatty acid (NEFA)-induced dairy cow primary hepatocytes using in vitro cell experiments. The results showed that circulating exosomes increased the expression levels of Lipolysis-related genes and proteins (AMPKα, SIRT1, and PGC-1α) in hepatocytes treated with 1.2 mM NEFA, and inhibited the expression of lipid synthesis-related genes and protein (SREBP-1C). The regulation of exosomes on lipid metabolism disorders caused by 1.2 mM NEFA treatment showed the same trend as for SIRT1-overexpressing adenovirus. The added exosomes could regulate NEFA-induced lipid metabolism in hepatocytes by mediating the AMPKα-SIRT1 pathway, consistent with the effect of transfected SIRT1 adenovirus.
Collapse
Affiliation(s)
- Daoliang Zhang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Hongyan Ding
- Research Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui Province 230031, China
| | - Chang Liu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Yingying Huang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Wenjun Tai
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China.
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036, China.
| |
Collapse
|
4
|
Luan Y, Zhu X, Jiao Y, Liu H, Huang Z, Pei J, Xu Y, Yang Y, Ren K. Cardiac cell senescence: molecular mechanisms, key proteins and therapeutic targets. Cell Death Discov 2024; 10:78. [PMID: 38355681 PMCID: PMC10866973 DOI: 10.1038/s41420-023-01792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Cardiac aging, particularly cardiac cell senescence, is a natural process that occurs as we age. Heart function gradually declines in old age, leading to continuous heart failure, even in people without a prior history of heart disease. To address this issue and improve cardiac cell function, it is crucial to investigate the molecular mechanisms underlying cardiac senescence. This review summarizes the main mechanisms and key proteins involved in cardiac cell senescence. This review further discusses the molecular modulators of cellular senescence in aging hearts. Furthermore, the discussion will encompass comprehensive descriptions of the key drugs, modes of action and potential targets for intervention in cardiac senescence. By offering a fresh perspective and comprehensive insights into the molecular mechanisms of cardiac senescence, this review seeks to provide a fresh perspective and important theoretical foundations for the development of drugs targeting this condition.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiaofan Zhu
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yuxue Jiao
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Zhen Huang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Jinyan Pei
- Quality Management Department, Henan No.3 Provincial People's Hospital, Zhengzhou, 450052, P. R. China
| | - Yawei Xu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
5
|
Lin H, Ao H, Guo G, Liu M. The Role and Mechanism of Metformin in Inflammatory Diseases. J Inflamm Res 2023; 16:5545-5564. [PMID: 38026260 PMCID: PMC10680465 DOI: 10.2147/jir.s436147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin is a classical drug used to treat type 2 diabetes. With the development of research on metformin, it has been found that metformin also has several advantages aside from its hypoglycemic effect, such as anti-inflammatory, anti-aging, anti-cancer, improving intestinal flora, and other effects. The prevention of inflammation is critical because chronic inflammation is associated with numerous diseases of considerable public health. Therefore, there has been growing interest in the role of metformin in treating various inflammatory conditions. However, the precise anti-inflammatory mechanisms of metformin were inconsistent in the reported studies. Thus, this review aims to summarize various currently known possible mechanisms of metformin involved in inflammatory diseases and provide references for the clinical application of metformin.
Collapse
Affiliation(s)
- Huan Lin
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi, People’s Republic of China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
6
|
Li D, Li Y, Ding H, Wang Y, Xie Y, Zhang X. Cellular Senescence in Cardiovascular Diseases: From Pathogenesis to Therapeutic Challenges. J Cardiovasc Dev Dis 2023; 10:439. [PMID: 37887886 PMCID: PMC10607269 DOI: 10.3390/jcdd10100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Cellular senescence (CS), classically considered a stable cell cycle withdrawal, is hallmarked by a progressive decrease in cell growth, differentiation, and biological activities. Senescent cells (SNCs) display a complicated senescence-associated secretory phenotype (SASP), encompassing a variety of pro-inflammatory factors that exert influence on the biology of both the cell and surrounding tissue. Among global mortality causes, cardiovascular diseases (CVDs) stand out, significantly impacting the living quality and functional abilities of patients. Recent data suggest the accumulation of SNCs in aged or diseased cardiovascular systems, suggesting their potential role in impairing cardiovascular function. CS operates as a double-edged sword: while it can stimulate the restoration of organs under physiological conditions, it can also participate in organ and tissue dysfunction and pave the way for multiple chronic diseases under pathological states. This review explores the mechanisms that underlie CS and delves into the distinctive features that characterize SNCs. Furthermore, we describe the involvement of SNCs in the progression of CVDs. Finally, the study provides a summary of emerging interventions that either promote or suppress senescence and discusses their therapeutic potential in CVDs.
