1
|
Wang J, Christensen D, Coombes SA, Wang Z. Cognitive and brain morphological deviations in middle-to-old aged autistic adults: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 163:105782. [PMID: 38944227 PMCID: PMC11283673 DOI: 10.1016/j.neubiorev.2024.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Cognitive challenges and brain structure variations are common in autism spectrum disorder (ASD) but are rarely explored in middle-to-old aged autistic adults. Cognitive deficits that overlap between young autistic individuals and elderlies with dementia raise an important question: does compromised cognitive ability and brain structure during early development drive autistic adults to be more vulnerable to pathological aging conditions, or does it protect them from further decline? To answer this question, we have synthesized current theoretical models of aging in ASD and conducted a systematic literature review (Jan 1, 1980 - Feb 29, 2024) and meta-analysis to summarize empirical studies on cognitive and brain deviations in middle-to-old aged autistic adults. We explored findings that support different aging theories in ASD and addressed study limitations and future directions. This review sheds light on the poorly understood consequences of aging question raised by the autism community to pave the way for future studies to identify sensitive and reliable measures that best predict the onset, progression, and prognosis of pathological aging in ASD.
Collapse
Affiliation(s)
- Jingying Wang
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA
| | - Danielle Christensen
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA; Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zheng Wang
- Neurocognitive and Behavioral Development Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118206, Gainesville, FL 32611-8205, USA.
| |
Collapse
|
2
|
Ogata R, Watanabe K, Chong PF, Okamoto J, Sakemi Y, Nakashima T, Ohno T, Nomiyama H, Sonoda Y, Ichimiya Y, Inoue H, Ochiai M, Yamashita H, Sakai Y, Ohga S. Divergent neurodevelopmental profiles of very-low-birth-weight infants. Pediatr Res 2024; 95:233-240. [PMID: 37626120 DOI: 10.1038/s41390-023-02778-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Advanced perinatal medicine has decreased the mortality rate of preterm infants. Long-term neurodevelopmental outcomes of very-low-birth-weight infants (VLBWIs) remain to be investigated. METHODS Participants were 124 VLBWIs who had in-hospital birth from 2007 to 2015. Perinatal information, developmental or intelligence quotient (DQ/IQ), and neurological comorbidities at ages 3 and 6 years were analyzed. RESULTS Fifty-eight (47%) VLBWIs received neurodevelopmental assessments at ages 3 and 6 years. Among them, 15 (26%) showed DQ/IQ <75 at age 6 years. From age 3 to 6 years, 21 (36%) patients showed a decrease (≤-10), while 5 (9%) showed an increase (≥+10) in DQ/IQ scores. Eight (17%) with autism spectrum disorder or attention-deficit hyperactivity disorder (ASD/ADHD) showed split courses of DQ/IQ, including two with ≤-10 and one with +31 to their scores. On the other hand, all 7 VLBWIs with cerebral palsy showed DQ ≤35 at these ages. Magnetic resonance imaging detected severe brain lesions in 7 (47%) of those with DQ <75 and 1 (18%) with ASD/ADHD. CONCLUSIONS VLBWIs show a broad spectrum of neurodevelopmental outcomes after 6 years. These divergent profiles also indicate that different risks contribute to the development of ASD/ADHD from those of cerebral palsy and epilepsy in VLBWIs. IMPACT Very-low-birth-weight infants (VLBWIs) show divergent neurodevelopmental outcomes from age 3 to 6 years. A deep longitudinal study depicts the dynamic change in neurodevelopmental profiles of VLBWIs from age 3 to 6 years. Perinatal brain injury is associated with developmental delay, cerebral palsy and epilepsy, but not with ASD or ADHD at age 6 years.
Collapse
Affiliation(s)
- Reina Ogata
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, 802-8533, Japan
| | - Kyoko Watanabe
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, 802-8533, Japan.
