1
|
Muer JD, Didier KD, Wannebo BM, Sanchez S, Khademi Motlagh H, Haley TL, Carter KJ, Banks NF, Eldridge MW, Serlin RC, Wieben O, Schrage WG. Sex differences in gray matter, white matter, and regional brain perfusion in young, healthy adults. Am J Physiol Heart Circ Physiol 2024; 327:H847-H858. [PMID: 39120466 PMCID: PMC11482274 DOI: 10.1152/ajpheart.00341.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Cerebrovascular and neurological diseases exhibit sex-specific patterns in prevalence, severity, and regional specificity, some of which are associated with altered cerebral blood flow (CBF). Females often exhibit higher resting CBF, but understanding the impact of sex per se on CBF is hampered by study variability in age, comorbidities, medications, and control for menstrual cycle or hormone therapies. A majority of studies report whole brain CBF without differentiating between gray and white matter or without assessing regional CBF. Thus fundamental sex differences in regional or whole brain CBF remain unclarified. While controlling for the above confounders, we tested the hypothesis that females will exhibit higher total gray and white matter perfusion as well as regional gray matter perfusion. Adults 18-30 yr old (females = 22 and males = 26) were studied using arterial spin labeling (ASL) magnetic resonance imaging (MRI) scans followed by computational anatomy toolbox (CAT12) analysis in statistical parametric mapping (SPM12) to quantify CBF relative to brain volume. Females displayed 40% higher perfusion globally (females = 62 ± 9 and males = 45 ± 10 mL/100 g/min, P < 0.001), gray matter (females = 75 ± 11 and males = 54 ± 12 mL/100 g/min, P < 0.001), and white matter (females = 44 ± 6 and males = 32 ± 7 mL/100 g/min, P < 0.001). Females exhibited greater perfusion than males in 67 of the 68 regions tested, ranging from 14% to 66% higher. A second MRI approach (4-dimensional flow) focused on large arteries confirmed the sex difference in global CBF. These data indicate strikingly higher basal CBF in females at global, gray, and white matter levels and across dozens of brain regions and offer new clarity into fundamental sex differences in global and regional CBF regulation before aging or pathology.NEW & NOTEWORTHY MRI used to measure cerebral blood flow (CBF) in gray matter, white matter, and 68 regions in healthy men and women. This study demonstrated that CBF is 40% higher in women, the highest sex difference reported, when controlling for numerous important clinical confounders like age, smoking, menstrual cycle, comorbidities, and medications.
Collapse
Affiliation(s)
- Jessica D Muer
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Kaylin D Didier
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Brett M Wannebo
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Sophie Sanchez
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Hedyeh Khademi Motlagh
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Travis L Haley
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Katrina J Carter
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Nile F Banks
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Marlowe W Eldridge
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ronald C Serlin
- Department of Educational Physcology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Oliver Wieben
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
2
|
Brouillard A, Davignon LM, Vachon-Presseau É, Roy M, Marin MF. Starting the pill during adolescence: Age of onset and duration of use influence morphology of the hippocampus and ventromedial prefrontal cortex. Eur J Neurosci 2024; 60:5876-5899. [PMID: 39245916 DOI: 10.1111/ejn.16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
From adolescence, women become more likely to experience fear dysregulation. Oral contraceptives (OCs) can modulate the brain regions involved in fear processes. OCs are generally used for years and often initiated during adolescence, a sensitive period where certain brain regions involved in the fear circuitry are still undergoing important reorganization. It remains unknown whether OC use during adolescence may induce long-lasting changes in the fear circuitry. This study aimed to examine whether age of onset moderated the relationship between duration of use and fear-related brain structures. We collected structural MRI data in 98 healthy adult women (61 current users, 37 past users) and extracted grey matter volumes (GMV) and cortical thickness (CT) of key regions of the fear circuitry. Non-linear multiple regressions revealed interaction effects between age of onset and quadratic duration of use on GMV of the right hippocampus and right ventromedial prefrontal cortex (vmPFC). Among women who initiated OCs earlier in adolescence, a short duration of use was associated with smaller hippocampal GMV and thicker vmPFC compared to a longer duration of use. For both GMV and CT of the right vmPFC, women with an early OC onset had more grey matter at a short duration of use than those with a later onset. Our results suggest that OC use earlier in adolescence may induce lasting effects on structural correlates of fear learning and its regulation. These findings support further investigation into the timing of OC use to better comprehend how OCs could disrupt normal brain development processes.