Collapse
Affiliation(s)
- Dan Li
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China; (D.L.); (H.D.); (Y.W.); (Y.X.)
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Hong Ding
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China; (D.L.); (H.D.); (Y.W.); (Y.X.)
| | - Yuqin Wang
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China; (D.L.); (H.D.); (Y.W.); (Y.X.)
| | - Yafei Xie
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China; (D.L.); (H.D.); (Y.W.); (Y.X.)
| | - Xiaowei Zhang
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou 730030, China; (D.L.); (H.D.); (Y.W.); (Y.X.)
| |
Collapse
|
7
|
Qiu Z, Li Y, Fu Y, Yang Y. Research progress of AMP-activated protein kinase and cardiac aging. Open Life Sci 2023; 18:20220710. [PMID: 37671091 PMCID: PMC10476487 DOI: 10.1515/biol-2022-0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 09/07/2023] Open
Abstract
The process of aging is marked by a gradual deterioration in the physiological functions and functional reserves of various tissues and organs, leading to an increased susceptibility to diseases and even death. Aging manifests in a tissue- and organ-specific manner, and is characterized by varying rates and direct and indirect interactions among different tissues and organs. Cardiovascular disease (CVD) is the leading cause of death globally, with older adults (aged >70 years) accounting for approximately two-thirds of CVD-related deaths. The prevalence of CVD increases exponentially with an individual's age. Aging is a critical independent risk factor for the development of CVD. AMP-activated protein kinase (AMPK) activation exerts cardioprotective effects in the heart and restores cellular metabolic functions by modulating gene expression and regulating protein levels through its interaction with multiple target proteins. Additionally, AMPK enhances mitochondrial function and cellular energy status by facilitating the utilization of energy substrates. This review focuses on the role of AMPK in the process of cardiac aging and maintaining normal metabolic levels and redox homeostasis in the heart, particularly in the presence of oxidative stress and the invasion of inflammatory factors.
Collapse
Affiliation(s)
- Zhengqi Qiu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Yufei Li
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Yancheng Fu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen518060, China
| | - Yanru Yang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
8
|
Ma H, Yu Y, Mo L, Chen Q, Dong H, Xu Y, Zhuan B. Exosomal miR-663b from "M1" macrophages promotes pulmonary artery vascular smooth muscle cell dysfunction through inhibiting the AMPK/Sirt1 axis. Aging (Albany NY) 2023; 15:3549-3571. [PMID: 37142272 PMCID: PMC10449306 DOI: 10.18632/aging.204690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Inflammatory mediators from macrophages are proven to be involved in pulmonary vascular remodeling in pulmonary hypertension (PH). Here, this study intends to explore the mechanism of "M1" macrophage-derived exosomal miR-663b in pulmonary artery smooth muscle cells (PASMCs) dysfunctions and pulmonary hypertension. METHODS Hypoxia-treated PASMCs were utilized for constructing an in-vitro pulmonary hypertension model. THP-1 cells were treated with PMA (320 nM) and LPS (10 μg/mL) + IFN-γ (20 ng/ml) for eliciting macrophage "M1" polarization. Exosomes derived from "M1" macrophages were isolated and added into PASMCs. The proliferation, inflammation, oxidative stress, and migration of PASMCs were evaluated. RT-PCR or Western blot examined the levels of miR-663b and the AMPK/Sirt1 pathway. Dual luciferase activity assay and RNA pull-down assay were carried out for confirming the targeted association between miR-663b and AMPK. An in-vivo PH model was built. Macrophage-derived exosomes with miR-663b inhibition were used for treating the rats, and alterations of pulmonary histopathology were monitored. RESULTS miR-663b was obviously up-regulated in hypoxia-elicited PASMCs and M1 macrophages. miR-663b overexpression boosted hypoxia-induced proliferation, inflammation, oxidative stress, and migration in PASMCs, whereas miR-663b low expression resulted in the opposite situation. AMPK was identified as a target of miR-663b, and miR-663b overexpression curbed the AMPK/Sirt1 pathway. AMPK activation ameliorated the damaging impact of miR-663b overexpression and "M1" macrophage exosomes on PASMCs. In vivo, "M1" macrophage exosomes with miR-663b low expression alleviated pulmonary vascular remodeling in pulmonary hypertension rats. CONCLUSION Exosomal miR-663b from "M1" macrophage facilitates PASMC dysfunctions and PH development by dampening the AMPK/Sirt1 axis.
