1
|
Haley JA, Chalasani SH. C. elegans foraging as a model for understanding the neuronal basis of decision-making. Cell Mol Life Sci 2024; 81:252. [PMID: 38849591 PMCID: PMC11335288 DOI: 10.1007/s00018-024-05223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 06/09/2024]
Abstract
Animals have evolved to seek, select, and exploit food sources in their environment. Collectively termed foraging, these ubiquitous behaviors are necessary for animal survival. As a foundation for understanding foraging, behavioral ecologists established early theoretical and mathematical frameworks which have been subsequently refined and supported by field and laboratory studies of foraging animals. These simple models sought to explain how animals decide which strategies to employ when locating food, what food items to consume, and when to explore the environment for new food sources. These foraging decisions involve integration of prior experience with multimodal sensory information about the animal's current environment and internal state. We suggest that the nematode Caenorhabditis elegans is well-suited for a high-resolution analysis of complex goal-oriented behaviors such as foraging. We focus our discussion on behavioral studies highlighting C. elegans foraging on bacteria and summarize what is known about the underlying neuronal and molecular pathways. Broadly, we suggest that this simple model system can provide a mechanistic understanding of decision-making and present additional avenues for advancing our understanding of complex behavioral processes.
Collapse
Affiliation(s)
- Jessica A Haley
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
2
|
Indong RA, Park JM, Hong JK, Lyou ES, Han T, Hong JK, Lee TK, Lee JI. A simple protocol for cultivating the bacterivorous soil nematode Caenorhabditis elegans in its natural ecology in the laboratory. Front Microbiol 2024; 15:1347797. [PMID: 38476935 PMCID: PMC10929012 DOI: 10.3389/fmicb.2024.1347797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
The complex interplay between an animal and its surrounding environment requires constant attentive observation in natural settings. Moreover, how ecological interactions are affected by an animal's genes is difficult to ascertain outside the laboratory. Genetic studies with the bacterivorous nematode Caenorhabditis elegans have elucidated numerous relationships between genes and functions, such as physiology, behaviors, and lifespan. However, these studies use standard laboratory culture that does not reflect C. elegans true ecology. C. elegans is found growing in nature and reproduced in large numbers in soils enriched with rotting fruit or vegetation, a source of abundant and diverse microbes that nourish the thriving populations of nematodes. We developed a simple mesocosm we call soil-fruit-natural-habitat that simulates the natural ecology of C. elegans in the laboratory. Apples were placed on autoclaved potted soils, and after a soil microbial solution was added, the mesocosm was subjected to day-night, temperature, and humidity cycling inside a growth chamber. After a period of apple-rotting, C elegans were added, and the growing worm population was observed. We determined optimal conditions for the growth of C. elegans and then performed an ecological succession experiment observing worm populations every few days. Our data showed that the mesocosm allows abundant growth and reproduction of C. elegans that resembles populations of the nematode found in rotting fruit in nature. Overall, our study presents a simple protocol that allows the cultivation of C. elegans in a natural habitat in the laboratory for a broad group of scientists to study various aspects of animal and microbial ecology.