Collapse
Affiliation(s)
- Alexandra Brouillard
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Lisa-Marie Davignon
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Étienne Vachon-Presseau
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Mathieu Roy
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Marie-France Marin
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| |
Collapse
|
3
|
Aleksic S, Fleysher R, Weiss EF, Tal N, Darby T, Blumen HM, Vazquez J, Ye KQ, Gao T, Siegel SM, Barzilai N, Lipton ML, Milman S. Hypothalamic MRI-derived microstructure is associated with neurocognitive aging in humans. Neurobiol Aging 2024; 141:102-112. [PMID: 38850591 PMCID: PMC11295133 DOI: 10.1016/j.neurobiolaging.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The hypothalamus regulates homeostasis across the lifespan and is emerging as a regulator of aging. In murine models, aging-related changes in the hypothalamus, including microinflammation and gliosis, promote accelerated neurocognitive decline. We investigated relationships between hypothalamic microstructure and features of neurocognitive aging, including cortical thickness and cognition, in a cohort of community-dwelling older adults (age range 65-97 years, n=124). Hypothalamic microstructure was evaluated with two magnetic resonance imaging diffusion metrics: mean diffusivity (MD) and fractional anisotropy (FA), using a novel image processing pipeline. Hypothalamic MD was cross-sectionally positively associated with age and it was negatively associated with cortical thickness. Hypothalamic FA, independent of cortical thickness, was cross-sectionally positively associated with neurocognitive scores. An exploratory analysis of longitudinal neurocognitive performance suggested that lower hypothalamic FA may predict cognitive decline. No associations between hypothalamic MD, age, and cortical thickness were identified in a younger control cohort (age range 18-63 years, n=99). To our knowledge, this is the first study to demonstrate that hypothalamic microstructure is associated with features of neurocognitive aging in humans.
Collapse
Affiliation(s)
- Sandra Aleksic
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Roman Fleysher
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States; Department of Radiology, Albert Einstein College of Medicine, Gruss Magnetic Resonance Research Center, Bronx, NY, United States
| | - Erica F Weiss
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Noa Tal
- Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Timothy Darby
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Helena M Blumen
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Juan Vazquez
- Department of Internal Medicine, John Hopkins University, Baltimore, MD, United States
| | - Kenny Q Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tina Gao
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Shira M Siegel
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Nir Barzilai
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael L Lipton
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States; Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Sofiya Milman
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
4
|
Zhang L, Verwer RWH, van Heerikhuize J, Lucassen PJ, Nathanielsz PW, Hol EM, Aronica E, Dhillo WS, Meynen G, Swaab DF. Progesterone receptor distribution in the human hypothalamus and its association with suicide. Acta Neuropathol Commun 2024; 12:16. [PMID: 38263257 PMCID: PMC10807127 DOI: 10.1186/s40478-024-01733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
The human hypothalamus modulates mental health by balancing interactions between hormonal fluctuations and stress responses. Stress-induced progesterone release activates progesterone receptors (PR) in the human brain and triggers alterations in neuropeptides/neurotransmitters. As recent epidemiological studies have associated peripheral progesterone levels with suicide risks in humans, we mapped PR distribution in the human hypothalamus in relation to age and sex and characterized its (co-) expression in specific cell types. The infundibular nucleus (INF) appeared to be the primary hypothalamic structure via which progesterone modulates stress-related neural circuitry. An elevation of the number of pro-opiomelanocortin+ (POMC, an endogenous opioid precursor) neurons in the INF, which was due to a high proportion of POMC+ neurons that co-expressed PR, was related to suicide in patients with mood disorders (MD). MD donors who died of legal euthanasia were for the first time enrolled in a postmortem study to investigate the molecular signatures related to fatal suicidal ideations. They had a higher proportion of PR co-expressing POMC+ neurons than MD patients who died naturally. This indicates that the onset of endogenous opioid activation in MD with suicide tendency may be progesterone-associated. Our findings may have implications for users of progesterone-enriched contraceptives who also have MD and suicidal tendencies.