Collapse
Affiliation(s)
- Honghong Ma
- Department of Respiratory Medicine, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, Ningxia, China
- Department of Respiratory Medicine, Third Clinical Medical College, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Yang Yu
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Lirong Mo
- Department of Respiratory Medicine, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, Ningxia, China
- Department of Respiratory Medicine, Third Clinical Medical College, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Qian Chen
- Department of Respiratory Medicine, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, Ningxia, China
- Department of Respiratory Medicine, Third Clinical Medical College, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Hui Dong
- General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Yan Xu
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Bing Zhuan
- Department of Respiratory Medicine, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, Ningxia, China
- Department of Respiratory Medicine, Third Clinical Medical College, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|
9
|
Senescence-Associated Secretory Phenotype of Cardiovascular System Cells and Inflammaging: Perspectives of Peptide Regulation. Cells 2022; 12:cells12010106. [PMID: 36611900 PMCID: PMC9818427 DOI: 10.3390/cells12010106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
A senescence-associated secretory phenotype (SASP) and a mild inflammatory response characteristic of senescent cells (inflammaging) form the conditions for the development of cardiovascular diseases: atherosclerosis, coronary heart disease, and myocardial infarction. The purpose of the review is to analyze the pool of signaling molecules that form SASP and inflammaging in cells of the cardiovascular system and to search for targets for the action of vasoprotective peptides. The SASP of cells of the cardiovascular system is characterized by a change in the synthesis of anti-proliferative proteins (p16, p19, p21, p38, p53), cytokines characteristic of inflammaging (IL-1α,β, IL-4, IL-6, IL-8, IL-18, TNFα, TGFβ1, NF-κB, MCP), matrix metalloproteinases, adhesion molecules, and sirtuins. It has been established that peptides are physiological regulators of body functions. Vasoprotective polypeptides (liraglutide, atrial natriuretic peptide, mimetics of relaxin, Ucn1, and adropin), KED tripeptide, and AEDR tetrapeptide regulate the synthesis of molecules involved in inflammaging and SASP-forming cells of the cardiovascular system. This indicates the prospects for the development of drugs based on peptides for the treatment of age-associated cardiovascular pathology.
Collapse
|
10
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 373] [Impact Index Per Article: 124.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
11
|
Seara FAC, Kasai-Brunswick TH, Nascimento JHM, Campos-de-Carvalho AC. Anthracycline-induced cardiotoxicity and cell senescence: new therapeutic option? Cell Mol Life Sci 2022; 79:568. [DOI: 10.1007/s00018-022-04605-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/30/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
|
12
|
Lueking R, Clark AE, Narasimhan M, Mahimainathan L, Muthukumar A, Larsen CP, SoRelle JA. SARS-CoV-2 coinfections with variant genomic lineages identified by multiplex fragment analysis. Front Genet 2022; 13:942713. [PMID: 36226173 PMCID: PMC9549124 DOI: 10.3389/fgene.2022.942713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Immunocompromised patients can experience prolonged SARS-CoV-2 infections in the setting of a lack of protectivity immunity despite vaccination. As circulating SARS-CoV-2 strains become more heterogeneous, concomitant infection with multiple SARS-CoV-2 variants has become an increasing concern. Immunocompromised patient populations represent potential reservoirs for the emergence of novel SARS-CoV-2 variants through mutagenic change or coinfection followed by recombinatory events. Identification of SARS-CoV-2 coinfections is challenging using traditional next generation sequencing pipelines; however, targeted genotyping approaches can facilitate detection. Here we describe five COVID-19 cases caused by coinfection with different SARS-CoV-2 variants (Delta/Omicron BA.1 and Omicron BA.1/BA.2) as identified by multiplex fragment analysis.