Collapse
Affiliation(s)
- Rocel Amor Indong
- Division of Biological Science and Technology, Yonsei University Mirae Campus, Wonju, Republic of Korea
| | - Jong Min Park
- Division of Biological Science and Technology, Yonsei University Mirae Campus, Wonju, Republic of Korea
| | - Jin-Kyung Hong
- Department of Environmental and Energy Engineering, Yonsei University Mirae Campus, Wonju, Republic of Korea
| | - Eun Sun Lyou
- Department of Environmental and Energy Engineering, Yonsei University Mirae Campus, Wonju, Republic of Korea
| | - Taeman Han
- Korea National Park Research Insitute, Korea National Park Service, Wonju, Republic of Korea
| | - Jong Kwang Hong
- Division of Biological Science and Technology, Yonsei University Mirae Campus, Wonju, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental and Energy Engineering, Yonsei University Mirae Campus, Wonju, Republic of Korea
| | - Jin I. Lee
- Division of Biological Science and Technology, Yonsei University Mirae Campus, Wonju, Republic of Korea
| |
Collapse
|
3
|
Ding SS, Fox JL, Gordus A, Joshi A, Liao JC, Scholz M. Fantastic beasts and how to study them: rethinking experimental animal behavior. J Exp Biol 2024; 227:jeb247003. [PMID: 38372042 PMCID: PMC10911175 DOI: 10.1242/jeb.247003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Humans have been trying to understand animal behavior at least since recorded history. Recent rapid development of new technologies has allowed us to make significant progress in understanding the physiological and molecular mechanisms underlying behavior, a key goal of neuroethology. However, there is a tradeoff when studying animal behavior and its underlying biological mechanisms: common behavior protocols in the laboratory are designed to be replicable and controlled, but they often fail to encompass the variability and breadth of natural behavior. This Commentary proposes a framework of 10 key questions that aim to guide researchers in incorporating a rich natural context into their experimental design or in choosing a new animal study system. The 10 questions cover overarching experimental considerations that can provide a template for interspecies comparisons, enable us to develop studies in new model organisms and unlock new experiments in our quest to understand behavior.
Collapse
Affiliation(s)
- Siyu Serena Ding
- Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Jessica L. Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Abhilasha Joshi
- Departments of Physiology and Psychiatry, University of California, San Francisco, CA 94158, USA
| | - James C. Liao
- Department of Biology, The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Monika Scholz
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesar, 53175 Bonn, Germany
| |
Collapse
|
4
|
Lee HK, Lee TY, Lee JI, Park KS, Yoon KH. Precise sensorimotor control impacts reproductive fitness of C. elegans in 3D environments. Neuroreport 2024; 35:123-128. [PMID: 38109381 PMCID: PMC10766090 DOI: 10.1097/wnr.0000000000001986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023]
Abstract
The ability of animals to sense and navigate towards relevant cues in complex and elaborate habitats is paramount for their survival and reproductive success. The nematode Caenorhabditis elegans uses a simple and elegant sensorimotor program to track odors in its environments. Whether this allows the worm to effectively navigate a complex environment and increase its evolutionary success has not been tested yet. We designed an assay to test whether C. elegans can track odors in a complex 3D environment. We then used a previously established 3D cultivation system to test whether defect in tracking odors to find food in a complex environment affected their brood size. We found that wild-type worms can accurately migrate toward a variety of odors in 3D. However, mutants of the muscarinic acetylcholine receptor GAR-3 which have a sensorimotor integration defect that results in a subtle navigational defect steering towards attractive odors, display decreased chemotaxis to the odor butanone not seen in the traditional 2D assay. We also show that the decreased ability to locate appetitive stimuli in 3D leads to reduced brood size not observed in the standard 2D culture conditions. Our study shows that mutations in genes previously overlooked in 2D conditions can have a significant impact in the natural habitat, and highlights the importance of considering the evolutionary selective pressures that have shaped the behavior, as well as the underlying genes and neural circuits.