Collapse
Affiliation(s)
- Lin Zhang
- Neuropsychiatric Disorders Lab, Neuroimmunology Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Ronald W H Verwer
- Neuropsychiatric Disorders Lab, Neuroimmunology Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Joop van Heerikhuize
- Neuropsychiatric Disorders Lab, Neuroimmunology Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter W Nathanielsz
- Department of Animal Science, College of Agriculture and Natural Resources, University of Wyoming, Laramie, USA
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Waljit S Dhillo
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Gerben Meynen
- Faculty of Humanities, VU University Amsterdam, Amsterdam, the Netherlands
- Willem Pompe Institute for Criminal Law and Criminology and Utrecht Centre for Accountability and Liability Law (UCALL), Utrecht University, Utrecht, the Netherlands
| | - Dick F Swaab
- Neuropsychiatric Disorders Lab, Neuroimmunology Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Dept. Neuropsychiatric Disorders, University of Amsterdam, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Klinger-König J, Ittermann T, Martin II, Marx S, Schroeder HWS, Nauck M, Völzke H, Bülow R, Grabe HJ. Pituitary gland volumes and stress: Results of a population-based adult sample. J Psychiatr Res 2023; 168:325-333. [PMID: 37950977 DOI: 10.1016/j.jpsychires.2023.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/13/2023]
Abstract
Early and chronic stress was reported to alter the hypothalamic-pituitary-adrenal axis functioning which regulates the secretion of cortisol. Nevertheless, few studies mainly focused on specific study populations (e.g. adolescents, pregnant women, and psychiatric patients), and researched interactive associations of pituitary volumes and single stress markers. The present study used pituitary volumes of two adult general-population cohorts of the Study of Health in Pomerania (SHIP-START-2: N = 1026, 54% Men, 30-90 years; SHIP-TREND-0: N = 1868, 53% Men, 21-82 years). In linear regression models, main effects of the pituitary volumes as well as interaction effects with childhood abuse and neglect (Childhood Trauma Questionnaire) were estimated using depressive symptoms (Beck Depression Inventory-II), and serum cortisol concentrations as outcome variables. The results of both cohorts were integrated via meta-analyses. No main effect between pituitary volumes and depressive symptoms was observed (START-2: β = -0.004 [-0.082; 0.075], p = .929; TREND-0: β = 0.020 [-0.033; 0.073], p = .466; Meta-analysis: β = 0.012 [-0.031; 0.056], p = .580). However, larger pituitary volumes were associated with more depressive symptoms in participants with more severe childhood neglect (START-2: β = 0.051 [-0.024; 0.126], p = .183; TREND-0: β = 0.083 [0.006; 0.159], p = .034; Meta-analysis: β = 0.066 [0.013; 0.120], p = .015). Further, larger pituitary volumes were associated with lower serum cortisol concentrations in participants with more severe depressive symptoms (START-2: β = -0.087 [-0.145; -0.030], p = .003; TREND-0: β = -0.053 [-0.091; -0.015], p = .006; Meta-analysis: β = -0.063 [-0.095; -0.032], p = 8.39e-05). Summarizing, larger pituitary volumes were associated with more severe psychopathological symptoms, particularly in participants reporting early life stress. This was supported by stronger associations between pituitary volumes and cortisol concentrations in participants with more severe depressive symptoms. Future studies are needed to transfer these results into developmental stages of high hormonal changes and patient samples.