| | - Pin Fee Chong
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Jun Okamoto
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, 802-8533, Japan
| | - Yoshihiro Sakemi
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, 802-8533, Japan
| | - Toshinori Nakashima
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, 802-8533, Japan
| | - Takuro Ohno
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, 802-8533, Japan
| | - Hiroyuki Nomiyama
- Department of Radiology, National Hospital Organization Kokura Medical Center, Kitakyushu, 802-8533, Japan
| | - Yuri Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuko Ichimiya
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hirosuke Inoue
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masayuki Ochiai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hironori Yamashita
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, 802-8533, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
3
|
Rhodus EK, Barber J, Kryscio RJ, Abner EL, Bahrani AA, Lewis KES, Carey B, Nelson PT, Van Eldik LJ, Jicha GA. Frontotemporal neurofibrillary tangles and cerebrovascular lesions are associated with autism spectrum behaviors in late-life dementia. J Neurol 2022; 269:5105-5113. [PMID: 35596794 PMCID: PMC9644295 DOI: 10.1007/s00415-022-11167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND OBJECTIVES The pathologic substrates or neuroanatomic regions responsible for similarities in behavioral features seen in autism spectrum disorder and late-life dementia remain unknown. The present study examined the neuropathologic features of late-life dementia in research volunteers with and without antemortem behaviors characteristic of autism spectrum disorders. METHODS Antemortem cross-sectional assessment of autistic spectrum behaviors proximal to death in persons with diagnosis of mild cognitive impairment or dementia was completed using the Gilliam Autism Rating Scale, 2nd edition (GARS-2), followed by postmortem quantitative and semiquantitative neuropathologic assessment. All individuals who completed the GARS-2 prior to autopsy were included (n = 56) and we note that no participants had known diagnosis of autism spectrum disorder. The GARS-2 was used as an antemortem screening tool to stratify participants into two groups: "Autism Possible/Very Likely" or "Autism Unlikely." Data were analyzed using nonparametric statistics comparing location and scale to evaluate between-group differences in pathologic features. RESULTS Neurofibrillary tangles (NFT; p = 0.028) density and tau burden (p = 0.032) in the frontal region, the NFT density (p = 0.048) and neuritic plaque burden (p = 0.042), and the tau burden (p = 0.032) of the temporal region, were significantly different in scale between groups. For measures with significant group differences, the medians of the Autism Possible/Very Likely group were roughly equal to the 75th percentile of the Autism Unlikely group (i.e., the distributions were shifted to the right). DISCUSSION This study links behaviors characteristic of autism to increased pathologic tau burden in the frontal and temporal lobes in persons with late-life dementia. Additional studies are needed to determine causal factors and treatment options for behaviors characteristic of autism behaviors in late-life dementias.
Collapse
Affiliation(s)
- Elizabeth K Rhodus
- Sanders-Brown Center on Aging, University of Kentucky, 1030 S. Broadway, Ste 5, Lexington, KY, 40536, USA.
- Department of Behavioral Science, University of Kentucky, Lexington, KY, USA.
| | - Justin Barber
- Sanders-Brown Center on Aging, University of Kentucky, 1030 S. Broadway, Ste 5, Lexington, KY, 40536, USA
| | - Richard J Kryscio
- Sanders-Brown Center on Aging, University of Kentucky, 1030 S. Broadway, Ste 5, Lexington, KY, 40536, USA
- Department of Statistics, University of Kentucky, Lexington, KY, USA
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, University of Kentucky, 1030 S. Broadway, Ste 5, Lexington, KY, 40536, USA
- Department of Epidemiology, University of Kentucky, Lexington, KY, USA
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Ahmed A Bahrani
- Sanders-Brown Center on Aging, University of Kentucky, 1030 S. Broadway, Ste 5, Lexington, KY, 40536, USA
| | - Kristine E Shady Lewis
- Sanders-Brown Center on Aging, University of Kentucky, 1030 S. Broadway, Ste 5, Lexington, KY, 40536, USA
| | - Brandi Carey
- Sanders-Brown Center on Aging, University of Kentucky, 1030 S. Broadway, Ste 5, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, 1030 S. Broadway, Ste 5, Lexington, KY, 40536, USA
- Department of Pathology and Division of Neuropathology, University of Kentucky, Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 1030 S. Broadway, Ste 5, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, 1030 S. Broadway, Ste 5, Lexington, KY, 40536, USA
- Department of Behavioral Science, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
4
|
Nadeem MS, Hosawi S, Alshehri S, Ghoneim MM, Imam SS, Murtaza BN, Kazmi I. Symptomatic, Genetic, and Mechanistic Overlaps between Autism and Alzheimer's Disease. Biomolecules 2021; 11:1635. [PMID: 34827633 PMCID: PMC8615882 DOI: 10.3390/biom11111635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
Autism spectrum disorder (ASD) and Alzheimer's disease (AD) are neurodevelopmental and neurodegenerative disorders affecting two opposite ends of life span, i.e., childhood and old age. Both disorders pose a cumulative threat to human health, with the rate of incidences increasing considerably worldwide. In the context of recent developments, we aimed to review correlated symptoms and genetics, and overlapping aspects in the mechanisms of the pathogenesis of ASD and AD. Dementia, insomnia, and weak neuromuscular interaction, as well as communicative and cognitive impairments, are shared symptoms. A number of genes and proteins linked with both disorders have been tabulated, including MECP2, ADNP, SCN2A, NLGN, SHANK, PTEN, RELN, and FMR1. Theories about the role of neuron development, processing, connectivity, and levels of neurotransmitters in both disorders have been discussed. Based on the recent literature, the roles of FMRP (Fragile X mental retardation protein), hnRNPC (heterogeneous ribonucleoprotein-C), IRP (Iron regulatory proteins), miRNAs (MicroRNAs), and α-, β0, and γ-secretases in the posttranscriptional regulation of cellular synthesis and processing of APP (amyloid-β precursor protein) have been elaborated to describe the parallel and overlapping routes and mechanisms of ASD and AD pathogenesis. However, the interactive role of genetic and environmental factors, oxidative and metal ion stress, mutations in the associated genes, and alterations in the related cellular pathways in the development of ASD and AD needs further investigation.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.S.N.); (S.H.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.S.N.); (S.H.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.S.N.); (S.H.)
| |
Collapse
|