Collapse
Affiliation(s)
- Hee Kyung Lee
- Department of Physiology, Yonsei University Wonju College of Medicine
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine
- Department of Global Medical Science, Yonsei University Wonju College of Medicine
| | - Tong Young Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus, Wonju, South Korea
| | - Jin I. Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus, Wonju, South Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine
- Department of Global Medical Science, Yonsei University Wonju College of Medicine
| | - Kyoung-hye Yoon
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine
| |
Collapse
|
5
|
Susoy V, Samuel ADT. Evolutionarily conserved behavioral plasticity enables context-dependent mating in C. elegans. Curr Biol 2023; 33:4532-4537.e3. [PMID: 37769659 PMCID: PMC10615801 DOI: 10.1016/j.cub.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Behavioral plasticity helps humans and animals to achieve their goals by adapting their behaviors to different environments.1,2 Although behavioral plasticity is ubiquitous, many innate species-specific behaviors, such as mating, are often assumed to be stereotyped and unaffected by plasticity or learning, especially in invertebrates. Here, we describe a novel case of behavioral plasticity in the nematode C. elegans. Under standard lab conditions (agar plates with bacterial food), the male performs parallel mating,3,4,5 a largely two-dimensional behavioral strategy where his body and tail remain flat on the surface and slide alongside the partner's body from initial contact to copulation. But when placed in liquid media, the male performs spiral mating, a distinctly three-dimensional behavioral strategy where he winds around the partner's body in a helical embrace. The performance of spiral mating does not require a long-term change in growing conditions, but it does improve with experience. This experience-dependent improvement appears to involve a critical period-a time window around the L4 larval stage to the early adult stage-which coincides with the development of most male-specific neurons. We tested several wild isolates of C. elegans and other Caenorhabditis species and found that most were capable of parallel mating on surfaces and spiral mating in liquids. We suggest that two- and three-dimensional mating strategies in Caenorhabditis are plastic, conditionally expressed phenotypes conserved across the genus, which can be genetically "fixed" in some species.
Collapse
Affiliation(s)
- Vladislav Susoy
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Aravinthan D T Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
6
|
Zhu Y, Auer F, Gelnaw H, Davis SN, Hamling KR, May CE, Ahamed H, Ringstad N, Nagel KI, Schoppik D. SAMPL is a high-throughput solution to study unconstrained vertical behavior in small animals. Cell Rep 2023; 42:112573. [PMID: 37267107 PMCID: PMC10592459 DOI: 10.1016/j.celrep.2023.112573] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023] Open
Abstract
Balance and movement are impaired in many neurological disorders. Recent advances in behavioral monitoring provide unprecedented access to posture and locomotor kinematics but without the throughput and scalability necessary to screen candidate genes/potential therapeutics. Here, we present a scalable apparatus to measure posture and locomotion (SAMPL). SAMPL includes extensible hardware and open-source software with real-time processing and can acquire data from D. melanogaster, C. elegans, and D. rerio as they move vertically. Using SAMPL, we define how zebrafish balance as they navigate vertically and discover small but systematic variations among kinematic parameters between genetic backgrounds. We demonstrate SAMPL's ability to resolve differences in posture and navigation as a function of effect size and data gathered, providing key data for screens. SAMPL is therefore both a tool to model balance and locomotor disorders and an exemplar of how to scale apparatus to support screens.
Collapse
Affiliation(s)
- Yunlu Zhu
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Franziska Auer
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hannah Gelnaw
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Samantha N Davis
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kyla R Hamling
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Christina E May
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hassan Ahamed
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Niels Ringstad
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Katherine I Nagel
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - David Schoppik
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
7
|
Chiba T, Okumura E, Nishigami Y, Nakagaki T, Sugi T, Sato K. Caenorhabditis elegans transfers across a gap under an electric field as dispersal behavior. Curr Biol 2023:S0960-9822(23)00674-7. [PMID: 37348502 DOI: 10.1016/j.cub.2023.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/04/2023] [Accepted: 05/17/2023] [Indexed: 06/24/2023]
Abstract
Interactions between different animal species are a critical determinant of each species' evolution and range expansion. Chemical, visual, and mechanical interactions have been abundantly reported, but the importance of electric interactions is not well understood. Here, we report the discovery that the nematode Caenorhabditis elegans transfers across electric fields to achieve phoretic attachment to insects. First, we found that dauer larvae of C. elegans nictating on a substrate in a Petri dish moved directly to the lid through the air due to the electrostatic force from the lid. To more systematically investigate the transfer behavior, we constructed an assay system with well-controlled electric fields: the worms flew up regardless of whether a positive or negative electric field was applied, suggesting that an induced charge within the worm is related to this transfer. The mean take-off speed is 0.86 m/s, and the worm flies up under an electric field exceeding 200 kV/m. This worm transfer occurs even when the worms form a nictation column composed of up to 100 worms; we term this behavior "multiworm transfer." These observations led us to conclude that C. elegans can transfer and attach to the bumblebee Bombus terrestris, which was charged by rubbing with flower pollen in the lab. The charge on the bumblebee was measured with a coulomb-meter to be 806 pC, which was within the range of bumblebee charges and of the same order of flying insect charges observed in nature, suggesting that electrical interactions occur among different species.