Collapse
Affiliation(s)
- Johanna Klinger-König
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.
| | - Till Ittermann
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Insa I Martin
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Sascha Marx
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany; Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Henry W S Schroeder
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, University Medicine Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Brouillard A, Davignon LM, Turcotte AM, Marin MF. Morphologic alterations of the fear circuitry: the role of sex hormones and oral contraceptives. Front Endocrinol (Lausanne) 2023; 14:1228504. [PMID: 38027091 PMCID: PMC10661904 DOI: 10.3389/fendo.2023.1228504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Endogenous sex hormones and oral contraceptives (OCs) have been shown to influence key regions implicated in fear processing. While OC use has been found to impact brain morphology, methodological challenges remain to be addressed, such as avoiding selection bias between OC users and non-users, as well as examining potential lasting effects of OC intake. Objective We investigated the current and lasting effects of OC use, as well as the interplay between the current hormonal milieu and history of hormonal contraception use on structural correlates of the fear circuitry. We also examined the role of endogenous and exogenous sex hormones within this network. Methods We recruited healthy adults aged 23-35 who identified as women currently using (n = 62) or having used (n = 37) solely combined OCs, women who never used any hormonal contraceptives (n = 40), or men (n = 41). Salivary endogenous sex hormones and current users' salivary ethinyl estradiol (EE) were assessed using liquid chromatography - tandem mass spectrometry. Using structural magnetic resonance imaging, we extracted surface-based gray matter volumes (GMVs) and cortical thickness (CT) for regions of interest of the fear circuitry. Exploratory whole-brain analyses were conducted with surface-based and voxel-based morphometry methods. Results Compared to men, all three groups of women exhibited a larger GMV of the dorsal anterior cingulate cortex, while only current users showed a thinner ventromedial prefrontal cortex. Irrespective of the menstrual cycle phase, never users exhibited a thicker right anterior insular cortex than past users. While associations with endogenous sex hormones remain unclear, we showed that EE dosage in current users had a greater influence on brain anatomy compared to salivary EE levels and progestin androgenicity, with lower doses being associated with smaller cortical GMVs. Discussion Our results highlight a sex difference for the dorsal anterior cingulate cortex GMV (a fear-promoting region), as well as a reduced CT of the ventromedial prefrontal cortex (a fear-inhibiting region) specific to current OC use. Precisely, this finding was driven by lower EE doses. These findings may represent structural vulnerabilities to anxiety and stress-related disorders. We showed little evidence of durable anatomical effects, suggesting that OC intake can (reversibly) affect fear-related brain morphology.
Collapse
Affiliation(s)
- Alexandra Brouillard
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | - Lisa-Marie Davignon
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | | | - Marie-France Marin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| |
Collapse
|
7
|
Konadu ME, Reed MB, Kaufmann U, Handschuh PA, Spurny-Dworak B, Klöbl M, Schmidt C, Godber, Godbersen M, Briem E, Seiger R, Baldinger-Melich P, Kranz GS, Lanzenberger R, Spies M. Changes to hypothalamic volume and associated subunits during gender-affirming hormone therapy. J Psychiatry Neurosci 2023; 48:E369-E375. [PMID: 37751919 PMCID: PMC10521920 DOI: 10.1503/jpn.230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Among its pleiotropic properties, gender-affirming hormone therapy (GHT) affects regional brain volumes. The hypothalamus, which regulates neuroendocrine function and associated emotional and cognitive processes, is an intuitive target for probing GHT effects. We sought to assess changes to hypothalamus and hypothalamic subunit volumes after GHT, thereby honouring the region's anatomical and functional heterogeneity. METHODS Individuals with gender dysphoria and cisgender controls underwent 2 MRI measurements, with a median interval of 145 days (interquartile range [IQR] 128.25-169.75 d, mean 164.94 d) between the first and second MRI. Transgender women (TW) and transgender men (TM) underwent the first MRI before GHT and the second MRI after approximately 4.5 months of GHT, which comprised estrogen and anti-androgen therapy in TW or testosterone therapy in TM. Hypothalamic volumes were segmented using FreeSurfer, and effects of GHT were tested using repeated-measures analysis of covariance. RESULTS The final sample included 106 participants: 38 TM, 15 TW, 32 cisgender women (CW) and 21 cisgender men (CM). Our analyses revealed group × time interaction effects for total, left and right hypothalamus volume, and for several subunits (left and right inferior tubular, left superior tubular, right anterior inferior, right anterior superior, all p corr < 0.01). In TW, volumes decreased between the first and second MRI in these regions (all p corr ≤ 0.01), and the change from the first to second MRI in TW differed significantly from that in CM and CW in several subunits (p corr < 0.05). LIMITATIONS We did not address the influence of transition-related psychological and behavioural changes. CONCLUSION Our results suggest a subunit-specific effect of GHT on hypothalamus volumes in TW. This finding is in accordance with previous reports of positive and negative effects of androgens and estrogens, respectively, on cerebral volumes.