Collapse
Affiliation(s)
- Richard Lueking
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Andrew E. Clark
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Madhusudhanan Narasimhan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lenin Mahimainathan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Alagarraju Muthukumar
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Christian P. Larsen
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jeffrey A. SoRelle
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
13
|
Gao T, Chen S, Han Y, Zhang D, Tan Y, He Y, Liu M. Ameliorating Inflammation in Insulin-resistant Rat Adipose Tissue with Abdominal Massage Regulates SIRT1/NF-κB Signaling. Cell Biochem Biophys 2022; 80:579-589. [PMID: 35907080 PMCID: PMC9388453 DOI: 10.1007/s12013-022-01085-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022]
Abstract
It was the aim of this study to determine whether abdominal massage reverses high-fat diet-induced insulin resistance compared with RSV treatment. A total of sixty male Sprague-Dawley rats were randomly placed in one of four groups:the non-fat diet (NFD), the high-fat diet (HFD), the HFD with abdominal massage (HFD+ AM), and the HFD plus resveratrol (HFD+ RSV). For eight weeks, rats were fed high-fat diets to create insulin resistance, followed by six weeks of either AM or RSV. Molecular mechanisms of adipogenesis and cytokine production in rats with high-fat diets were investigated. The model rat adipose tissue showed significant improvements in obesity, glucose intolerance, and the accumulation of lipid in the body [the total cholesterol level (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C)], metabolic effects of glucose [The fasting blood glucose (FBG), Fasting insulin levels (FINS)], inflammatory status [interleukin-6 (IL-6) and tumor necrosis factor (TNF)-α, C-reactive protein (CRP)], and macrophage polarization after AM or RSV treatment. Further, AM increased SIRT1/NF-κB signaling in rat adipose tissue. Accordingly, in rat adipose tissue, our results indicate that AM regulates the secretion of proinflammatory cytokines, blood sugar levels, and related signaling pathways, contributing to improvement of IR, which may serves as a new therapeutic approach for the treatment for IR.
Collapse
Affiliation(s)
- Tianjiao Gao
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130117, PR China
| | - Shaotao Chen
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130117, PR China
| | - Yiran Han
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130117, PR China
| | - Dongmei Zhang
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130117, PR China
| | - Yi Tan
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130117, PR China
| | - Yutao He
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130117, PR China
| | - Mingjun Liu
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130117, PR China.
| |
Collapse
|
14
|
Sung JY, Kim SG, Kang YJ, Choi HC. Metformin mitigates stress-induced premature senescence by upregulating AMPKα at Ser485 phosphorylation induced SIRT3 expression and inactivating mitochondrial oxidants. Mech Ageing Dev 2022; 206:111708. [PMID: 35863470 DOI: 10.1016/j.mad.2022.111708] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023]
Abstract
The senescence of vascular smooth muscle cells (VSMCs) is an important cause of cardiovascular disease such as atherosclerosis and hypertension. These senescence may be triggered by many factors, such as oxidative stress, inflammation, DNA damage, and senescence-associated secretory phenotypes (SASPs). Mitochondrial oxidative stress induces cellular senescence, but the mechanisms by which mitochondrial reactive oxygen species (mtROS) regulates cellular senescence are still largely unknown. Here, we investigated the mechanism responsible for the anti-aging effect of metformin by examining links between VSMC senescence and mtROS in in vitro and in vivo. Metformin was found to increase p-AMPK (Ser485), but to decrease senescence-associated phenotypes and protein levels of senescence markers during ADR-induced VSMC senescence. Importantly, metformin decreased mtROS by inducing the deacetylation of superoxide dismutase 2 (SOD2) by increasing SIRT3 expression. Moreover, AMPK depletion reduced the expression of SIRT3 and increased the expression of acetylated SOD2 despite metformin treatment, suggesting AMPK activation by metformin is required to protect against mitochondrial oxidative stress by SIRT3. This study provides mechanistic evidence that metformin acts as an anti-aging agent and alleviates VSMC senescence by upregulating mitochondrial antioxidant induced p-AMPK (Ser485)-dependent SIRT3 expression, which suggests metformin has therapeutic potential for the treatment of age-associated vascular disease.