Collapse
Affiliation(s)
- Takuya Chiba
- Graduate School of Life Science, Hokkaido University, Kita 8 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Etsuko Okumura
- Yokkaichi Tech. Department, TEISO TOYOKA CO, LTD 4005-1 Shiohama, Yokkaichi, Mie 510-0863, Japan
| | - Yukinori Nishigami
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21 Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Toshiyuki Nakagaki
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21 Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Takuma Sugi
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
| | - Katsuhiko Sato
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21 Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
| |
Collapse
|
8
|
Nunn LR, Juang TD, Beebe DJ, Wheeler NJ, Zamanian M. A high-throughput nematode sensory assay reveals an inhibitory effect of ivermectin on parasite gustation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538347. [PMID: 37163046 PMCID: PMC10168391 DOI: 10.1101/2023.04.25.538347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Sensory pathways first elucidated in Caenorhabditis elegans are conserved across free-living and parasitic nematodes, even though each species responds to a diverse array of compounds. Most nematode sensory assays are performed by tallying observations of worm behavior on two-dimensional planes using agarose plates. These assays have been successful in the study of volatile sensation but are poorly suited for investigation of water-soluble gustation or parasitic nematodes without a free-living stage. In contrast, gustatory assays tend to be tedious, often limited to the manipulation of a single individual at a time. We have designed a nematode sensory assay using a microfluidics device that allows for the study of gustation in a 96-well, three-dimensional environment. This device is suited for free-living worms and parasitic worms that spend their lives in an aqueous environment, and we have used it to show that ivermectin inhibits the gustatory ability of vector-borne parasitic nematodes.
Collapse
Affiliation(s)
- Leonardo R. Nunn
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Terry D. Juang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA
| | - David J. Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, WI USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
9
|
Nunn LR, Juang TD, Beebe DJ, Wheeler NJ, Zamanian M. A high-throughput sensory assay for parasitic and free-living nematodes. Integr Biol (Camb) 2023; 15:zyad010. [PMID: 37555835 PMCID: PMC10752570 DOI: 10.1093/intbio/zyad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Sensory pathways first elucidated in Caenorhabditis elegans are conserved across free-living and parasitic nematodes, even though each species responds to a diverse array of compounds. Most nematode sensory assays are performed by tallying observations of worm behavior on two-dimensional planes using agarose plates. These assays have been successful in the study of volatile sensation but are poorly suited for investigation of water-soluble gustation or parasitic nematodes without a free-living stage. In contrast, gustatory assays tend to be tedious, often limited to the manipulation of a single individual at a time. We have designed a nematode sensory assay using a microfluidics device that allows for the study of gustation in a 96-well, three-dimensional environment. This device is suited for free-living worms and parasitic worms that spend their lives in an aqueous environment, and we have used it to show that ivermectin inhibits the gustatory ability of vector-borne parasitic nematodes. Insight box Nematodes are powerful model organisms for understanding the sensory biology of multicellular eukaryotes, and many parasitic species cause disease in humans. Simple sensory assays performed on agarose plates have been the bedrock for establishing the neuronal, genetic, and developmental foundations for many sensory modalities in nematodes. However, these classical assays are poorly suited for translational movement of many parasitic nematodes and the sensation of water-soluble molecules (gustation). We have designed a device for high-throughput nematode sensory assays in a gel matrix. This 'gustatory microplate' is amenable to several species and reveals novel responses by free-living and parasitic nematodes to cues and drugs.