Collapse
Affiliation(s)
- Melisande E Konadu
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Murray B Reed
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Ulrike Kaufmann
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Patricia A Handschuh
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Benjamin Spurny-Dworak
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Manfred Klöbl
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Clemens Schmidt
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Godber
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - M Godbersen
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Elisa Briem
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - René Seiger
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Pia Baldinger-Melich
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Georg S Kranz
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Rupert Lanzenberger
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Marie Spies
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| |
Collapse
|
8
|
Kim SH, Chang SJC, Dobri G, Strauss S, Lin E, Zavaletta V, Pannullo SC, Osborne JR, Schwartz TH, Knisely JPS, Ivanidze J. [68 Ga]-DOTATATE PET/MR-based evaluation of physiologic somatostatin receptor 2 expression in the adult pituitary gland as a function of age and sex in a prospective cohort. Pituitary 2023:10.1007/s11102-023-01329-0. [PMID: 37285059 DOI: 10.1007/s11102-023-01329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
PURPOSE The pituitary gland has the fourth highest physiologic avidity of [68 Ga]-DOTATATE. In order to guide our understanding of [68 Ga]-DOTATATE PET in clinical contexts, accurate characterization of the normal pituitary gland is first required. This study aimed to characterize the normal pituitary gland using dedicated brain [68 Ga]-DOTATATE PET/MRI as a function of age and sex. METHODS A total of 95 patients with a normal pituitary gland underwent brain [68 Ga]-DOTATATE PET examinations for the purpose of diagnosing CNS SSTR2 positive tumors (mean age: 58.9, 73% female). Maximum SUV of the pituitary gland was obtained in each patient. SUV of superior sagittal sinus was obtained to calculate normalized SUV score (SUVR) of the gland. The anatomic size of the gland was collected as maximum sagittal height (MSH). Correlations with age and sex were analyzed. RESULTS The mean SUV and SUVR of the pituitary gland were 17.6 (range: 7-59.5, SD = 7.1) and 13.8 (range: 3.3-52.6, SD = 7.2), respectively. Older females had significantly higher SUV of the pituitary gland compared to younger females. When stratified by age and sex, both older and younger females had significantly higher pituitary SUV than older males. SUVR did not differ significantly by age or sex. MSH of the pituitary gland in younger females was significantly greater than in younger males at all age cutoffs. CONCLUSION This study provides an empiric profiling of the physiological [68 Ga]-DOTATATE avidity of the pituitary gland. The findings suggest that SUV may vary by age and sex and can help guide the use of [68 Ga]-DOTATATE PET/MRI in clinical and research settings. Future studies can build on these findings to investigate further the relationship between pituitary biology and demographic factors.