Collapse
Affiliation(s)
- Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
| |
Collapse
|
15
|
Poznyak AV, Sadykhov NK, Kartuesov AG, Borisov EE, Sukhorukov VN, Orekhov AN. Aging of Vascular System Is a Complex Process: The Cornerstone Mechanisms. Int J Mol Sci 2022; 23:ijms23136926. [PMID: 35805936 PMCID: PMC9266404 DOI: 10.3390/ijms23136926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Aging is one of the most intriguing processes of human ontogenesis. It is associated with the development of a wide variety of diseases affecting all organs and their systems. The victory over aging is the most desired goal of scientists; however, it is hardly achievable in the foreseeable future due to the complexity and ambiguity of the process itself. All body systems age, lose their performance, and structural disorders accumulate. The cardiovascular system is no exception. And it is cardiovascular diseases that occupy a leading position as a cause of death, especially among the elderly. The aging of the cardiovascular system is well described from a mechanical point of view. Moreover, it is known that at the cellular level, a huge number of mechanisms are involved in this process, from mitochondrial dysfunction to inflammation. It is on these mechanisms, as well as the potential for taking control of the aging of the cardiovascular system, that we focused on in this review.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia;
- Correspondence: (A.V.P.); (A.N.O.)
| | - Nikolay K. Sadykhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia; (N.K.S.); (A.G.K.)
| | - Andrey G. Kartuesov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia; (N.K.S.); (A.G.K.)
| | - Evgeny E. Borisov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia;
| | - Vasily N. Sukhorukov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia;
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia;
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia; (N.K.S.); (A.G.K.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia;
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
16
|
Hu C, Zhang X, Teng T, Ma ZG, Tang QZ. Cellular Senescence in Cardiovascular Diseases: A Systematic Review. Aging Dis 2022; 13:103-128. [PMID: 35111365 PMCID: PMC8782554 DOI: 10.14336/ad.2021.0927] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a prominent risk factor for cardiovascular diseases, which is the leading cause of death around the world. Recently, cellular senescence has received potential attention as a promising target in preventing cardiovascular diseases, including acute myocardial infarction, atherosclerosis, cardiac aging, pressure overload-induced hypertrophy, heart regeneration, hypertension, and abdominal aortic aneurysm. Here, we discuss the mechanisms underlying cellular senescence and describe the involvement of senescent cardiovascular cells (including cardiomyocytes, endothelial cells, vascular smooth muscle cells, fibroblasts/myofibroblasts and T cells) in age-related cardiovascular diseases. Then, we highlight the targets (SIRT1 and mTOR) that regulating cellular senescence in cardiovascular disorders. Furthermore, we review the evidence that senescent cells can exert both beneficial and detrimental implications in cardiovascular diseases on a context-dependent manner. Finally, we summarize the emerging pro-senescent or anti-senescent interventions and discuss their therapeutic potential in preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
17
|
Malaise O, Paulissen G, Deroyer C, Ciregia F, Poulet C, Neuville S, Plener Z, Daniel C, Gillet P, Lechanteur C, Brondello JM, de Seny D, Malaise M. Influence of Glucocorticoids on Cellular Senescence Hallmarks in Osteoarthritic Fibroblast-like Synoviocytes. J Clin Med 2021; 10:jcm10225331. [PMID: 34830613 PMCID: PMC8617749 DOI: 10.3390/jcm10225331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis (OA) is recognized as being a cellular senescence-linked disease. Intra-articular injections of glucocorticoids (GC) are frequently used in knee OA to treat synovial effusion but face controversies about toxicity. We investigated the influence of GC on cellular senescence hallmarks and senescence induction in fibroblast-like synoviocytes (FLS) from OA patients and mesenchymal stem cells (MSC). Methods: Cellular senescence was assessed via the proliferation rate, β-galactosidase staining, DNA damage and CKI expression (p21, p16INK4A). Experimental senescence was induced by irradiation. Results: The GC prednisolone did not induce an apparent senescence phenotype in FLS, with even higher proliferation, no accumulation of β-galactosidase-positive cells nor DNA damage and reduction in p21mRNA, only showing the enhancement of p16INK4A. Prednisolone did not modify experimental senescence induction in FLS, with no modulation of any senescence parameters. Moreover, prednisolone did not induce a senescence phenotype in MSC: despite high β-galactosidase-positive cells, no reduction in proliferation, no DNA damage and no CKI enhancement was observed. Conclusions: We provide reassuring in vitro data about the use of GC regarding cellular senescence involvement in OA: the GC prednisolone did not induce a senescent phenotype in OA FLS (the proliferation ratio was even higher) and in MSC and did not worsen cellular senescence establishment.