Collapse
Affiliation(s)
- Leonardo R. Nunn
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Terry D. Juang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA
| | - David J. Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, WI USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
10
|
Zhu Y, Auer F, Gelnaw H, Davis SN, Hamling KR, May CE, Ahamed H, Ringstad N, Nagel KI, Schoppik D. Scalable Apparatus to Measure Posture and Locomotion (SAMPL): a high-throughput solution to study unconstrained vertical behavior in small animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523102. [PMID: 36712122 PMCID: PMC9881893 DOI: 10.1101/2023.01.07.523102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Balance and movement are impaired in a wide variety of neurological disorders. Recent advances in behavioral monitoring provide unprecedented access to posture and locomotor kinematics, but without the throughput and scalability necessary to screen candidate genes / potential therapeutics. We present a powerful solution: a Scalable Apparatus to Measure Posture and Locomotion (SAMPL). SAMPL includes extensible imaging hardware and low-cost open-source acquisition software with real-time processing. We first demonstrate that SAMPL's hardware and acquisition software can acquire data from from D. melanogaster, C. elegans, and D. rerio as they move vertically. Next, we leverage SAMPL's throughput to rapidly (two weeks) gather a new zebrafish dataset. We use SAMPL's analysis and visualization tools to replicate and extend our current understanding of how zebrafish balance as they navigate through a vertical environment. Next, we discover (1) that key kinematic parameters vary systematically with genetic background, and (2) that such background variation is small relative to the changes that accompany early development. Finally, we simulate SAMPL's ability to resolve differences in posture or vertical navigation as a function of affect size and data gathered -- key data for screens. Taken together, our apparatus, data, and analysis provide a powerful solution for labs using small animals to investigate balance and locomotor disorders at scale. More broadly, SAMPL is both an adaptable resource for labs looking process videographic measures of behavior in real-time, and an exemplar of how to scale hardware to enable the throughput necessary for screening.
Collapse
Affiliation(s)
- Yunlu Zhu
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Franziska Auer
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Hannah Gelnaw
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Samantha N. Davis
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Kyla R. Hamling
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Christina E. May
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Hassan Ahamed
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine
| | - Niels Ringstad
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine
| | - Katherine I. Nagel
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - David Schoppik
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
- Lead Contact
| |
Collapse
|
11
|
Zjacic N, Scholz M. The role of food odor in invertebrate foraging. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12793. [PMID: 34978135 PMCID: PMC9744530 DOI: 10.1111/gbb.12793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
Foraging for food is an integral part of animal survival. In small insects and invertebrates, multisensory information and optimized locomotion strategies are used to effectively forage in patchy and complex environments. Here, the importance of olfactory cues for effective invertebrate foraging is discussed in detail. We review how odors are used by foragers to move toward a likely food source and the recent models that describe this sensory-driven behavior. We argue that smell serves a second function by priming an organism for the efficient exploitation of food. By appraising food odors, invertebrates can establish preferences and better adapt to their ecological niches, thereby promoting survival. The smell of food pre-prepares the gastrointestinal system and primes feeding motor programs for more effective ingestion as well. Optimizing resource utilization affects longevity and reproduction as a result, leading to drastic changes in survival. We propose that models of foraging behavior should include odor priming, and illustrate this with a simple toy model based on the marginal value theorem. Lastly, we discuss the novel techniques and assays in invertebrate research that could investigate the interactions between odor sensing and food intake. Overall, the sense of smell is indispensable for efficient foraging and influences not only locomotion, but also organismal physiology, which should be reflected in behavioral modeling.