Collapse
Affiliation(s)
- Sean H Kim
- Department of Radiology, New York-Presbyterian Hospital, Weill Cornell Medical Center, 525 E. 68Th St, New York, NY, 10021, USA
| | - Se Jung Chris Chang
- Department of Radiology, New York-Presbyterian Hospital, Weill Cornell Medical Center, 525 E. 68Th St, New York, NY, 10021, USA
| | - Georgiana Dobri
- Department of Endocrinology, Weill Cornell Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Sara Strauss
- Department of Radiology, New York-Presbyterian Hospital, Weill Cornell Medical Center, 525 E. 68Th St, New York, NY, 10021, USA
| | - Eaton Lin
- Department of Radiology, New York-Presbyterian Hospital, Weill Cornell Medical Center, 525 E. 68Th St, New York, NY, 10021, USA
| | - Vaz Zavaletta
- Department of Radiology, University of Colorado Hospital, Aurora, CO, USA
| | - Susan C Pannullo
- Department of Neurological Surgery, Weill Cornell Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Joseph R Osborne
- Department of Radiology, New York-Presbyterian Hospital, Weill Cornell Medical Center, 525 E. 68Th St, New York, NY, 10021, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Jonathan P S Knisely
- Department of Radiation Oncology, Weill Cornell Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Jana Ivanidze
- Department of Radiology, New York-Presbyterian Hospital, Weill Cornell Medical Center, 525 E. 68Th St, New York, NY, 10021, USA.
| |
Collapse
|
9
|
Pletzer B, Winkler-Crepaz K, Hillerer K. Progesterone and contraceptive progestin actions on the brain: A systematic review of animal studies and comparison to human neuroimaging studies. Front Neuroendocrinol 2023; 69:101060. [PMID: 36758768 DOI: 10.1016/j.yfrne.2023.101060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
In this review we systematically summarize the effects of progesterone and synthetic progestins on neurogenesis, synaptogenesis, myelination and six neurotransmitter systems. Several parallels between progesterone and older generation progestin actions emerged, suggesting actions via progesterone receptors. However, existing results suggest a general lack of knowledge regarding the effects of currently used progestins in hormonal contraception regarding these cellular and molecular brain parameters. Human neuroimaging studies were reviewed with a focus on randomized placebo-controlled trials and cross-sectional studies controlling for progestin type. The prefrontal cortex, amygdala, salience network and hippocampus were identified as regions of interest for future preclinical studies. This review proposes a series of experiments to elucidate the cellular and molecular actions of contraceptive progestins in these areas and link these actions to behavioral markers of emotional and cognitive functioning. Emotional effects of contraceptive progestins appear to be related to 1) alterations in the serotonergic system, 2) direct/indirect modulations of inhibitory GABA-ergic signalling via effects on the allopregnanolone content of the brain, which differ between androgenic and anti-androgenic progestins. Cognitive effects of combined oral contraceptives appear to depend on the ethinylestradiol dose.
Collapse
Affiliation(s)
- Belinda Pletzer
- Department of Psychology & Centre for Cognitive Neuroscience, Paris-Lodron-University Salzburg, Salzburg Austria.
| | | | - Katharina Hillerer
- Department of Gynaecology & Obstetrics, Private Medical University, Salzburg, Austria
| |
Collapse
|
10
|
Spindler M, Thiel CM. Hypothalamic microstructure and function are related to body mass, but not mental or cognitive abilities across the adult lifespan. GeroScience 2023; 45:277-291. [PMID: 35896889 PMCID: PMC9886766 DOI: 10.1007/s11357-022-00630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/20/2022] [Indexed: 02/03/2023] Open
Abstract
Physical, mental, and cognitive resources are essential for healthy aging. Aging impacts on the structural integrity of various brain regions, including the hippocampus. Even though recent rodent studies hint towards a critical role of the hypothalamus, there is limited evidence on functional consequences of age-related changes of this region in humans. Given its central role in metabolic regulation and affective processing and its connections to the hippocampus, it is plausible that hypothalamic integrity and connectivity are associated with functional age-related decline. We used data of n = 369 participants (18-88 years) from the Cambridge Centre for Ageing and Neuroscience repository to determine functional impacts of potential changes in hypothalamic microstructure across the lifespan. First, we identified age-related changes in microstructure as a function of physical, mental, and cognitive health and compared those findings to changes in hippocampal microstructure. Second, we investigated the relationship of hypothalamic microstructure and resting-state functional connectivity and related those changes to age as well as physical health. Our results showed that hypothalamic microstructure is not affected by depressive symptoms (mental health), cognitive performance (cognitive health), and comparatively stable across the lifespan, but affected by body mass (physical health). Furthermore, body mass changes connectivity to limbic regions including the hippocampus, amygdala, and nucleus accumbens, suggesting functional alterations in the metabolic and reward systems. Our results demonstrate that hypothalamic structure and function are affected by body mass, focused on neural density and dispersion, but not inflammation. Still, observed effect sizes were small, encouraging detailed investigations of individual hypothalamic subunits.