Collapse
Affiliation(s)
- Olivier Malaise
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
- Correspondence: ; Tel.: +32-4-366-7863
| | - Geneviève Paulissen
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
| | - Céline Deroyer
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
| | - Federica Ciregia
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
| | - Christophe Poulet
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
| | - Sophie Neuville
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
| | - Zelda Plener
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
| | - Christophe Daniel
- Orthopedic Surgery Department, CHU de Liège, 4000 Liège, Belgium; (C.D.); (P.G.)
| | - Philippe Gillet
- Orthopedic Surgery Department, CHU de Liège, 4000 Liège, Belgium; (C.D.); (P.G.)
| | - Chantal Lechanteur
- Laboratory of Cell and Gene Therapy, Department of Hematology, CHU de Liège, 4000 Liège, Belgium;
| | - Jean-Marc Brondello
- Institute for Regenerative Medicine and Biotherapy, Univ Montpellier, INSERM UMR1183, 34298 Montpellier, France;
| | - Dominique de Seny
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
| | - Michel Malaise
- Laboratory of Rheumatology, GIGA Research, CHU de Liège, University of Liège, 4000 Liège, Belgium; (G.P.); (C.D.); (F.C.); (C.P.); (S.N.); (Z.P.); (D.d.S.); (M.M.)
| |
Collapse
|
18
|
Chen MS, Lee RT, Garbern JC. Senescence mechanisms and targets in the heart. Cardiovasc Res 2021; 118:1173-1187. [PMID: 33963378 DOI: 10.1093/cvr/cvab161] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/27/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cellular senescence is a state of irreversible cell cycle arrest associated with ageing. Senescence of different cardiac cell types can direct the pathophysiology of cardiovascular diseases such as atherosclerosis, myocardial infarction, and cardiac fibrosis. While age-related telomere shortening represents a major cause of replicative senescence, the senescent state can also be induced by oxidative stress, metabolic dysfunction, and epigenetic regulation, among other stressors. It is critical that we understand the molecular pathways that lead to cellular senescence and the consequences of cellular senescence in order to develop new therapeutic approaches to treat cardiovascular disease. In this review, we discuss molecular mechanisms of cellular senescence, explore how cellular senescence of different cardiac cell types (including cardiomyocytes, cardiac endothelial cells, cardiac fibroblasts, vascular smooth muscle cells, valve interstitial cells) can lead to cardiovascular disease, and highlight potential therapeutic approaches that target molecular mechanisms of cellular senescence to prevent or treat cardiovascular disease.
Collapse
Affiliation(s)
- Maggie S Chen
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115
| | - Jessica C Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138.,Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115
| |
Collapse
|
19
|
Sung JY, Kim SG, Kim JR, Choi HC. SIRT1 suppresses cellular senescence and inflammatory cytokine release in human dermal fibroblasts by promoting the deacetylation of NF-κB and activating autophagy. Exp Gerontol 2021; 150:111394. [PMID: 33965557 DOI: 10.1016/j.exger.2021.111394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Skin aging is a complex process and involves extrinsic and intrinsic processes with distinct characteristics. Understanding skin aging requires knowledge of the senescence of human dermal fibroblasts (HDFs) and the biological mechanisms involved in this process. However, the molecular mechanism responsible for the aging of HDFs is still not clear. Therefore, we investigated mechanisms of autophagy, inflammation, and cellular senescence by Western blotting, immunofluorescence, real-time PCR, and senescence-associated β-galactosidase (SA-β-gal) staining in senescent HDFs. We found SRT1720 inhibited the inductions of inflammatory cytokines and cellular senescence by deacetylating acetyl-NF-κB levels and enhancing levels of autophagy-associated proteins and SIRT1 in senescent HDFs. However, the NF-κB activator prostratin attenuated signals associated with autophagy, such as those of LC3-II and Beclin-1, but increased inflammatory cytokine levels and cellular senescence. Notably, the expression levels of SIRT1 and autophagy-associated proteins were higher in aged mice administered SRT1720 than in old mice, and SRT1720 also decreased levels of acetyl-NF-κB, inflammatory cytokines, and senescence markers, which was in accord with in vitro results. These findings support that SRT1720 acts as an anti-aging agent and inhibits the inductions of inflammatory cytokines and senescence by regulating the SIRT1/acetyl-NF-κB signaling pathway and activating autophagy in senescent HDFs.
Collapse
Affiliation(s)
- Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
| |
Collapse
|