Collapse
Affiliation(s)
- Nicolina Zjacic
- Max Planck Research Group Neural Information FlowCenter of Advanced European Studies and Research (Caesar)BonnGermany
| | - Monika Scholz
- Max Planck Research Group Neural Information FlowCenter of Advanced European Studies and Research (Caesar)BonnGermany
| |
Collapse
|
12
|
Loss CM, Melleu FF, Domingues K, Lino-de-Oliveira C, Viola GG. Combining Animal Welfare With Experimental Rigor to Improve Reproducibility in Behavioral Neuroscience. Front Behav Neurosci 2021; 15:763428. [PMID: 34916915 PMCID: PMC8671008 DOI: 10.3389/fnbeh.2021.763428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Cássio Morais Loss
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | | | - Karolina Domingues
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Cilene Lino-de-Oliveira
- Departamento de Ciências Fisiológicas do Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | |
Collapse
|
13
|
Guisnet A, Maitra M, Pradhan S, Hendricks M. Three-Dimensional Fruit Tissue Habitats for Culturing Caenorhabditis elegans. Curr Protoc 2021; 1:e288. [PMID: 34767311 DOI: 10.1002/cpz1.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Environmental factors influence many traits of biological interest, but reproducing an animal's natural habitat in a controlled laboratory environment is challenging. Environmental enrichment-adding complexity to the usually simplistic conditions under which laboratory animals are raised-offers a potential tool for better understanding biological traits while maintaining controlled laboratory conditions. For the model nematode Caenorhabditis elegans, the contrast between the natural environment and the laboratory conditions in which they are raised is enormous. Although several methods have been developed in an effort to complexify C. elegans laboratory conditions, there is still a need for an enriched controlled laboratory habitat in which C. elegans can be raised over several generations, the bacterial food availability is similar to that in traditional agar plates, and the animals are crawling as opposed to swimming or burrowing. To this end, we describe here a standardized protocol for creating controlled, reproducible, three-dimensional environments for multigenerational maintenance of C. elegans in the laboratory. These environments are derived from decellularized apple hypanthium tissue and have bacterial food uniformly distributed throughout. We also describe how traditional C. elegans methods of collecting synchronized eggs, cleaning contaminated stocks, and collecting animal populations are adapted to our scaffold environment. These methods can be adapted to host different bacteria or bacterial populations, and the resulting scaffolds can be used in a range of experimental designs for behavioral and phenotypical studies in C. elegans and other nematodes. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Decellularization and storage of apple tissue Basic Protocol 2: Preparation of plates from decellularized apple scaffolds Basic Protocol 3: Synchronization of eggs or animals and cleaning contaminated stocks from scaffold plates Alternate Protocol: Collection of non-synchronized larvae and adults from scaffold plates.
Collapse
Affiliation(s)
- Aurélie Guisnet
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Malosree Maitra
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Sreeparna Pradhan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | |
Collapse
|
14
|
Mitchell RM, Pattillos DS, Zhang S, Young JJ. Deficient mechanosensation in mec-3 decreases precipice response in C. elegans. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000429. [PMID: 34396061 PMCID: PMC8356024 DOI: 10.17912/micropub.biology.000429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/12/2022]
Abstract
The precipice response in Caenorhabditis elegans is a little-understood phenomenon in which worms move rapidly away from edges. We hypothesized that mechanosensation underlies the precipice response and that mechanosensory mutants would exhibit the precipice response less often than N2 wild type worms. We found that mec-3 mutants, with severe loss of mechanosensation, exhibited the precipice response at a lower rate than N2, but mec-10 and trp-4 mutants, with partial loss of response to mechanical stimuli, responded at a similar rate to N2. These results provide a characterization of the precipice response and implicate a role for mechanosensation in this behavior.
Collapse
Affiliation(s)
| | | | - Shuyu Zhang
- Biology Department, Mills College, Oakland, CA, 94613, USA
| | - Jared J Young
- Biology Department, Mills College, Oakland, CA, 94613, USA,
Correspondence to: Jared J Young ()
| |
Collapse
|