Collapse
Affiliation(s)
- Melanie Spindler
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl Von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany.
| | - Christiane M Thiel
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl Von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
- Cluster of Excellence "Hearing4all", Carl Von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
- Research Centre Neurosensory Science, Carl Von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
11
|
Song JY, Patton CD, Friedman R, Mahajan LS, Nordlicht R, Sayed R, Lipton ML. Hormonal contraceptives and the brain: A systematic review on 60 years of neuroimaging, EEG, and biochemical studies in humans and animals. Front Neuroendocrinol 2023; 68:101051. [PMID: 36577486 PMCID: PMC9898167 DOI: 10.1016/j.yfrne.2022.101051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/26/2022]
Abstract
Hormonal contraception has been widely prescribed for decades. Although safety and efficacy are well-established, much uncertainty remains regarding brain effects of hormonal contraception. We systematically review human and animal studies on the brain effects of hormonal contraception which employed neuroimaging techniques such as MRI, PET and EEG, as well as animal studies which reported on neurotransmitter and other brain biochemical effects. We screened 1001 articles and ultimately extracted data from 70, comprising 51 human and 19 animal studies. Of note, there were no animal studies which employed structural or functional MRI, MRS or PET. In summary, our review shows hormonal contraceptive associations with changes in the brain have been documented. Many questions remain and more studies are needed to describe the effects of hormonal contraception on the brain.
Collapse
Affiliation(s)
- Joan Y Song
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | | | - Renee Friedman
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Lakshmi S Mahajan
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Rachel Nordlicht
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Rahman Sayed
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Michael L Lipton
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
12
|
Velasco ER, Florido A, Perez-Caballero L, Marin I, Andero R. The Impacts of Sex Differences and Sex Hormones on Fear Extinction. Curr Top Behav Neurosci 2023; 64:105-132. [PMID: 37528309 DOI: 10.1007/7854_2023_426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Fear extinction memories are strongly modulated by sex and hormonal status, but the exact mechanisms are still being discovered. In humans, there are some basal and task-related features in which male and female individuals differ in fear conditioning paradigms. However, analyses considering the effects of sex hormones demonstrate a role for estradiol in fear extinction memory consolidation. Translational studies are taking advantage of the convergent findings between species to understand the brain structures implicated. Nevertheless, the human brain is complex and the transfer of these findings into the clinics remains a challenge. The promising advances in the field together with the standardization of fear extinction methodologies in humans will benefit the design of new personalized therapies.
Collapse
Affiliation(s)
- Eric Raul Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Perez-Caballero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Marin
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raul Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
13
|
Griksiene R, Monciunskaite R, Ruksenas O. What is there to know about the effects of progestins on the human brain and cognition? Front Neuroendocrinol 2022; 67:101032. [PMID: 36029852 DOI: 10.1016/j.yfrne.2022.101032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/24/2022] [Accepted: 08/19/2022] [Indexed: 12/27/2022]
Abstract
Progestins are an important component of hormonal contraceptives (HCs) and hormone replacement therapies (HRTs). Despite an increasing number of studies elucidating the effects of HCs and HRTs, little is known about the effects of different types of progestins included in these medications on the brain. Animal studies suggest that various progestins interact differently with sex steroid, mineralocorticoid and glucocorticoid receptors and have specific modulatory effects on neurotransmitter systems and on the expression of neuropeptides, suggesting differential impacts on cognition and behavior. This review focuses on the currently available knowledge from human behavioral and neuroimaging studies pooled with evidence from animal research regarding the effects of progestins on the brain. The reviewed information is highly relevant for improving women's mental health and making informed choices regarding specific types of contraception or treatment.
Collapse
Affiliation(s)
- Ramune Griksiene
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| | - Rasa Monciunskaite
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| | - Osvaldas Ruksenas
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| |
Collapse
|
14
|
Jett S, Schelbaum E, Jang G, Boneu Yepez C, Dyke JP, Pahlajani S, Diaz Brinton R, Mosconi L. Ovarian steroid hormones: A long overlooked but critical contributor to brain aging and Alzheimer's disease. Front Aging Neurosci 2022; 14:948219. [PMID: 35928995 PMCID: PMC9344010 DOI: 10.3389/fnagi.2022.948219] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 01/19/2023] Open
Abstract
Ovarian hormones, particularly 17β-estradiol, are involved in numerous neurophysiological and neurochemical processes, including those subserving cognitive function. Estradiol plays a key role in the neurobiology of aging, in part due to extensive interconnectivity of the neural and endocrine system. This aspect of aging is fundamental for women's brains as all women experience a drop in circulating estradiol levels in midlife, after menopause. Given the importance of estradiol for brain function, it is not surprising that up to 80% of peri-menopausal and post-menopausal women report neurological symptoms including changes in thermoregulation (vasomotor symptoms), mood, sleep, and cognitive performance. Preclinical evidence for neuroprotective effects of 17β-estradiol also indicate associations between menopause, cognitive aging, and Alzheimer's disease (AD), the most common cause of dementia affecting nearly twice more women than men. Brain imaging studies demonstrated that middle-aged women exhibit increased indicators of AD endophenotype as compared to men of the same age, with onset in perimenopause. Herein, we take a translational approach to illustrate the contribution of ovarian hormones in maintaining cognition in women, with evidence implicating menopause-related declines in 17β-estradiol in cognitive aging and AD risk. We will review research focused on the role of endogenous and exogenous estrogen exposure as a key underlying mechanism to neuropathological aging in women, with a focus on whether brain structure, function and neurochemistry respond to hormone treatment. While still in development, this research area offers a new sex-based perspective on brain aging and risk of AD, while also highlighting an urgent need for better integration between neurology, psychiatry, and women's health practices.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Eva Schelbaum
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Grace Jang
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Camila Boneu Yepez
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
15
|
Li H, Li C, Shi X, Xia M. Heavy menstrual bleeding due to primary myelofibrosis in a woman: a case report. Am J Transl Res 2021; 13:12016-12020. [PMID: 34786136 PMCID: PMC8581911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Heavy menstrual bleeding (HMB) due to primary myelofibrosis (PMF) is secondary to progressive pancytopenia, which is a rare and difficult to treat condition. We report this case with the aim of sharing our experiences and exploring a safe and effective way to treat patients with HMB due to PMF. A 40-year-old woman who had been taking combined oral contraceptives (COCs) for eight years was admitted to our hospital with HMB. A bone marrow biopsy report and genetic testing confirmed the diagnosis of PMF. Norethisterone tablets had an unsatisfactory hemostatic effect. The patient underwent a hysteroscopy and the insertion of a levonorgestrel intrauterine system (LNG-IUS). At the 5-month follow-up, the patient had a lower menstruation bleeding volume. COCs are unsuitable for managing the menstruation of patients with PMF in the long run. Endometrial ablation is the long-term method. However, the patient's fertility requirements should be taken into account. The insertion of an LNG-IUS after hysteroscopic curettage to exclude endometrial malignant lesions is recommended.
Collapse
Affiliation(s)
- Hui Li
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou 310006, Zhejiang Province, China
| | - Chao Li
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou 310006, Zhejiang Province, China
| | - Xinhe Shi
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou 310006, Zhejiang Province, China
| | - Mengting Xia
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|